# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor from mindspore import ops class Net(nn.Cell): def construct(self, x): return ops.absolute(x) @pytest.mark.level2 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_absolute(mode): """ Feature: absolute Description: Verify the result of absolute Expectation: success """ ms.set_context(mode=mode) x = Tensor(np.array([-1.0, 1.0, 0.0]), ms.float32) net = Net() output = net(x) expect_output = np.array([1., 1., 0.], dtype=np.float32) assert np.allclose(output.asnumpy(), expect_output)