• Home
  • Raw
  • Download

Lines Matching +full:memory +full:- +full:region

1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Procedures for maintaining information about logical memory blocks.
39 * Memblock is a method of managing memory regions during the early
40 * boot period when the usual kernel memory allocators are not up and
43 * Memblock views the system memory as collections of contiguous
46 * * ``memory`` - describes the physical memory available to the
47 * kernel; this may differ from the actual physical memory installed
48 * in the system, for instance when the memory is restricted with
50 * * ``reserved`` - describes the regions that were allocated
51 * * ``physmem`` - describes the actual physical memory available during
52 * boot regardless of the possible restrictions and memory hot(un)plug;
55 * Each region is represented by struct memblock_region that
56 * defines the region extents, its attributes and NUMA node id on NUMA
57 * systems. Every memory type is described by the struct memblock_type
58 * which contains an array of memory regions along with
59 * the allocator metadata. The "memory" and "reserved" types are nicely
61 * initialized at build time. The region arrays are initially sized to
62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
65 * The memblock_allow_resize() enables automatic resizing of the region
67 * with care so that memory allocated for the region array will not
71 * memory layout is by using memblock_add() or memblock_add_node()
72 * functions. The first function does not assign the region to a NUMA
74 * use it on NUMA systems as well and assign the region to a NUMA node
78 * Once memblock is setup the memory can be allocated using one of the
81 * * memblock_phys_alloc*() - these functions return the **physical**
82 * address of the allocated memory
83 * * memblock_alloc*() - these functions return the **virtual** address
84 * of the allocated memory.
87 * memory ranges and the fallback methods. Consult the documentation
92 * function frees all the memory to the buddy page allocator.
116 .memory.regions = memblock_memory_init_regions,
117 .memory.cnt = 1, /* empty dummy entry */
118 .memory.max = INIT_MEMBLOCK_MEMORY_REGIONS,
119 .memory.name = "memory",
140 * keep a pointer to &memblock.memory in the text section to use it in
145 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
148 for (i = 0, rgn = &memblock_type->regions[0]; \
149 i < memblock_type->cnt; \
150 i++, rgn = &memblock_type->regions[i])
177 return *size = min(*size, PHYS_ADDR_MAX - base); in memblock_cap_size()
197 for (i = 0; i < type->cnt; i++) in memblock_overlaps_region()
198 if (memblock_addrs_overlap(base, size, type->regions[i].base, in memblock_overlaps_region()
199 type->regions[i].size)) in memblock_overlaps_region()
201 return i < type->cnt; in memblock_overlaps_region()
205 * __memblock_find_range_bottom_up - find free area utility in bottom-up
212 * @flags: pick from blocks based on memory attributes
214 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
232 if (cand < this_end && this_end - cand >= size) in __memblock_find_range_bottom_up()
240 * __memblock_find_range_top_down - find free area utility, in top-down
247 * @flags: pick from blocks based on memory attributes
249 * Utility called from memblock_find_in_range_node(), find free area top-down.
270 cand = round_down(this_end - size, align); in __memblock_find_range_top_down()
279 * memblock_find_in_range_node - find free area in given range and node
286 * @flags: pick from blocks based on memory attributes
316 * memblock_find_in_range - find free area in given range
340 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", in memblock_find_in_range()
351 type->total_size -= type->regions[r].size; in memblock_remove_region()
352 memmove(&type->regions[r], &type->regions[r + 1], in memblock_remove_region()
353 (type->cnt - (r + 1)) * sizeof(type->regions[r])); in memblock_remove_region()
354 type->cnt--; in memblock_remove_region()
357 if (type->cnt == 0) { in memblock_remove_region()
358 WARN_ON(type->total_size != 0); in memblock_remove_region()
359 type->cnt = 1; in memblock_remove_region()
360 type->regions[0].base = 0; in memblock_remove_region()
361 type->regions[0].size = 0; in memblock_remove_region()
362 type->regions[0].flags = 0; in memblock_remove_region()
363 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); in memblock_remove_region()
369 * memblock_discard - discard memory and reserved arrays if they were allocated
385 if (memblock.memory.regions != memblock_memory_init_regions) { in memblock_discard()
386 addr = __pa(memblock.memory.regions); in memblock_discard()
388 memblock.memory.max); in memblock_discard()
390 kfree(memblock.memory.regions); in memblock_discard()
400 * memblock_double_array - double the size of the memblock regions array
402 * @new_area_start: starting address of memory range to avoid overlap with
403 * @new_area_size: size of memory range to avoid overlap with
406 * allocate memory for a new reserved regions array and there is a previously
407 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
408 * waiting to be reserved, ensure the memory used by the new array does
412 * 0 on success, -1 on failure.
425 * of memory that aren't suitable for allocation in memblock_double_array()
428 return -1; in memblock_double_array()
431 old_size = type->max * sizeof(struct memblock_region); in memblock_double_array()
441 if (type == &memblock.memory) in memblock_double_array()
464 /* The memory may not have been accepted, yet. */ in memblock_double_array()
474 type->name, type->max, type->max * 2); in memblock_double_array()
475 return -1; in memblock_double_array()
478 new_end = addr + new_size - 1; in memblock_double_array()
479 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", in memblock_double_array()
480 type->name, type->max * 2, &addr, &new_end); in memblock_double_array()
484 * reserved region since it may be our reserved array itself that is in memblock_double_array()
487 memcpy(new_array, type->regions, old_size); in memblock_double_array()
488 memset(new_array + type->max, 0, old_size); in memblock_double_array()
489 old_array = type->regions; in memblock_double_array()
490 type->regions = new_array; in memblock_double_array()
491 type->max <<= 1; in memblock_double_array()
514 * memblock_merge_regions - merge neighboring compatible regions
516 * @start_rgn: start scanning from (@start_rgn - 1)
517 * @end_rgn: end scanning at (@end_rgn - 1)
518 * Scan @type and merge neighboring compatible regions in [@start_rgn - 1, @end_rgn)
526 i = start_rgn - 1; in memblock_merge_regions()
527 end_rgn = min(end_rgn, type->cnt - 1); in memblock_merge_regions()
529 struct memblock_region *this = &type->regions[i]; in memblock_merge_regions()
530 struct memblock_region *next = &type->regions[i + 1]; in memblock_merge_regions()
532 if (this->base + this->size != next->base || in memblock_merge_regions()
535 this->flags != next->flags) { in memblock_merge_regions()
536 BUG_ON(this->base + this->size > next->base); in memblock_merge_regions()
541 this->size += next->size; in memblock_merge_regions()
543 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); in memblock_merge_regions()
544 type->cnt--; in memblock_merge_regions()
545 end_rgn--; in memblock_merge_regions()
550 * memblock_insert_region - insert new memblock region
553 * @base: base address of the new region
554 * @size: size of the new region
555 * @nid: node id of the new region
556 * @flags: flags of the new region
558 * Insert new memblock region [@base, @base + @size) into @type at @idx.
559 * @type must already have extra room to accommodate the new region.
567 struct memblock_region *rgn = &type->regions[idx]; in memblock_insert_region()
569 BUG_ON(type->cnt >= type->max); in memblock_insert_region()
570 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); in memblock_insert_region()
571 rgn->base = base; in memblock_insert_region()
572 rgn->size = size; in memblock_insert_region()
573 rgn->flags = flags; in memblock_insert_region()
575 type->cnt++; in memblock_insert_region()
576 type->total_size += size; in memblock_insert_region()
580 * memblock_add_range - add new memblock region
581 * @type: memblock type to add new region into
582 * @base: base address of the new region
583 * @size: size of the new region
584 * @nid: nid of the new region
585 * @flags: flags of the new region
587 * Add new memblock region [@base, @base + @size) into @type. The new region
588 * is allowed to overlap with existing ones - overlaps don't affect already
593 * 0 on success, -errno on failure.
602 int idx, nr_new, start_rgn = -1, end_rgn; in memblock_add_range()
609 if (type->regions[0].size == 0) { in memblock_add_range()
610 WARN_ON(type->cnt != 1 || type->total_size); in memblock_add_range()
611 type->regions[0].base = base; in memblock_add_range()
612 type->regions[0].size = size; in memblock_add_range()
613 type->regions[0].flags = flags; in memblock_add_range()
614 memblock_set_region_node(&type->regions[0], nid); in memblock_add_range()
615 type->total_size = size; in memblock_add_range()
621 * then we'll need type->cnt + 1 empty regions in @type. So if in memblock_add_range()
622 * type->cnt * 2 + 1 is less than or equal to type->max, we know in memblock_add_range()
626 if (type->cnt * 2 + 1 <= type->max) in memblock_add_range()
639 phys_addr_t rbase = rgn->base; in memblock_add_range()
640 phys_addr_t rend = rbase + rgn->size; in memblock_add_range()
654 WARN_ON(flags != rgn->flags); in memblock_add_range()
657 if (start_rgn == -1) in memblock_add_range()
661 rbase - base, nid, in memblock_add_range()
673 if (start_rgn == -1) in memblock_add_range()
676 memblock_insert_region(type, idx, base, end - base, in memblock_add_range()
689 while (type->cnt + nr_new > type->max) in memblock_add_range()
691 return -ENOMEM; in memblock_add_range()
701 * memblock_add_node - add new memblock region within a NUMA node
702 * @base: base address of the new region
703 * @size: size of the new region
704 * @nid: nid of the new region
705 * @flags: flags of the new region
707 * Add new memblock region [@base, @base + @size) to the "memory"
711 * 0 on success, -errno on failure.
716 phys_addr_t end = base + size - 1; in memblock_add_node()
718 memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__, in memblock_add_node()
721 return memblock_add_range(&memblock.memory, base, size, nid, flags); in memblock_add_node()
725 * memblock_add - add new memblock region
726 * @base: base address of the new region
727 * @size: size of the new region
729 * Add new memblock region [@base, @base + @size) to the "memory"
733 * 0 on success, -errno on failure.
737 phys_addr_t end = base + size - 1; in memblock_add()
739 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_add()
742 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); in memblock_add()
746 * memblock_validate_numa_coverage - check if amount of memory with
748 * @threshold_bytes: maximal memory size that can have unassigned node
751 * A buggy firmware may report memory that does not belong to any node.
752 * Check if amount of such memory is below @threshold_bytes.
765 nr_pages += end_pfn - start_pfn; in memblock_validate_numa_coverage()
780 * memblock_isolate_range - isolate given range into disjoint memblocks
784 * @start_rgn: out parameter for the start of isolated region
785 * @end_rgn: out parameter for the end of isolated region
790 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
793 * 0 on success, -errno on failure.
809 while (type->cnt + 2 > type->max) in memblock_isolate_range()
811 return -ENOMEM; in memblock_isolate_range()
814 phys_addr_t rbase = rgn->base; in memblock_isolate_range()
815 phys_addr_t rend = rbase + rgn->size; in memblock_isolate_range()
825 * to process the next region - the new top half. in memblock_isolate_range()
827 rgn->base = base; in memblock_isolate_range()
828 rgn->size -= base - rbase; in memblock_isolate_range()
829 type->total_size -= base - rbase; in memblock_isolate_range()
830 memblock_insert_region(type, idx, rbase, base - rbase, in memblock_isolate_range()
832 rgn->flags); in memblock_isolate_range()
836 * current region - the new bottom half. in memblock_isolate_range()
838 rgn->base = end; in memblock_isolate_range()
839 rgn->size -= end - rbase; in memblock_isolate_range()
840 type->total_size -= end - rbase; in memblock_isolate_range()
841 memblock_insert_region(type, idx--, rbase, end - rbase, in memblock_isolate_range()
843 rgn->flags); in memblock_isolate_range()
865 for (i = end_rgn - 1; i >= start_rgn; i--) in memblock_remove_range()
872 phys_addr_t end = base + size - 1; in memblock_remove()
874 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_remove()
877 return memblock_remove_range(&memblock.memory, base, size); in memblock_remove()
881 * memblock_free - free boot memory allocation
882 * @ptr: starting address of the boot memory allocation
883 * @size: size of the boot memory block in bytes
885 * Free boot memory block previously allocated by memblock_alloc_xx() API.
886 * The freeing memory will not be released to the buddy allocator.
895 * memblock_phys_free - free boot memory block
896 * @base: phys starting address of the boot memory block
897 * @size: size of the boot memory block in bytes
899 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
900 * The freeing memory will not be released to the buddy allocator.
904 phys_addr_t end = base + size - 1; in memblock_phys_free()
906 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_phys_free()
915 phys_addr_t end = base + size - 1; in memblock_reserve()
917 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_reserve()
926 phys_addr_t end = base + size - 1; in memblock_physmem_add()
928 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, in memblock_physmem_add()
936 * memblock_setclr_flag - set or clear flag for a memory region
937 * @base: base address of the region
938 * @size: size of the region
942 * This function isolates region [@base, @base + @size), and sets/clears flag
944 * Return: 0 on success, -errno on failure.
949 struct memblock_type *type = &memblock.memory; in memblock_setclr_flag()
957 struct memblock_region *r = &type->regions[i]; in memblock_setclr_flag()
960 r->flags |= flag; in memblock_setclr_flag()
962 r->flags &= ~flag; in memblock_setclr_flag()
970 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
971 * @base: the base phys addr of the region
972 * @size: the size of the region
974 * Return: 0 on success, -errno on failure.
982 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
983 * @base: the base phys addr of the region
984 * @size: the size of the region
986 * Return: 0 on success, -errno on failure.
994 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
995 * @base: the base phys addr of the region
996 * @size: the size of the region
998 * Return: 0 on success, -errno on failure.
1011 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
1012 * @base: the base phys addr of the region
1013 * @size: the size of the region
1015 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
1016 * direct mapping of the physical memory. These regions will still be
1017 * covered by the memory map. The struct page representing NOMAP memory
1018 * frames in the memory map will be PageReserved()
1020 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
1021 * memblock, the caller must inform kmemleak to ignore that memory
1023 * Return: 0 on success, -errno on failure.
1031 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
1032 * @base: the base phys addr of the region
1033 * @size: the size of the region
1035 * Return: 0 on success, -errno on failure.
1052 /* only memory regions are associated with nodes, check it */ in should_skip_region()
1056 /* skip hotpluggable memory regions if needed */ in should_skip_region()
1061 /* if we want mirror memory skip non-mirror memory regions */ in should_skip_region()
1065 /* skip nomap memory unless we were asked for it explicitly */ in should_skip_region()
1069 /* skip driver-managed memory unless we were asked for it explicitly */ in should_skip_region()
1077 * __next_mem_range - next function for for_each_free_mem_range() etc.
1080 * @flags: pick from blocks based on memory attributes
1082 * @type_b: pointer to memblock_type which excludes memory from being taken
1090 * areas before each region in type_b. For example, if type_b regions
1093 * 0:[0-16), 1:[32-48), 2:[128-130)
1097 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1099 * As both region arrays are sorted, the function advances the two indices
1110 for (; idx_a < type_a->cnt; idx_a++) { in __next_mem_range()
1111 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range()
1113 phys_addr_t m_start = m->base; in __next_mem_range()
1114 phys_addr_t m_end = m->base + m->size; in __next_mem_range()
1133 for (; idx_b < type_b->cnt + 1; idx_b++) { in __next_mem_range()
1138 r = &type_b->regions[idx_b]; in __next_mem_range()
1139 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range()
1140 r_end = idx_b < type_b->cnt ? in __next_mem_range()
1141 r->base : PHYS_ADDR_MAX; in __next_mem_range()
1159 * The region which ends first is in __next_mem_range()
1177 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1181 * @flags: pick from blocks based on memory attributes
1183 * @type_b: pointer to memblock_type which excludes memory from being taken
1204 idx_a = type_a->cnt - 1; in __next_mem_range_rev()
1206 idx_b = type_b->cnt; in __next_mem_range_rev()
1211 for (; idx_a >= 0; idx_a--) { in __next_mem_range_rev()
1212 struct memblock_region *m = &type_a->regions[idx_a]; in __next_mem_range_rev()
1214 phys_addr_t m_start = m->base; in __next_mem_range_rev()
1215 phys_addr_t m_end = m->base + m->size; in __next_mem_range_rev()
1228 idx_a--; in __next_mem_range_rev()
1234 for (; idx_b >= 0; idx_b--) { in __next_mem_range_rev()
1239 r = &type_b->regions[idx_b]; in __next_mem_range_rev()
1240 r_start = idx_b ? r[-1].base + r[-1].size : 0; in __next_mem_range_rev()
1241 r_end = idx_b < type_b->cnt ? in __next_mem_range_rev()
1242 r->base : PHYS_ADDR_MAX; in __next_mem_range_rev()
1259 idx_a--; in __next_mem_range_rev()
1261 idx_b--; in __next_mem_range_rev()
1278 struct memblock_type *type = &memblock.memory; in __next_mem_pfn_range()
1282 while (++*idx < type->cnt) { in __next_mem_pfn_range()
1283 r = &type->regions[*idx]; in __next_mem_pfn_range()
1286 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) in __next_mem_pfn_range()
1291 if (*idx >= type->cnt) { in __next_mem_pfn_range()
1292 *idx = -1; in __next_mem_pfn_range()
1297 *out_start_pfn = PFN_UP(r->base); in __next_mem_pfn_range()
1299 *out_end_pfn = PFN_DOWN(r->base + r->size); in __next_mem_pfn_range()
1305 * memblock_set_node - set node ID on memblock regions
1315 * 0 on success, -errno on failure.
1329 memblock_set_region_node(&type->regions[i], nid); in memblock_set_node()
1338 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1341 * @zone: zone in which all of the memory blocks reside
1347 * deferred memory init routines and as such we were duplicating much of
1360 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1371 if (zone->zone_start_pfn < epfn && spfn < epfn) { in __next_mem_pfn_range_in_zone()
1379 *out_spfn = max(zone->zone_start_pfn, spfn); in __next_mem_pfn_range_in_zone()
1387 &memblock.memory, &memblock.reserved, in __next_mem_pfn_range_in_zone()
1401 * memblock_alloc_range_nid - allocate boot memory block
1402 * @size: size of memory block to be allocated in bytes
1403 * @align: alignment of the region and block's size
1404 * @start: the lower bound of the memory region to allocate (phys address)
1405 * @end: the upper bound of the memory region to allocate (phys address)
1409 * The allocation is performed from memory region limited by
1412 * If the specified node can not hold the requested memory and @exact_nid
1415 * For systems with memory mirroring, the allocation is attempted first
1417 * memory region.
1420 * memory block, it is never reported as leaks.
1423 * Physical address of allocated memory block on success, %0 on failure.
1455 pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n", in memblock_alloc_range_nid()
1477 * Some Virtual Machine platforms, such as Intel TDX or AMD SEV-SNP, in memblock_alloc_range_nid()
1478 * require memory to be accepted before it can be used by the in memblock_alloc_range_nid()
1481 * Accept the memory of the allocated buffer. in memblock_alloc_range_nid()
1489 * memblock_phys_alloc_range - allocate a memory block inside specified range
1490 * @size: size of memory block to be allocated in bytes
1491 * @align: alignment of the region and block's size
1492 * @start: the lower bound of the memory region to allocate (physical address)
1493 * @end: the upper bound of the memory region to allocate (physical address)
1497 * Return: physical address of the allocated memory block on success,
1513 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1514 * @size: size of memory block to be allocated in bytes
1515 * @align: alignment of the region and block's size
1518 * Allocates memory block from the specified NUMA node. If the node
1519 * has no available memory, attempts to allocated from any node in the
1522 * Return: physical address of the allocated memory block on success,
1532 * memblock_alloc_internal - allocate boot memory block
1533 * @size: size of memory block to be allocated in bytes
1534 * @align: alignment of the region and block's size
1535 * @min_addr: the lower bound of the memory region to allocate (phys address)
1536 * @max_addr: the upper bound of the memory region to allocate (phys address)
1540 * Allocates memory block using memblock_alloc_range_nid() and
1544 * will fall back to memory below @min_addr. Other constraints, such
1545 * as node and mirrored memory will be handled again in
1549 * Virtual address of allocated memory block on success, NULL on failure.
1584 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1585 * without zeroing memory
1586 * @size: size of memory block to be allocated in bytes
1587 * @align: alignment of the region and block's size
1588 * @min_addr: the lower bound of the memory region from where the allocation
1590 * @max_addr: the upper bound of the memory region from where the allocation
1592 * allocate only from memory limited by memblock.current_limit value
1596 * info), if enabled. Does not zero allocated memory.
1599 * Virtual address of allocated memory block on success, NULL on failure.
1615 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1616 * memory and without panicking
1617 * @size: size of memory block to be allocated in bytes
1618 * @align: alignment of the region and block's size
1619 * @min_addr: the lower bound of the memory region from where the allocation
1621 * @max_addr: the upper bound of the memory region from where the allocation
1623 * allocate only from memory limited by memblock.current_limit value
1627 * info), if enabled. Does not zero allocated memory, does not panic if request
1631 * Virtual address of allocated memory block on success, NULL on failure.
1647 * memblock_alloc_try_nid - allocate boot memory block
1648 * @size: size of memory block to be allocated in bytes
1649 * @align: alignment of the region and block's size
1650 * @min_addr: the lower bound of the memory region from where the allocation
1652 * @max_addr: the upper bound of the memory region from where the allocation
1654 * allocate only from memory limited by memblock.current_limit value
1658 * info), if enabled. This function zeroes the allocated memory.
1661 * Virtual address of allocated memory block on success, NULL on failure.
1682 * memblock_free_late - free pages directly to buddy allocator
1683 * @base: phys starting address of the boot memory block
1684 * @size: size of the boot memory block in bytes
1694 end = base + size - 1; in memblock_free_late()
1695 memblock_dbg("%s: [%pa-%pa] %pS\n", in memblock_free_late()
1713 return memblock.memory.total_size; in memblock_phys_mem_size()
1724 return memblock.memory.regions[0].base; in memblock_start_of_DRAM()
1729 int idx = memblock.memory.cnt - 1; in memblock_end_of_DRAM()
1731 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); in memblock_end_of_DRAM()
1740 * translate the memory @limit size into the max address within one of in __find_max_addr()
1741 * the memory memblock regions, if the @limit exceeds the total size in __find_max_addr()
1745 if (limit <= r->size) { in __find_max_addr()
1746 max_addr = r->base + limit; in __find_max_addr()
1749 limit -= r->size; in __find_max_addr()
1764 /* @limit exceeds the total size of the memory, do nothing */ in memblock_enforce_memory_limit()
1768 /* truncate both memory and reserved regions */ in memblock_enforce_memory_limit()
1769 memblock_remove_range(&memblock.memory, max_addr, in memblock_enforce_memory_limit()
1783 if (!memblock_memory->total_size) { in memblock_cap_memory_range()
1784 pr_warn("%s: No memory registered yet\n", __func__); in memblock_cap_memory_range()
1788 ret = memblock_isolate_range(&memblock.memory, base, size, in memblock_cap_memory_range()
1794 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) in memblock_cap_memory_range()
1795 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1796 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1798 for (i = start_rgn - 1; i >= 0; i--) in memblock_cap_memory_range()
1799 if (!memblock_is_nomap(&memblock.memory.regions[i])) in memblock_cap_memory_range()
1800 memblock_remove_region(&memblock.memory, i); in memblock_cap_memory_range()
1817 /* @limit exceeds the total size of the memory, do nothing */ in memblock_mem_limit_remove_map()
1826 unsigned int left = 0, right = type->cnt; in memblock_search()
1831 if (addr < type->regions[mid].base) in memblock_search()
1833 else if (addr >= (type->regions[mid].base + in memblock_search()
1834 type->regions[mid].size)) in memblock_search()
1839 return -1; in memblock_search()
1844 return memblock_search(&memblock.reserved, addr) != -1; in memblock_is_reserved()
1849 return memblock_search(&memblock.memory, addr) != -1; in memblock_is_memory()
1854 int i = memblock_search(&memblock.memory, addr); in memblock_is_map_memory()
1856 if (i == -1) in memblock_is_map_memory()
1858 return !memblock_is_nomap(&memblock.memory.regions[i]); in memblock_is_map_memory()
1864 struct memblock_type *type = &memblock.memory; in memblock_search_pfn_nid()
1867 if (mid == -1) in memblock_search_pfn_nid()
1868 return -1; in memblock_search_pfn_nid()
1870 *start_pfn = PFN_DOWN(type->regions[mid].base); in memblock_search_pfn_nid()
1871 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); in memblock_search_pfn_nid()
1873 return memblock_get_region_node(&type->regions[mid]); in memblock_search_pfn_nid()
1877 * memblock_is_region_memory - check if a region is a subset of memory
1878 * @base: base of region to check
1879 * @size: size of region to check
1881 * Check if the region [@base, @base + @size) is a subset of a memory block.
1884 * 0 if false, non-zero if true
1888 int idx = memblock_search(&memblock.memory, base); in memblock_is_region_memory()
1891 if (idx == -1) in memblock_is_region_memory()
1893 return (memblock.memory.regions[idx].base + in memblock_is_region_memory()
1894 memblock.memory.regions[idx].size) >= end; in memblock_is_region_memory()
1898 * memblock_is_region_reserved - check if a region intersects reserved memory
1899 * @base: base of region to check
1900 * @size: size of region to check
1902 * Check if the region [@base, @base + @size) intersects a reserved
1903 * memory block.
1919 orig_start = r->base; in memblock_trim_memory()
1920 orig_end = r->base + r->size; in memblock_trim_memory()
1928 r->base = start; in memblock_trim_memory()
1929 r->size = end - start; in memblock_trim_memory()
1931 memblock_remove_region(&memblock.memory, in memblock_trim_memory()
1932 r - memblock.memory.regions); in memblock_trim_memory()
1933 r--; in memblock_trim_memory()
1955 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); in memblock_dump()
1960 base = rgn->base; in memblock_dump()
1961 size = rgn->size; in memblock_dump()
1962 end = base + size - 1; in memblock_dump()
1963 flags = rgn->flags; in memblock_dump()
1969 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", in memblock_dump()
1970 type->name, idx, &base, &end, &size, nid_buf, flags); in memblock_dump()
1977 pr_info(" memory size = %pa reserved size = %pa\n", in __memblock_dump_all()
1978 &memblock.memory.total_size, in __memblock_dump_all()
1981 memblock_dump(&memblock.memory); in __memblock_dump_all()
2015 start_pg = pfn_to_page(start_pfn - 1) + 1; in free_memmap()
2016 end_pg = pfn_to_page(end_pfn - 1) + 1; in free_memmap()
2030 memblock_phys_free(pg, pgend - pg); in free_memmap()
2034 * The mem_map array can get very big. Free the unused area of the memory map.
2059 * presume that there are no holes in the memory map inside in free_unused_memmap()
2073 * presume that there are no holes in the memory map inside in free_unused_memmap()
2096 * MAX_ORDER-aligned, set order to MAX_ORDER for the case. in __free_pages_memory()
2104 order--; in __free_pages_memory()
2124 return end_pfn - start_pfn; in __free_memory_core()
2129 struct memblock_region *region; in memmap_init_reserved_pages() local
2140 for_each_mem_region(region) { in memmap_init_reserved_pages()
2141 nid = memblock_get_region_node(region); in memmap_init_reserved_pages()
2142 start = region->base; in memmap_init_reserved_pages()
2143 end = start + region->size; in memmap_init_reserved_pages()
2145 if (memblock_is_nomap(region)) in memmap_init_reserved_pages()
2148 memblock_set_node(start, region->size, &memblock.reserved, nid); in memmap_init_reserved_pages()
2152 * array, which may result a new reserved region before current in memmap_init_reserved_pages()
2159 for_each_reserved_mem_region(region) { in memmap_init_reserved_pages()
2160 nid = memblock_get_region_node(region); in memmap_init_reserved_pages()
2161 start = region->base; in memmap_init_reserved_pages()
2162 end = start + region->size; in memmap_init_reserved_pages()
2177 memblock_clear_hotplug(0, -1); in free_low_memory_core_early()
2182 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id in free_low_memory_core_early()
2199 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) in reset_node_managed_pages()
2200 atomic_long_set(&z->managed_pages, 0); in reset_node_managed_pages()
2217 * memblock_free_all - release free pages to the buddy allocator
2240 struct memblock_type *type = m->private; in memblock_debug_show()
2246 for (i = 0; i < type->cnt; i++) { in memblock_debug_show()
2247 reg = &type->regions[i]; in memblock_debug_show()
2248 end = reg->base + reg->size - 1; in memblock_debug_show()
2252 seq_printf(m, "%pa..%pa ", &reg->base, &end); in memblock_debug_show()
2257 if (reg->flags) { in memblock_debug_show()
2259 if (reg->flags & (1U << j)) { in memblock_debug_show()
2278 debugfs_create_file("memory", 0444, root, in memblock_init_debugfs()
2279 &memblock.memory, &memblock_debug_fops); in memblock_init_debugfs()