# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore as ms import mindspore.nn as nn import mindspore.ops as ops class Net(nn.Cell): def construct(self, x, other): output = ops.hypot(x, other) return output @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_hypot_normal(mode): """ Feature: hypot Description: Verify the result of hypot Expectation: success """ ms.set_context(mode=mode) net = Net() x = ms.Tensor([4], ms.float32) other = ms.Tensor([3, 4, 5], ms.float64) out = net(x, other) expect_out = np.array([5.0000, 5.6569, 6.4031], dtype=np.float64) assert np.allclose(out.asnumpy(), expect_out)