• Home
  • Raw
  • Download

Lines Matching +full:memory +full:- +full:region

1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
39 * Memblock views the system memory as collections of contiguous
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
61 * The memblock_allow_resize() enables automatic resizing of the region
63 * with care so that memory allocated for the region array will not
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
70 * use it on NUMA systems as well and assign the region to a NUMA node
74 * Once memblock is setup the memory can be allocated using one of the
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
83 * memory ranges and the fallback methods. Consult the documentation
88 * function frees all the memory to the buddy page allocator.
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
136 * keep a pointer to &memblock.memory in the text section to use it in
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
168 return *size = min(*size, PHYS_ADDR_MAX - base); in memblock_cap_size()
187 for (i = 0; i < type->cnt; i++) in memblock_overlaps_region()
188 if (memblock_addrs_overlap(base, size, type->regions[i].base, in memblock_overlaps_region()
189 type->regions[i].size)) in memblock_overlaps_region()
191 return i < type->cnt; in memblock_overlaps_region()
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
202 * @flags: pick from blocks based on memory attributes
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
222 if (cand < this_end && this_end - cand >= size) in __memblock_find_range_bottom_up()
230 * __memblock_find_range_top_down - find free area utility, in top-down
237 * @flags: pick from blocks based on memory attributes
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
260 cand = round_down(this_end - size, align); in __memblock_find_range_top_down()
269 * memblock_find_in_range_node - find free area in given range and node
276 * @flags: pick from blocks based on memory attributes
306 * memblock_find_in_range - find free area in given range
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", in memblock_find_in_range()
341 type->total_size -= type->regions[r].size; in memblock_remove_region()
342 memmove(&type->regions[r], &type->regions[r + 1], in memblock_remove_region()
343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); in memblock_remove_region()
344 type->cnt--; in memblock_remove_region()
347 if (type->cnt == 0) { in memblock_remove_region()
348 WARN_ON(type->total_size != 0); in memblock_remove_region()
349 type->cnt = 1; in memblock_remove_region()
350 type->regions[0].base = 0; in memblock_remove_region()
351 type->regions[0].size = 0; in memblock_remove_region()
352 type->regions[0].flags = 0; in memblock_remove_region()
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); in memblock_remove_region()
359 * memblock_discard - discard memory and reserved arrays if they were allocated
375 if (memblock.memory.regions != memblock_memory_init_regions) { in memblock_discard()
376 addr = __pa(memblock.memory.regions); in memblock_discard()
378 memblock.memory.max); in memblock_discard()
380 kfree(memblock.memory.regions); in memblock_discard()
390 * memblock_double_array - double the size of the memblock regions array
392 * @new_area_start: starting address of memory range to avoid overlap with
393 * @new_area_size: size of memory range to avoid overlap with
396 * allocate memory for a new reserved regions array and there is a previously
397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398 * waiting to be reserved, ensure the memory used by the new array does
402 * 0 on success, -1 on failure.
415 * of memory that aren't suitable for allocation in memblock_double_array()
418 return -1; in memblock_double_array()
421 old_size = type->max * sizeof(struct memblock_region); in memblock_double_array()
431 if (type == &memblock.memory) in memblock_double_array()
457 type->name, type->max, type->max * 2); in memblock_double_array()
458 return -1; in memblock_double_array()
461 new_end = addr + new_size - 1; in memblock_double_array()
462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", in memblock_double_array()
463 type->name, type->max * 2, &addr, &new_end); in memblock_double_array()
467 * reserved region since it may be our reserved array itself that is in memblock_double_array()
470 memcpy(new_array, type->regions, old_size); in memblock_double_array()
471 memset(new_array + type->max, 0, old_size); in memblock_double_array()
472 old_array = type->regions; in memblock_double_array()
473 type->regions = new_array; in memblock_double_array()
474 type->max <<= 1; in memblock_double_array()
497 * memblock_merge_regions - merge neighboring compatible regions
507 while (i < type->cnt - 1) { in memblock_merge_regions()
508 struct memblock_region *this = &type->regions[i]; in memblock_merge_regions()
509 struct memblock_region *next = &type->regions[i + 1]; in memblock_merge_regions()
511 if (this->base + this->size != next->base || in memblock_merge_regions()
514 this->flags != next->flags) { in memblock_merge_regions()
515 BUG_ON(this->base + this->size > next->base); in memblock_merge_regions()
520 this->size += next->size; in memblock_merge_regions()
522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); in memblock_merge_regions()
523 type->cnt--; in memblock_merge_regions()
528 * memblock_insert_region - insert new memblock region
531 * @base: base address of the new region
532 * @size: size of the new region
533 * @nid: node id of the new region
534 * @flags: flags of the new region
536 * Insert new memblock region [@base, @base + @size) into @type at @idx.
537 * @type must already have extra room to accommodate the new region.
545 struct memblock_region *rgn = &type->regions[idx]; in memblock_insert_region()
547 BUG_ON(type->cnt >= type->max); in memblock_insert_region()
548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); in memblock_insert_region()
549 rgn->base = base; in memblock_insert_region()
550 rgn->size = size; in memblock_insert_region()
551 rgn->flags = flags; in memblock_insert_region()
553 type->cnt++; in memblock_insert_region()
554 type->total_size += size; in memblock_insert_region()
558 * memblock_add_range - add new memblock region
559 * @type: memblock type to add new region into
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: nid of the new region
563 * @flags: flags of the new region
565 * Add new memblock region [@base, @base + @size) into @type. The new region
566 * is allowed to overlap with existing ones - overlaps don't affect already
571 * 0 on success, -errno on failure.
587 if (type->regions[0].size == 0) { in memblock_add_range()
588 WARN_ON(type->cnt != 1 || type->total_size); in memblock_add_range()
589 type->regions[0].base = base; in memblock_add_range()
590 type->regions[0].size = size; in memblock_add_range()
591 type->regions[0].flags = flags; in memblock_add_range()
592 memblock_set_region_node(&type->regions[0], nid); in memblock_add_range()
593 type->total_size = size; in memblock_add_range()
606 phys_addr_t rbase = rgn->base; in memblock_add_range()
607 phys_addr_t rend = rbase + rgn->size; in memblock_add_range()
621 WARN_ON(flags != rgn->flags); in memblock_add_range()
625 rbase - base, nid, in memblock_add_range()
636 memblock_insert_region(type, idx, base, end - base, in memblock_add_range()
648 while (type->cnt + nr_new > type->max) in memblock_add_range()
650 return -ENOMEM; in memblock_add_range()
660 * memblock_add_node - add new memblock region within a NUMA node
661 * @base: base address of the new region
662 * @size: size of the new region
663 * @nid: nid of the new region
665 * Add new memblock region [@base, @base + @size) to the "memory"
669 * 0 on success, -errno on failure.
674 return memblock_add_range(&memblock.memory, base, size, nid, 0); in memblock_add_node()
678 * memblock_add - add new memblock region
679 * @base: base address of the new region
680 * @size: size of the new region
682 * Add new memblock region [@base, @base + @size) to the "memory"
686 * 0 on success, -errno on failure.
690 phys_addr_t end = base + size - 1; in memblock_add()
692 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_add()
695 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); in memblock_add()
699 * memblock_isolate_range - isolate given range into disjoint memblocks
703 * @start_rgn: out parameter for the start of isolated region
704 * @end_rgn: out parameter for the end of isolated region
709 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
712 * 0 on success, -errno on failure.
728 while (type->cnt + 2 > type->max) in memblock_isolate_range()
730 return -ENOMEM; in memblock_isolate_range()
733 phys_addr_t rbase = rgn->base; in memblock_isolate_range()
734 phys_addr_t rend = rbase + rgn->size; in memblock_isolate_range()
744 * to process the next region - the new top half. in memblock_isolate_range()
746 rgn->base = base; in memblock_isolate_range()
747 rgn->size -= base - rbase; in memblock_isolate_range()
748 type->total_size -= base - rbase; in memblock_isolate_range()
749 memblock_insert_region(type, idx, rbase, base - rbase, in memblock_isolate_range()
751 rgn->flags); in memblock_isolate_range()
755 * current region - the new bottom half. in memblock_isolate_range()
757 rgn->base = end; in memblock_isolate_range()
758 rgn->size -= end - rbase; in memblock_isolate_range()
759 type->total_size -= end - rbase; in memblock_isolate_range()
760 memblock_insert_region(type, idx--, rbase, end - rbase, in memblock_isolate_range()
762 rgn->flags); in memblock_isolate_range()
784 for (i = end_rgn - 1; i >= start_rgn; i--) in memblock_remove_range()
791 phys_addr_t end = base + size - 1; in memblock_remove()
793 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_remove()
796 return memblock_remove_range(&memblock.memory, base, size); in memblock_remove()
800 * memblock_free - free boot memory block
801 * @base: phys starting address of the boot memory block
802 * @size: size of the boot memory block in bytes
804 * Free boot memory block previously allocated by memblock_alloc_xx() API.
805 * The freeing memory will not be released to the buddy allocator.
809 phys_addr_t end = base + size - 1; in memblock_free()
811 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_free()
820 phys_addr_t end = base + size - 1; in memblock_reserve()
822 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_reserve()
831 phys_addr_t end = base + size - 1; in memblock_physmem_add()
833 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_physmem_add()
841 * memblock_setclr_flag - set or clear flag for a memory region
842 * @base: base address of the region
843 * @size: size of the region
847 * This function isolates region [@base, @base + @size), and sets/clears flag
849 * Return: 0 on success, -errno on failure.
854 struct memblock_type *type = &memblock.memory; in memblock_setclr_flag()
862 struct memblock_region *r = &type->regions[i]; in memblock_setclr_flag()
865 r->flags |= flag; in memblock_setclr_flag()
867 r->flags &= ~flag; in memblock_setclr_flag()
875 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
876 * @base: the base phys addr of the region
877 * @size: the size of the region
879 * Return: 0 on success, -errno on failure.
887 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
888 * @base: the base phys addr of the region
889 * @size: the size of the region
891 * Return: 0 on success, -errno on failure.
899 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
900 * @base: the base phys addr of the region
901 * @size: the size of the region
903 * Return: 0 on success, -errno on failure.
913 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
914 * @base: the base phys addr of the region
915 * @size: the size of the region
917 * Return: 0 on success, -errno on failure.
925 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
926 * @base: the base phys addr of the region
927 * @size: the size of the region
929 * Return: 0 on success, -errno on failure.
946 /* only memory regions are associated with nodes, check it */ in should_skip_region()
950 /* skip hotpluggable memory regions if needed */ in should_skip_region()
955 /* if we want mirror memory skip non-mirror memory regions */ in should_skip_region()
959 /* skip nomap memory unless we were asked for it explicitly */ in should_skip_region()
967 * __next_mem_range - next function for for_each_free_mem_range() etc.
970 * @flags: pick from blocks based on memory attributes
972 * @type_b: pointer to memblock_type which excludes memory from being taken
980 * areas before each region in type_b. For example, if type_b regions
983 * 0:[0-16), 1:[32-48), 2:[128-130)
987 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
989 * As both region arrays are sorted, the function advances the two indices
1004 for (; idx_a < type_a->cnt; idx_a++) { in __next_mem_range()
1005 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range()
1007 phys_addr_t m_start = m->base; in __next_mem_range()
1008 phys_addr_t m_end = m->base + m->size; in __next_mem_range()
1027 for (; idx_b < type_b->cnt + 1; idx_b++) { in __next_mem_range()
1032 r = &type_b->regions[idx_b]; in __next_mem_range()
1033 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range()
1034 r_end = idx_b < type_b->cnt ? in __next_mem_range()
1035 r->base : PHYS_ADDR_MAX; in __next_mem_range()
1053 * The region which ends first is in __next_mem_range()
1071 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1075 * @flags: pick from blocks based on memory attributes
1077 * @type_b: pointer to memblock_type which excludes memory from being taken
1101 idx_a = type_a->cnt - 1; in __next_mem_range_rev()
1103 idx_b = type_b->cnt; in __next_mem_range_rev()
1108 for (; idx_a >= 0; idx_a--) { in __next_mem_range_rev()
1109 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range_rev()
1111 phys_addr_t m_start = m->base; in __next_mem_range_rev()
1112 phys_addr_t m_end = m->base + m->size; in __next_mem_range_rev()
1125 idx_a--; in __next_mem_range_rev()
1131 for (; idx_b >= 0; idx_b--) { in __next_mem_range_rev()
1136 r = &type_b->regions[idx_b]; in __next_mem_range_rev()
1137 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range_rev()
1138 r_end = idx_b < type_b->cnt ? in __next_mem_range_rev()
1139 r->base : PHYS_ADDR_MAX; in __next_mem_range_rev()
1156 idx_a--; in __next_mem_range_rev()
1158 idx_b--; in __next_mem_range_rev()
1175 struct memblock_type *type = &memblock.memory; in __next_mem_pfn_range()
1179 while (++*idx < type->cnt) { in __next_mem_pfn_range()
1180 r = &type->regions[*idx]; in __next_mem_pfn_range()
1183 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) in __next_mem_pfn_range()
1188 if (*idx >= type->cnt) { in __next_mem_pfn_range()
1189 *idx = -1; in __next_mem_pfn_range()
1194 *out_start_pfn = PFN_UP(r->base); in __next_mem_pfn_range()
1196 *out_end_pfn = PFN_DOWN(r->base + r->size); in __next_mem_pfn_range()
1202 * memblock_set_node - set node ID on memblock regions
1212 * 0 on success, -errno on failure.
1226 memblock_set_region_node(&type->regions[i], nid); in memblock_set_node()
1235 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1238 * @zone: zone in which all of the memory blocks reside
1244 * deferred memory init routines and as such we were duplicating much of
1258 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1269 if (zone->zone_start_pfn < epfn && spfn < epfn) { in __next_mem_pfn_range_in_zone()
1277 *out_spfn = max(zone->zone_start_pfn, spfn); in __next_mem_pfn_range_in_zone()
1285 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1299 * memblock_alloc_range_nid - allocate boot memory block
1300 * @size: size of memory block to be allocated in bytes
1301 * @align: alignment of the region and block's size
1302 * @start: the lower bound of the memory region to allocate (phys address)
1303 * @end: the upper bound of the memory region to allocate (phys address)
1307 * The allocation is performed from memory region limited by
1310 * If the specified node can not hold the requested memory and @exact_nid
1313 * For systems with memory mirroring, the allocation is attempted first
1315 * memory region.
1318 * allocated boot memory block, so that it is never reported as leaks.
1321 * Physical address of allocated memory block on success, %0 on failure.
1356 pr_warn("Could not allocate %pap bytes of mirrored memory\n", in memblock_alloc_range_nid()
1378 * memblock_phys_alloc_range - allocate a memory block inside specified range
1379 * @size: size of memory block to be allocated in bytes
1380 * @align: alignment of the region and block's size
1381 * @start: the lower bound of the memory region to allocate (physical address)
1382 * @end: the upper bound of the memory region to allocate (physical address)
1386 * Return: physical address of the allocated memory block on success,
1399 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1400 * @size: size of memory block to be allocated in bytes
1401 * @align: alignment of the region and block's size
1404 * Allocates memory block from the specified NUMA node. If the node
1405 * has no available memory, attempts to allocated from any node in the
1408 * Return: physical address of the allocated memory block on success,
1418 * memblock_alloc_internal - allocate boot memory block
1419 * @size: size of memory block to be allocated in bytes
1420 * @align: alignment of the region and block's size
1421 * @min_addr: the lower bound of the memory region to allocate (phys address)
1422 * @max_addr: the upper bound of the memory region to allocate (phys address)
1426 * Allocates memory block using memblock_alloc_range_nid() and
1430 * will fall back to memory below @min_addr. Other constraints, such
1431 * as node and mirrored memory will be handled again in
1435 * Virtual address of allocated memory block on success, NULL on failure.
1470 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1471 * without zeroing memory
1472 * @size: size of memory block to be allocated in bytes
1473 * @align: alignment of the region and block's size
1474 * @min_addr: the lower bound of the memory region from where the allocation
1476 * @max_addr: the upper bound of the memory region from where the allocation
1478 * allocate only from memory limited by memblock.current_limit value
1482 * info), if enabled. Does not zero allocated memory.
1485 * Virtual address of allocated memory block on success, NULL on failure.
1507 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1508 * memory and without panicking
1509 * @size: size of memory block to be allocated in bytes
1510 * @align: alignment of the region and block's size
1511 * @min_addr: the lower bound of the memory region from where the allocation
1513 * @max_addr: the upper bound of the memory region from where the allocation
1515 * allocate only from memory limited by memblock.current_limit value
1519 * info), if enabled. Does not zero allocated memory, does not panic if request
1523 * Virtual address of allocated memory block on success, NULL on failure.
1545 * memblock_alloc_try_nid - allocate boot memory block
1546 * @size: size of memory block to be allocated in bytes
1547 * @align: alignment of the region and block's size
1548 * @min_addr: the lower bound of the memory region from where the allocation
1550 * @max_addr: the upper bound of the memory region from where the allocation
1552 * allocate only from memory limited by memblock.current_limit value
1556 * info), if enabled. This function zeroes the allocated memory.
1559 * Virtual address of allocated memory block on success, NULL on failure.
1580 * __memblock_free_late - free pages directly to buddy allocator
1581 * @base: phys starting address of the boot memory block
1582 * @size: size of the boot memory block in bytes
1592 end = base + size - 1; in __memblock_free_late()
1593 memblock_dbg("%s: [%pa-%pa] %pS\n", in __memblock_free_late()
1611 return memblock.memory.total_size; in memblock_phys_mem_size()
1622 return memblock.memory.regions[0].base; in memblock_start_of_DRAM()
1627 int idx = memblock.memory.cnt - 1; in memblock_end_of_DRAM()
1629 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); in memblock_end_of_DRAM()
1638 * translate the memory @limit size into the max address within one of in __find_max_addr()
1639 * the memory memblock regions, if the @limit exceeds the total size in __find_max_addr()
1643 if (limit <= r->size) { in __find_max_addr()
1644 max_addr = r->base + limit; in __find_max_addr()
1647 limit -= r->size; in __find_max_addr()
1662 /* @limit exceeds the total size of the memory, do nothing */ in memblock_enforce_memory_limit()
1666 /* truncate both memory and reserved regions */ in memblock_enforce_memory_limit()
1667 memblock_remove_range(&memblock.memory, max_addr, in memblock_enforce_memory_limit()
1681 ret = memblock_isolate_range(&memblock.memory, base, size, in memblock_cap_memory_range()
1687 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) in memblock_cap_memory_range()
1688 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1689 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1691 for (i = start_rgn - 1; i >= 0; i--) in memblock_cap_memory_range()
1692 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1693 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1710 /* @limit exceeds the total size of the memory, do nothing */ in memblock_mem_limit_remove_map()
1719 unsigned int left = 0, right = type->cnt; in memblock_search()
1724 if (addr < type->regions[mid].base) in memblock_search()
1726 else if (addr >= (type->regions[mid].base + in memblock_search()
1727 type->regions[mid].size)) in memblock_search()
1732 return -1; in memblock_search()
1737 return memblock_search(&memblock.reserved, addr) != -1; in memblock_is_reserved()
1742 return memblock_search(&memblock.memory, addr) != -1; in memblock_is_memory()
1747 int i = memblock_search(&memblock.memory, addr); in memblock_is_map_memory()
1749 if (i == -1) in memblock_is_map_memory()
1751 return !memblock_is_nomap(&memblock.memory.regions[i]); in memblock_is_map_memory()
1757 struct memblock_type *type = &memblock.memory; in memblock_search_pfn_nid()
1760 if (mid == -1) in memblock_search_pfn_nid()
1761 return -1; in memblock_search_pfn_nid()
1763 *start_pfn = PFN_DOWN(type->regions[mid].base); in memblock_search_pfn_nid()
1764 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); in memblock_search_pfn_nid()
1766 return memblock_get_region_node(&type->regions[mid]); in memblock_search_pfn_nid()
1770 * memblock_is_region_memory - check if a region is a subset of memory
1771 * @base: base of region to check
1772 * @size: size of region to check
1774 * Check if the region [@base, @base + @size) is a subset of a memory block.
1777 * 0 if false, non-zero if true
1781 int idx = memblock_search(&memblock.memory, base); in memblock_is_region_memory()
1784 if (idx == -1) in memblock_is_region_memory()
1786 return (memblock.memory.regions[idx].base + in memblock_is_region_memory()
1787 memblock.memory.regions[idx].size) >= end; in memblock_is_region_memory()
1791 * memblock_is_region_reserved - check if a region intersects reserved memory
1792 * @base: base of region to check
1793 * @size: size of region to check
1795 * Check if the region [@base, @base + @size) intersects a reserved
1796 * memory block.
1812 orig_start = r->base; in memblock_trim_memory()
1813 orig_end = r->base + r->size; in memblock_trim_memory()
1821 r->base = start; in memblock_trim_memory()
1822 r->size = end - start; in memblock_trim_memory()
1824 memblock_remove_region(&memblock.memory, in memblock_trim_memory()
1825 r - memblock.memory.regions); in memblock_trim_memory()
1826 r--; in memblock_trim_memory()
1848 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); in memblock_dump()
1853 base = rgn->base; in memblock_dump()
1854 size = rgn->size; in memblock_dump()
1855 end = base + size - 1; in memblock_dump()
1856 flags = rgn->flags; in memblock_dump()
1862 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", in memblock_dump()
1863 type->name, idx, &base, &end, &size, nid_buf, flags); in memblock_dump()
1870 pr_info(" memory size = %pa reserved size = %pa\n", in __memblock_dump_all()
1871 &memblock.memory.total_size, in __memblock_dump_all()
1874 memblock_dump(&memblock.memory); in __memblock_dump_all()
1905 order = min(MAX_ORDER - 1UL, __ffs(start)); in __free_pages_memory()
1908 order--; in __free_pages_memory()
1928 return end_pfn - start_pfn; in __free_memory_core()
1937 memblock_clear_hotplug(0, -1); in free_low_memory_core_early()
1943 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id in free_low_memory_core_early()
1960 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) in reset_node_managed_pages()
1961 atomic_long_set(&z->managed_pages, 0); in reset_node_managed_pages()
1978 * memblock_free_all - release free pages to the buddy allocator
1998 struct memblock_type *type = m->private; in memblock_debug_show()
2003 for (i = 0; i < type->cnt; i++) { in memblock_debug_show()
2004 reg = &type->regions[i]; in memblock_debug_show()
2005 end = reg->base + reg->size - 1; in memblock_debug_show()
2008 seq_printf(m, "%pa..%pa\n", &reg->base, &end); in memblock_debug_show()
2018 debugfs_create_file("memory", 0444, root, in memblock_init_debugfs()
2019 &memblock.memory, &memblock_debug_fops); in memblock_init_debugfs()