# Copyright 2024 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore as ms import mindspore.context as context from mindspore import Tensor from mindspore import ops import tests.st.utils.test_utils as test_utils @test_utils.run_with_cell def forward_func(x, pad_dim_size): return ops.padding(x, pad_dim_size) @pytest.mark.level0 @pytest.mark.env_onecard @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.parametrize("context_mode", [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_padding_float32(context_mode): """ Feature: padding Description: test padding forward Expectation: expect correct result. """ context.set_context(mode=context_mode, device_target="Ascend") x = Tensor(np.array([[8], [10]]), ms.float32) pad_dim_size = 4 output = forward_func(x, pad_dim_size) expected = np.array( [[8., 0., 0., 0.], [10., 0., 0., 0.]], np.float32) np.testing.assert_allclose(output.asnumpy(), expected, rtol=1e-3)