# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.pool = nn.PReLU(channel=2, w=-0.25) def construct(self, x): out = self.pool(x) return out @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_prelu_normal(mode): """ Feature: PReLU Description: Verify the result of PReLU Expectation: success """ ms.set_context(mode=mode) x = ms.Tensor([[[0.9192, -0.1487], [-0.3999, -0.6840]], [[0.4745, -0.6271], [-0.6547, -0.5856]], [[-0.2572, -0.8412], [0.1918, -0.6117]]]) net = Net() out = net(x) expect_out = np.array([[[0.9192, 0.037175], [0.099975, 0.171]], [[0.4745, 0.156775], [0.163675, 0.1464]], [[0.0643, 0.2103], [0.1918, 0.152925]]]) assert np.allclose(out.asnumpy().astype(np.float16), expect_out.astype(np.float16))