#!/bin/bash # Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ # Prepare and Install mindspore gpu by conda on Ubuntu 18.04. # # This file will: # - change deb source to huaweicloud mirror # - install mindspore dependencies via apt like gcc, libgmp # - install conda and set up environment for mindspore # - install mindspore-gpu by conda # - compile and install Open MPI if OPENMPI is set to on. # # Augments: # - PYTHON_VERSION: python version to install. [3.7(default), 3.8, 3.9] # - MINDSPORE_VERSION: mindspore version to install, >=1.6.0 # - CUDA_VERSION: CUDA version to install. [10.1, 11.1 11.6(default)] # - OPENMPI: whether to install optional package Open MPI for distributed training. [on, off(default)] # # Usage: # Run script like `bash -i ./ubuntu-gpu-conda.sh`. # To set augments, run it as `PYTHON_VERSION=3.9 CUDA_VERSION=10.1 OPENMPI=on bash -i ./ubuntu-gpu-conda.sh`. set -e PYTHON_VERSION=${PYTHON_VERSION:-3.7} MINDSPORE_VERSION=${MINDSPORE_VERSION:-EMPTY} CUDA_VERSION=${CUDA_VERSION:-11.1} OPENMPI=${OPENMPI:-off} release_info=$(lsb_release -a | grep Release) UBUNTU_VERSION=${release_info//[!0-9]/} [[ "$UBUNTU_VERSION" == "2004" && "$CUDA_VERSION" == "10.1" ]] && echo "CUDA 10.1 is not supported on Ubuntu 20.04" && exit 1 version_less() { test "$(echo "$@" | tr ' ' '\n' | sort -rV | head -n 1)" != "$1"; } if version_less "${MINDSPORE_VERSION}" "1.6.0"; then echo "MINDSPORE_VERSION should be >=1.6.0, please check available versions at https://www.mindspore.cn/versions." exit 1 fi available_py_version=(3.7 3.8 3.9) if [[ " ${available_py_version[*]} " != *" $PYTHON_VERSION "* ]]; then echo "PYTHON_VERSION is '$PYTHON_VERSION', but available versions are [${available_py_version[*]}]." exit 1 fi if [[ "$PYTHON_VERSION" == "3.8" && ${MINDSPORE_VERSION:0:3} == "1.6" ]]; then echo "PYTHON_VERSION==3.8 is not compatible with MINDSPORE_VERSION==1.6.x, please use PYTHON_VERSION==3.7 or 3.9 for MINDSPORE_VERSION==1.6.x." exit 1 fi available_cuda_version=(10.1 11.1 11.6) if [[ " ${available_cuda_version[*]} " != *" $CUDA_VERSION "* ]]; then echo "CUDA_VERSION is '$CUDA_VERSION', but available versions are [${available_cuda_version[*]}]." exit 1 fi # add value to environment variable if value is not in it add_env() { local name=$1 if [[ ":${!name}:" != *":$2:"* ]]; then echo -e "export $1=$2:\$$1" >> ~/.bashrc fi } install_conda() { echo "installing Miniconda3" conda_file_name="Miniconda3-py3${PYTHON_VERSION##*.}_4.10.3-Linux-$(arch).sh" cd /tmp wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/$conda_file_name bash $conda_file_name -b cd - . ~/miniconda3/etc/profile.d/conda.sh conda init bash # setting up conda mirror with tsinghua source cat >~/.condarc </dev/null if [[ $? -eq 0 ]]; then echo "conda has been installed, skip." source "$(conda info --base)"/etc/profile.d/conda.sh else install_conda fi set -e # install cuda/cudnn echo "installing CUDA and cuDNN" cd /tmp declare -A cuda_url_map=() cuda_url_map["10.1"]=https://developer.download.nvidia.cn/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run cuda_url_map["11.1"]=https://developer.download.nvidia.cn/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run cuda_url_map["11.6"]=https://developer.download.nvidia.cn/compute/cuda/11.6.0/local_installers/cuda_11.6.0_510.39.01_linux.run cuda_url=${cuda_url_map[$CUDA_VERSION]} wget $cuda_url sudo sh ${cuda_url##*/} --silent --toolkit cd - sudo apt-key adv --fetch-keys https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/7fa2af80.pub sudo add-apt-repository "deb https://developer.download.nvidia.cn/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/ /" sudo add-apt-repository "deb https://developer.download.nvidia.cn/compute/machine-learning/repos/ubuntu${UBUNTU_VERSION}/x86_64/ /" sudo apt-get update declare -A cudnn_name_map=() cudnn_name_map["10.1"]="libcudnn7=7.6.5.32-1+cuda10.1 libcudnn7-dev=7.6.5.32-1+cuda10.1" cudnn_name_map["11.1"]="libcudnn8=8.0.5.39-1+cuda11.1 libcudnn8-dev=8.0.5.39-1+cuda11.1" cudnn_name_map["11.6"]="libcudnn8=8.5.0.96-1+cuda11.6 libcudnn8-dev=8.5.0.96-1+cuda11.6" sudo apt-get install --no-install-recommends ${cudnn_name_map[$CUDA_VERSION]} -y # add cuda to path set +e && source ~/.bashrc set -e add_env PATH /usr/local/cuda/bin add_env LD_LIBRARY_PATH /usr/local/cuda/lib64 add_env LD_LIBRARY_PATH /usr/lib/x86_64-linux-gnu set +e && source ~/.bashrc set -e # set up conda env and install mindspore-cpu env_name=mindspore_py3${PYTHON_VERSION##*.} conda create -n $env_name python=${PYTHON_VERSION} -c conda-forge -y conda activate $env_name install_name="mindspore" if [[ $MINDSPORE_VERSION != "EMPTY" ]]; then install_name="${install_name}=${MINDSPORE_VERSION}" fi conda install ${install_name} -c mindspore -c conda-forge -y # check mindspore installation python -c "import mindspore;mindspore.run_check()" # check if it can be run with GPU cd /tmp cat > example.py <