# Key Agreement Using ECDH (C/C++) For details about the algorithm specifications, see [ECDH](crypto-key-agreement-overview.md#ecdh). ## How to Develop 1. Call [OH_CryptoAsymKeyGenerator_Create](../../reference/apis-crypto-architecture-kit/capi-crypto-asym-key-h.md#oh_cryptoasymkeygenerator_create), [OH_CryptoAsymKeyGenerator_Generate](../../reference/apis-crypto-architecture-kit/capi-crypto-asym-key-h.md#oh_cryptoasymkeygenerator_generate), and [OH_CryptoAsymKeyGenerator_Convert](../../reference/apis-crypto-architecture-kit/capi-crypto-asym-key-h.md#oh_cryptoasymkeygenerator_convert) to generate a 256-bit asymmetric key (**keyPair**) of the ECC type. For details about how to generate an ECC asymmetric key pair, see the following example. To learn more, see [ECC](crypto-asym-key-generation-conversion-spec.md#ecc) and [Randomly Generating an Asymmetric Key Pair](crypto-generate-asym-key-pair-randomly-ndk.md). There may be differences between the input parameters in the reference documents and those in the following example. 2. Call [OH_CryptoKeyAgreement_Create](../../reference/apis-crypto-architecture-kit/capi-crypto-key-agreement-h.md#oh_cryptokeyagreement_create) and specify the string parameter **ECC256** to create a key protocol generator of the ECC type with the key length of 256 bits. 3. Call [OH_CryptoKeyAgreement_GenerateSecret](../../reference/apis-crypto-architecture-kit/capi-crypto-key-agreement-h.md#oh_cryptokeyagreement_generatesecret) to perform key agreement based on the passed private key (**keyPair.priKey**) and public key (**keyPair.pubKey**) and return the shared key. ```C++ #include "CryptoArchitectureKit/crypto_architecture_kit.h" #include "CryptoArchitectureKit/crypto_key_agreement.h" #include #include static OH_Crypto_ErrCode doTestEcdhKeyAgreement() { // The public and private key pair data is transferred from an external system. uint8_t pubKeyArray[] = {48, 89, 48, 19, 6, 7, 42, 134, 72, 206, 61, 2, 1, 6, 8, 42, 134, 72, 206, 61, 3, 1, 7, 3, 66, 0, 4, 83, 96, 142, 9, 86, 214, 126, 106, 247, 233, 92, 125, 4, 128, 138, 105, 246, 162, 215, 71, 81, 58, 202, 121, 26, 105, 211, 55, 130, 45, 236, 143, 55, 16, 248, 75, 167, 160, 167, 106, 2, 152, 243, 44, 68, 66, 0, 167, 99, 92, 235, 215, 159, 239, 28, 106, 124, 171, 34, 145, 124, 174, 57, 92}; uint8_t priKeyArray[] = {48, 49, 2, 1, 1, 4, 32, 115, 56, 137, 35, 207, 0, 60, 191, 90, 61, 136, 105, 210, 16, 27, 4, 171, 57, 10, 61, 123, 40, 189, 28, 34, 207, 236, 22, 45, 223, 10, 189, 160, 10, 6, 8, 42, 134, 72, 206, 61, 3, 1, 7}; // Create an ECC key generator. OH_CryptoAsymKeyGenerator *eccGen = nullptr; OH_Crypto_ErrCode ret = OH_CryptoAsymKeyGenerator_Create("ECC256", &eccGen); if (ret != CRYPTO_SUCCESS) { return ret; } // Key pair A passed from an external system. Crypto_DataBlob pubKeyBlob = {pubKeyArray, sizeof(pubKeyArray)}; Crypto_DataBlob priKeyBlob = {priKeyArray, sizeof(priKeyArray)}; OH_CryptoKeyPair *keyPairA = nullptr; ret = OH_CryptoAsymKeyGenerator_Convert(eccGen, CRYPTO_DER, &pubKeyBlob, &priKeyBlob, &keyPairA); if (ret != CRYPTO_SUCCESS) { OH_CryptoAsymKeyGenerator_Destroy(eccGen); return ret; } // Key pair B generated internally. OH_CryptoKeyPair *keyPairB = nullptr; ret = OH_CryptoAsymKeyGenerator_Generate(eccGen, &keyPairB); if (ret != CRYPTO_SUCCESS) { OH_CryptoKeyPair_Destroy(keyPairA); OH_CryptoAsymKeyGenerator_Destroy(eccGen); return ret; } // Create a key agreement generator. OH_CryptoKeyAgreement *eccKeyAgreement = nullptr; ret = OH_CryptoKeyAgreement_Create("ECC256", &eccKeyAgreement); if (ret != CRYPTO_SUCCESS) { OH_CryptoKeyPair_Destroy(keyPairA); OH_CryptoKeyPair_Destroy(keyPairB); OH_CryptoAsymKeyGenerator_Destroy(eccGen); return ret; } // Use the public key of A and the private key of B to perform key agreement. OH_CryptoPrivKey *privKeyB = OH_CryptoKeyPair_GetPrivKey(keyPairB); OH_CryptoPubKey *pubKeyA = OH_CryptoKeyPair_GetPubKey(keyPairA); Crypto_DataBlob secret1 = { 0 }; ret = OH_CryptoKeyAgreement_GenerateSecret(eccKeyAgreement, privKeyB, pubKeyA, &secret1); if (ret != CRYPTO_SUCCESS) { OH_CryptoKeyAgreement_Destroy(eccKeyAgreement); OH_CryptoKeyPair_Destroy(keyPairA); OH_CryptoKeyPair_Destroy(keyPairB); OH_CryptoAsymKeyGenerator_Destroy(eccGen); return ret; } // Use the private key of A and the public key of B to perform key agreement. OH_CryptoPrivKey *privKeyA = OH_CryptoKeyPair_GetPrivKey(keyPairA); OH_CryptoPubKey *pubKeyB = OH_CryptoKeyPair_GetPubKey(keyPairB); Crypto_DataBlob secret2 = { 0 }; ret = OH_CryptoKeyAgreement_GenerateSecret(eccKeyAgreement, privKeyA, pubKeyB, &secret2); if (ret != CRYPTO_SUCCESS) { OH_Crypto_FreeDataBlob(&secret1); OH_CryptoKeyAgreement_Destroy(eccKeyAgreement); OH_CryptoKeyPair_Destroy(keyPairA); OH_CryptoKeyPair_Destroy(keyPairB); OH_CryptoAsymKeyGenerator_Destroy(eccGen); return ret; } // Compare the secrets. if ((secret1.len == secret2.len) && (memcmp(secret1.data, secret2.data, secret1.len) == 0)) { printf("ecdh success\n"); } else { printf("ecdh result is not equal\n"); ret = CRYPTO_OPERTION_ERROR; } // Free resources. OH_Crypto_FreeDataBlob(&secret1); OH_Crypto_FreeDataBlob(&secret2); OH_CryptoKeyAgreement_Destroy(eccKeyAgreement); OH_CryptoKeyPair_Destroy(keyPairA); OH_CryptoKeyPair_Destroy(keyPairB); OH_CryptoAsymKeyGenerator_Destroy(eccGen); return ret; } ```