# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import ops class Arcsinh(nn.Cell): def construct(self, x): return ops.arcsinh(x) @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_ops_arcsinh(mode): """ Feature: ops.arcsinh Description: Verify the result of arcsinh Expectation: success """ ms.set_context(mode=mode) x = Tensor(np.array([-5.0, 1.5, 3.0, 100.0]), ms.float32) net = Arcsinh() output = net(x) expect_output = [-2.3124382, 1.1947632, 1.8184465, 5.298342] assert np.allclose(output.asnumpy(), expect_output)