# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn import mindspore.ops as ops from mindspore import Tensor class Roll(nn.Cell): def construct(self, x): return ops.roll(x, shifts=2, dims=0) @pytest.mark.level1 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_tensor_roll(mode): """ Feature: tensor.roll Description: Verify the result of roll Expectation: success """ ms.set_context(mode=mode) input_x = Tensor(np.array([0, 1, 2, 3, 4]).astype(np.float32)) net = Roll() output = net(input_x) expect_output = [3., 4., 0., 1., 2.] assert np.allclose(output.asnumpy(), expect_output)