# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn import mindspore.ops as ops class Net(nn.Cell): def construct(self, x): output = ops.flipud(x) return output @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_flipud_normal(mode): """ Feature: flipud Description: Verify the result of flipud Expectation: success """ ms.set_context(mode=mode) net = Net() x = ms.Tensor(np.arange(8).reshape((2, 2, 2))) out = net(x) expect_out = np.array([[[4., 5.], [6., 7.]], [[0., 1.], [2., 3.]]]) assert np.allclose(out.asnumpy(), expect_out)