# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Models for test.""" from typing import Optional from mindspore import Tensor import mindspore.nn as nn class BaseNet(nn.Cell): def __init__(self, a): super().__init__() self.relu = nn.ReLU() self.a = a def construct(self, x: Optional[Tensor]): return x def add_a(self, x): x = x + self.a return x class NoCellNet(): def __init__(self, a, b): self.a = a self.b = b def no_cell_func(self, x: Optional[Tensor]): return x def external_func(x): return x def external_func2(x): return x EXTERN_LIST = [Tensor(1)] class NetWithClassVar(): var1 = Tensor(1.0) var2 = external_func if True: # pylint: disable=using-constant-test var3 = external_func2 var4 = EXTERN_LIST def __init__(self, a): self.a = a def class_var_func(self, x: Optional[Tensor]): # test class variables x = x + self.var1 x = NetWithClassVar.var2(x) x = NetWithClassVar.var3(x) x = x + NetWithClassVar.var4[0] # test instance variable x = x + self.a return x