# Copyright 2024 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore.context as context from mindspore import Tensor from mindspore import ops import tests.st.utils.test_utils as test_utils @test_utils.run_with_cell def forward_func(x, indices): return ops.max_unpool3d(x, indices, kernel_size=2, stride=1, padding=0) @test_utils.run_with_cell def backward_func(x, indices): return ops.grad(forward_func, (0))(x, indices) @pytest.mark.level0 @pytest.mark.env_onecard @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.parametrize("context_mode", [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_maxunpool3d_float32(context_mode): """ Feature: maxunpool3d Description: test maxunpool3d Expectation: expect correct result. """ context.set_context(mode=context_mode, device_target="Ascend") x = Tensor(np.array([[[[[0, 1], [8, 9]]]]]).astype(np.float32)) indices = Tensor(np.array([[[[[0, 1], [2, 3]]]]]).astype(np.int64)) output = forward_func(x, indices) expected = np.array([[[[[0., 1., 8.], [9., 0., 0.], [0., 0., 0.]], [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.]]]]], np.float32) np.testing.assert_allclose(output.asnumpy(), expected, rtol=1e-3) @pytest.mark.level0 @pytest.mark.env_onecard @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.parametrize("context_mode", [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_maxunpool3dgrad_float32(context_mode): """ Feature: maxunpool3dgrad Description: test maxunpool3dgrad Expectation: expect correct result. """ context.set_context(mode=context_mode, device_target="Ascend") x = Tensor(np.array([[[[[0, 1], [8, 9]]]]]).astype(np.float32)) indices = Tensor(np.array([[[[[0, 1], [2, 3]]]]]).astype(np.int64)) x_grad = backward_func(x, indices) assert x_grad.asnumpy().shape == x.shape