# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test ops unbind """ import numpy as np import pytest from mindspore import context, Tensor import mindspore.ops as ops from mindspore import nn class UnbindNet(nn.Cell): def construct(self, x, dim): return ops.unbind(x, dim) @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_unbind(mode): """ Feature: unbind Description: Verify the result of unbind Expectation: success """ context.set_context(mode=mode) x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) dim = 0 unbind = UnbindNet() output = unbind(x, dim) for i in range(len(x)): assert np.allclose(output[i].asnumpy(), x[i].asnumpy(), rtol=0.0001)