# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor import mindspore.ops as ops class Net(nn.Cell): def construct(self, x, y): return ops.multiply(x, y) @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_multiply(mode): """ Feature: test Tensor.log10. Description: Verify the result of Tensor.log10. Expectation: expect correct forward result. """ ms.set_context(mode=mode) x = Tensor([1, 2, 3], dtype=ms.float32) y = Tensor([1, 2, 3], dtype=ms.float32) multiply = Net() output = multiply(x, y) expect_output = np.array([1, 4, 9], dtype=np.float32) assert np.allclose(output.asnumpy(), expect_output)