# Copyright 2024 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import pytest import numpy as np import mindspore.context as context from mindspore import Tensor from mindspore import nn import tests.st.utils.test_utils as test_utils @test_utils.run_with_cell def channel_shuffle(x): return nn.ChannelShuffle(2)(x) @pytest.mark.level0 @pytest.mark.env_onecard @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.parametrize("context_mode", [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_net_channelshuffle_float32(context_mode): """ Feature: channelshuffle Description: test channelshuffle Expectation: expect correct result. """ context.set_context(mode=context_mode, device_target="Ascend") x = Tensor(np.arange(16).astype(np.int32).reshape(1, 4, 2, 2)) output = channel_shuffle(x) expected = np.array([[[[0, 1], [2, 3]], [[8, 9], [10, 11]], [[4, 5], [6, 7]], [[12, 13], [14, 15]]]], np.int32) assert np.all(output.asnumpy() == expected)