# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from .optimizer_utils import FakeNet, build_network from tests.st.utils import test_utils @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) @test_utils.run_test_with_On def test_default_asgd(mode): """ Feature: Test ASGD optimizer Description: Test ASGD with default parameter Expectation: Loss values and parameters conform to preset values. """ from .optimizer_utils import default_fc1_weight_asgd, \ default_fc1_bias_asgd, default_fc2_weight_asgd, default_fc2_bias_asgd context.set_context(mode=mode) config = {'name': 'ASGD', 'lr': 0.01, 'lambd': 1e-4, 'alpha': 0.75, 't0': 1e6, 'weight_decay': 0.0} _, cells = build_network(config, FakeNet()) assert np.allclose(cells.ax[0].asnumpy(), default_fc1_weight_asgd, atol=1.e-3) assert np.allclose(cells.ax[1].asnumpy(), default_fc1_bias_asgd, atol=1.e-3) assert np.allclose(cells.ax[2].asnumpy(), default_fc2_weight_asgd, atol=1.e-3) assert np.allclose(cells.ax[3].asnumpy(), default_fc2_bias_asgd, atol=1.e-3) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_no_default_asgd(mode): """ Feature: Test ASGD optimizer Description: Test ASGD with another set of parameter Expectation: Loss values and parameters conform to preset values. """ from .optimizer_utils import no_default_fc1_weight_asgd, \ no_default_fc1_bias_asgd, no_default_fc2_weight_asgd, no_default_fc2_bias_asgd config = {'name': 'ASGD', 'lr': 0.001, 'lambd': 1e-3, 'alpha': 0.8, 't0': 50., 'weight_decay': 0.001} context.set_context(mode=mode) _, cells = build_network(config, FakeNet()) assert np.allclose(cells.ax[0].asnumpy(), no_default_fc1_weight_asgd, atol=1.e-3) assert np.allclose(cells.ax[1].asnumpy(), no_default_fc1_bias_asgd, atol=1.e-3) assert np.allclose(cells.ax[2].asnumpy(), no_default_fc2_weight_asgd, atol=1.e-3) assert np.allclose(cells.ax[3].asnumpy(), no_default_fc2_bias_asgd, atol=1.e-3) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_default_asgd_group(mode): """ Feature: Test ASGD optimizer Description: Test ASGD with parameter grouping Expectation: Loss values and parameters conform to preset values. """ from .optimizer_utils import no_default_group_fc1_weight_asgd, no_default_group_fc1_bias_asgd, \ no_default_group_fc2_weight_asgd, no_default_group_fc2_bias_asgd context.set_context(mode=mode) config = {'name': 'ASGD', 'lr': 0.1, 'lambd': 1e-3, 'alpha': 0.8, 't0': 50., 'weight_decay': 0.001} _, cells = build_network(config, FakeNet(), is_group=True) assert np.allclose(cells.ax[0].asnumpy(), no_default_group_fc1_weight_asgd, atol=1.e-3) assert np.allclose(cells.ax[1].asnumpy(), no_default_group_fc1_bias_asgd, atol=1.e-3) assert np.allclose(cells.ax[2].asnumpy(), no_default_group_fc2_weight_asgd, atol=1.e-3) assert np.allclose(cells.ax[3].asnumpy(), no_default_group_fc2_bias_asgd, atol=1.e-3)