# Copyright 2023 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np from mindspore.communication import init, get_rank import mindspore as ms import mindspore.nn as nn import mindspore.ops as ops from mindspore import context context.set_context(mode=ms.GRAPH_MODE) context.set_context(jit_level="O2") init() class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.all_reduce_sum = ops.AllReduce(ops.ReduceOp.SUM) def construct(self, x): return self.all_reduce_sum(x) value = get_rank() input_x = ms.Tensor(np.array([[value]]).astype(np.float32)) net = Net() output = net(input_x)