/* * Copyright 2015 Advanced Micro Devices, Inc. * * SPDX-License-Identifier: MIT */ #include "ac_debug.h" #include "sid.h" #include "sid_tables.h" #include "ac_vcn.h" #include "ac_vcn_dec.h" #include "ac_vcn_enc.h" #include "util/compiler.h" #include "util/hash_table.h" #include "util/u_debug.h" #include "util/u_math.h" #include "util/memstream.h" #include "util/u_string.h" #include #ifdef HAVE_VALGRIND #include #include #endif DEBUG_GET_ONCE_BOOL_OPTION(color, "AMD_COLOR", true); /* Parsed IBs are difficult to read without colors. Use "less -R file" to * read them, or use "aha -b -f file" to convert them to html. */ #define COLOR_RESET "\033[0m" #define COLOR_RED "\033[31m" #define COLOR_GREEN "\033[1;32m" #define COLOR_YELLOW "\033[1;33m" #define COLOR_CYAN "\033[1;36m" #define COLOR_PURPLE "\033[1;35m" #define O_COLOR_RESET (debug_get_option_color() ? COLOR_RESET : "") #define O_COLOR_RED (debug_get_option_color() ? COLOR_RED : "") #define O_COLOR_GREEN (debug_get_option_color() ? COLOR_GREEN : "") #define O_COLOR_YELLOW (debug_get_option_color() ? COLOR_YELLOW : "") #define O_COLOR_CYAN (debug_get_option_color() ? COLOR_CYAN : "") #define O_COLOR_PURPLE (debug_get_option_color() ? COLOR_PURPLE : "") #define INDENT_PKT 8 static void parse_gfx_compute_ib(FILE *f, struct ac_ib_parser *ib); static void print_spaces(FILE *f, unsigned num) { fprintf(f, "%*s", num, ""); } static void print_value(FILE *file, uint32_t value, int bits) { /* Guess if it's int or float */ if (value <= (1 << 15)) { if (value <= 9) fprintf(file, "%u\n", value); else fprintf(file, "%u (0x%0*x)\n", value, bits / 4, value); } else { float f = uif(value); if (fabs(f) < 100000 && f * 10 == floor(f * 10)) fprintf(file, "%.1ff (0x%0*x)\n", f, bits / 4, value); else /* Don't print more leading zeros than there are bits. */ fprintf(file, "0x%0*x\n", bits / 4, value); } } static void print_data_dword(FILE *file, uint32_t value, const char *comment) { print_spaces(file, INDENT_PKT); fprintf(file, "(%s)\n", comment); } static void print_named_value(FILE *file, const char *name, uint32_t value, int bits) { print_spaces(file, INDENT_PKT); fprintf(file, "%s%s%s <- ", O_COLOR_YELLOW, name, O_COLOR_RESET); print_value(file, value, bits); } static void print_string_value(FILE *file, const char *name, const char *value) { print_spaces(file, INDENT_PKT); fprintf(file, "%s%s%s <- ", O_COLOR_YELLOW, name, O_COLOR_RESET); fprintf(file, "%s\n", value); } void ac_dump_reg(FILE *file, enum amd_gfx_level gfx_level, enum radeon_family family, unsigned offset, uint32_t value, uint32_t field_mask) { const struct si_reg *reg = ac_find_register(gfx_level, family, offset); if (reg) { const char *reg_name = sid_strings + reg->name_offset; print_spaces(file, INDENT_PKT); fprintf(file, "%s%s%s <- ", O_COLOR_YELLOW, reg_name, O_COLOR_RESET); print_value(file, value, 32); for (unsigned f = 0; f < reg->num_fields; f++) { const struct si_field *field = sid_fields_table + reg->fields_offset + f; const int *values_offsets = sid_strings_offsets + field->values_offset; uint32_t val = (value & field->mask) >> (ffs(field->mask) - 1); if (!(field->mask & field_mask)) continue; /* Indent the field. */ print_spaces(file, INDENT_PKT + strlen(reg_name) + 4); /* Print the field. */ fprintf(file, "%s = ", sid_strings + field->name_offset); if (val < field->num_values && values_offsets[val] >= 0) fprintf(file, "%s\n", sid_strings + values_offsets[val]); else print_value(file, val, util_bitcount(field->mask)); } return; } print_spaces(file, INDENT_PKT); fprintf(file, "%s0x%05x%s <- 0x%08x\n", O_COLOR_YELLOW, offset, O_COLOR_RESET, value); } static uint32_t ac_ib_get(struct ac_ib_parser *ib) { uint32_t v = 0; if (ib->cur_dw < ib->num_dw) { v = ib->ib[ib->cur_dw]; #ifdef HAVE_VALGRIND /* Help figure out where garbage data is written to IBs. * * Arguably we should do this already when the IBs are written, * see RADEON_VALGRIND. The problem is that client-requests to * Valgrind have an overhead even when Valgrind isn't running, * and radeon_emit is performance sensitive... */ if (VALGRIND_CHECK_VALUE_IS_DEFINED(v)) fprintf(ib->f, "%sValgrind: The next DWORD is garbage%s\n", debug_get_option_color() ? COLOR_RED : "", O_COLOR_RESET); #endif fprintf(ib->f, "\n\035#%08x ", v); } else { fprintf(ib->f, "\n\035#???????? "); } ib->cur_dw++; return v; } static uint64_t ac_ib_get64(struct ac_ib_parser *ib) { uint32_t lo = ac_ib_get(ib); uint32_t hi = ac_ib_get(ib); return ((uint64_t)hi << 32) | lo; } static uint64_t ac_sext_addr48(uint64_t addr) { if (addr & (1llu << 47)) return addr | (0xFFFFllu << 48); else return addr & (~(0xFFFFllu << 48)); } static void ac_parse_set_reg_packet(FILE *f, unsigned count, unsigned reg_offset, struct ac_ib_parser *ib) { unsigned reg_dw = ac_ib_get(ib); unsigned reg = ((reg_dw & 0xFFFF) << 2) + reg_offset; unsigned index = reg_dw >> 28; int i; if (index != 0) print_named_value(f, "INDEX", index, 32); for (i = 0; i < count; i++) ac_dump_reg(f, ib->gfx_level, ib->family, reg + i * 4, ac_ib_get(ib), ~0); } static void ac_parse_set_reg_pairs_packet(FILE *f, unsigned count, unsigned reg_base, struct ac_ib_parser *ib) { for (unsigned i = 0; i < (count + 1) / 2; i++) { unsigned reg_offset = (ac_ib_get(ib) << 2) + reg_base; ac_dump_reg(f, ib->gfx_level, ib->family, reg_offset, ac_ib_get(ib), ~0); } } static void ac_parse_set_reg_pairs_packed_packet(FILE *f, unsigned count, unsigned reg_base, struct ac_ib_parser *ib) { unsigned reg_offset0 = 0, reg_offset1 = 0; print_named_value(f, "REG_COUNT", ac_ib_get(ib), 32); for (unsigned i = 0; i < count; i++) { if (i % 3 == 0) { unsigned tmp = ac_ib_get(ib); reg_offset0 = ((tmp & 0xffff) << 2) + reg_base; reg_offset1 = ((tmp >> 16) << 2) + reg_base; } else if (i % 3 == 1) { ac_dump_reg(f, ib->gfx_level, ib->family, reg_offset0, ac_ib_get(ib), ~0); } else { ac_dump_reg(f, ib->gfx_level, ib->family, reg_offset1, ac_ib_get(ib), ~0); } } } #define AC_ADDR_SIZE_NOT_MEMORY 0xFFFFFFFF static void print_addr(struct ac_ib_parser *ib, const char *name, uint64_t addr, uint32_t size) { FILE *f = ib->f; print_spaces(f, INDENT_PKT); fprintf(f, "%s%s%s <- ", O_COLOR_YELLOW, name, O_COLOR_RESET); fprintf(f, "0x%llx", (unsigned long long)addr); if (ib->addr_callback && size != AC_ADDR_SIZE_NOT_MEMORY) { struct ac_addr_info addr_info; ib->addr_callback(ib->addr_callback_data, addr, &addr_info); struct ac_addr_info addr_info2 = addr_info; if (size) ib->addr_callback(ib->addr_callback_data, addr + size - 1, &addr_info2); uint32_t invalid_count = !addr_info.valid + !addr_info2.valid; if (addr_info.use_after_free && addr_info2.use_after_free) fprintf(f, " used after free"); else if (invalid_count == 2) fprintf(f, " invalid"); else if (invalid_count == 1) fprintf(f, " out of bounds"); } fprintf(f, "\n"); } static void ac_parse_packet3(FILE *f, uint32_t header, struct ac_ib_parser *ib, int *current_trace_id) { unsigned first_dw = ib->cur_dw; int count = PKT_COUNT_G(header); unsigned op = PKT3_IT_OPCODE_G(header); const char *shader_type = PKT3_SHADER_TYPE_G(header) ? "(shader_type=compute)" : ""; const char *predicated = PKT3_PREDICATE(header) ? "(predicated)" : ""; const char *reset_filter_cam = PKT3_RESET_FILTER_CAM_G(header) ? "(reset_filter_cam)" : ""; int i; unsigned tmp; /* Print the name first. */ for (i = 0; i < ARRAY_SIZE(packet3_table); i++) if (packet3_table[i].op == op) break; char unknown_name[32]; const char *pkt_name; if (i < ARRAY_SIZE(packet3_table)) { pkt_name = sid_strings + packet3_table[i].name_offset; } else { snprintf(unknown_name, sizeof(unknown_name), "UNKNOWN(0x%02X)", op); pkt_name = unknown_name; } const char *color; if (strstr(pkt_name, "DRAW") || strstr(pkt_name, "DISPATCH")) color = O_COLOR_PURPLE; else if (strstr(pkt_name, "SET") == pkt_name && strstr(pkt_name, "REG")) color = O_COLOR_CYAN; else if (i >= ARRAY_SIZE(packet3_table)) color = O_COLOR_RED; else color = O_COLOR_GREEN; fprintf(f, "%s%s%s%s%s%s:\n", color, pkt_name, O_COLOR_RESET, shader_type, predicated, reset_filter_cam); /* Print the contents. */ switch (op) { case PKT3_SET_CONTEXT_REG: ac_parse_set_reg_packet(f, count, SI_CONTEXT_REG_OFFSET, ib); break; case PKT3_SET_CONFIG_REG: ac_parse_set_reg_packet(f, count, SI_CONFIG_REG_OFFSET, ib); break; case PKT3_SET_UCONFIG_REG: case PKT3_SET_UCONFIG_REG_INDEX: ac_parse_set_reg_packet(f, count, CIK_UCONFIG_REG_OFFSET, ib); break; case PKT3_SET_SH_REG: case PKT3_SET_SH_REG_INDEX: ac_parse_set_reg_packet(f, count, SI_SH_REG_OFFSET, ib); break; case PKT3_SET_UCONFIG_REG_PAIRS: ac_parse_set_reg_pairs_packet(f, count, CIK_UCONFIG_REG_OFFSET, ib); break; case PKT3_SET_CONTEXT_REG_PAIRS: ac_parse_set_reg_pairs_packet(f, count, SI_CONTEXT_REG_OFFSET, ib); break; case PKT3_SET_SH_REG_PAIRS: ac_parse_set_reg_pairs_packet(f, count, SI_SH_REG_OFFSET, ib); break; case PKT3_SET_CONTEXT_REG_PAIRS_PACKED: ac_parse_set_reg_pairs_packed_packet(f, count, SI_CONTEXT_REG_OFFSET, ib); break; case PKT3_SET_SH_REG_PAIRS_PACKED: case PKT3_SET_SH_REG_PAIRS_PACKED_N: ac_parse_set_reg_pairs_packed_packet(f, count, SI_SH_REG_OFFSET, ib); break; case PKT3_ACQUIRE_MEM: if (ib->gfx_level >= GFX11) { if (G_585_PWS_ENA(ib->ib[ib->cur_dw + 5])) { ac_dump_reg(f, ib->gfx_level, ib->family, R_580_ACQUIRE_MEM_PWS_2, ac_ib_get(ib), ~0); print_named_value(f, "GCR_SIZE", ac_ib_get(ib), 32); print_named_value(f, "GCR_SIZE_HI", ac_ib_get(ib), 25); print_named_value(f, "GCR_BASE_LO", ac_ib_get(ib), 32); print_named_value(f, "GCR_BASE_HI", ac_ib_get(ib), 32); ac_dump_reg(f, ib->gfx_level, ib->family, R_585_ACQUIRE_MEM_PWS_7, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_586_GCR_CNTL, ac_ib_get(ib), ~0); } else { print_string_value(f, "ENGINE_SEL", ac_ib_get(ib) & 0x80000000 ? "ME" : "PFP"); print_named_value(f, "GCR_SIZE", ac_ib_get(ib), 32); print_named_value(f, "GCR_SIZE_HI", ac_ib_get(ib), 25); print_named_value(f, "GCR_BASE_LO", ac_ib_get(ib), 32); print_named_value(f, "GCR_BASE_HI", ac_ib_get(ib), 32); print_named_value(f, "POLL_INTERVAL", ac_ib_get(ib), 16); ac_dump_reg(f, ib->gfx_level, ib->family, R_586_GCR_CNTL, ac_ib_get(ib), ~0); } } else { tmp = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_0301F0_CP_COHER_CNTL, tmp, 0x7fffffff); print_string_value(f, "ENGINE_SEL", tmp & 0x80000000 ? "ME" : "PFP"); ac_dump_reg(f, ib->gfx_level, ib->family, R_0301F4_CP_COHER_SIZE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_030230_CP_COHER_SIZE_HI, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0301F8_CP_COHER_BASE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0301E4_CP_COHER_BASE_HI, ac_ib_get(ib), ~0); print_named_value(f, "POLL_INTERVAL", ac_ib_get(ib), 16); if (ib->gfx_level >= GFX10) ac_dump_reg(f, ib->gfx_level, ib->family, R_586_GCR_CNTL, ac_ib_get(ib), ~0); } break; case PKT3_SURFACE_SYNC: if (ib->gfx_level >= GFX7) { ac_dump_reg(f, ib->gfx_level, ib->family, R_0301F0_CP_COHER_CNTL, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0301F4_CP_COHER_SIZE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0301F8_CP_COHER_BASE, ac_ib_get(ib), ~0); } else { ac_dump_reg(f, ib->gfx_level, ib->family, R_0085F0_CP_COHER_CNTL, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0085F4_CP_COHER_SIZE, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0085F8_CP_COHER_BASE, ac_ib_get(ib), ~0); } print_named_value(f, "POLL_INTERVAL", ac_ib_get(ib), 16); break; case PKT3_EVENT_WRITE: { uint32_t event_dw = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_028A90_VGT_EVENT_INITIATOR, event_dw, S_028A90_EVENT_TYPE(~0)); print_named_value(f, "EVENT_INDEX", (event_dw >> 8) & 0xf, 4); print_named_value(f, "INV_L2", (event_dw >> 20) & 0x1, 1); if (count > 0) print_addr(ib, "ADDR", ac_ib_get64(ib), 0); break; } case PKT3_EVENT_WRITE_EOP: { uint32_t event_dw = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_028A90_VGT_EVENT_INITIATOR, event_dw, S_028A90_EVENT_TYPE(~0)); print_named_value(f, "EVENT_INDEX", (event_dw >> 8) & 0xf, 4); print_named_value(f, "TCL1_VOL_ACTION_ENA", (event_dw >> 12) & 0x1, 1); print_named_value(f, "TC_VOL_ACTION_ENA", (event_dw >> 13) & 0x1, 1); print_named_value(f, "TC_WB_ACTION_ENA", (event_dw >> 15) & 0x1, 1); print_named_value(f, "TCL1_ACTION_ENA", (event_dw >> 16) & 0x1, 1); print_named_value(f, "TC_ACTION_ENA", (event_dw >> 17) & 0x1, 1); uint64_t addr = ac_ib_get64(ib); uint32_t data_sel = addr >> 61; uint32_t data_size; switch (data_sel) { case EOP_DATA_SEL_VALUE_32BIT: data_size = 4; break; case EOP_DATA_SEL_VALUE_64BIT: case EOP_DATA_SEL_TIMESTAMP: data_size = 8; break; default: data_size = AC_ADDR_SIZE_NOT_MEMORY; break; } print_addr(ib, "ADDR", ac_sext_addr48(addr), data_size); print_named_value(f, "DST_SEL", (addr >> 48) & 0x3, 2); print_named_value(f, "INT_SEL", (addr >> 56) & 0x7, 3); print_named_value(f, "DATA_SEL", data_sel, 3); print_named_value(f, "DATA_LO", ac_ib_get(ib), 32); print_named_value(f, "DATA_HI", ac_ib_get(ib), 32); break; } case PKT3_RELEASE_MEM: { uint32_t event_dw = ac_ib_get(ib); if (ib->gfx_level >= GFX10) { ac_dump_reg(f, ib->gfx_level, ib->family, R_490_RELEASE_MEM_OP, event_dw, ~0u); } else { ac_dump_reg(f, ib->gfx_level, ib->family, R_028A90_VGT_EVENT_INITIATOR, event_dw, S_028A90_EVENT_TYPE(~0)); print_named_value(f, "EVENT_INDEX", (event_dw >> 8) & 0xf, 4); print_named_value(f, "TCL1_VOL_ACTION_ENA", (event_dw >> 12) & 0x1, 1); print_named_value(f, "TC_VOL_ACTION_ENA", (event_dw >> 13) & 0x1, 1); print_named_value(f, "TC_WB_ACTION_ENA", (event_dw >> 15) & 0x1, 1); print_named_value(f, "TCL1_ACTION_ENA", (event_dw >> 16) & 0x1, 1); print_named_value(f, "TC_ACTION_ENA", (event_dw >> 17) & 0x1, 1); print_named_value(f, "TC_NC_ACTION_ENA", (event_dw >> 19) & 0x1, 1); print_named_value(f, "TC_WC_ACTION_ENA", (event_dw >> 20) & 0x1, 1); print_named_value(f, "TC_MD_ACTION_ENA", (event_dw >> 21) & 0x1, 1); } uint32_t sel_dw = ac_ib_get(ib); print_named_value(f, "DST_SEL", (sel_dw >> 16) & 0x3, 2); print_named_value(f, "INT_SEL", (sel_dw >> 24) & 0x7, 3); print_named_value(f, "DATA_SEL", sel_dw >> 29, 3); print_named_value(f, "ADDRESS_LO", ac_ib_get(ib), 32); print_named_value(f, "ADDRESS_HI", ac_ib_get(ib), 32); print_named_value(f, "DATA_LO", ac_ib_get(ib), 32); print_named_value(f, "DATA_HI", ac_ib_get(ib), 32); print_named_value(f, "CTXID", ac_ib_get(ib), 32); break; } case PKT3_WAIT_REG_MEM: print_named_value(f, "OP", ac_ib_get(ib), 32); print_named_value(f, "ADDRESS_LO", ac_ib_get(ib), 32); print_named_value(f, "ADDRESS_HI", ac_ib_get(ib), 32); print_named_value(f, "REF", ac_ib_get(ib), 32); print_named_value(f, "MASK", ac_ib_get(ib), 32); print_named_value(f, "POLL_INTERVAL", ac_ib_get(ib), 16); break; case PKT3_DRAW_INDEX_AUTO: ac_dump_reg(f, ib->gfx_level, ib->family, R_030930_VGT_NUM_INDICES, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0287F0_VGT_DRAW_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_DRAW_INDEX_2: ac_dump_reg(f, ib->gfx_level, ib->family, R_028A78_VGT_DMA_MAX_SIZE, ac_ib_get(ib), ~0); print_addr(ib, "INDEX_ADDR", ac_ib_get64(ib), 0); ac_dump_reg(f, ib->gfx_level, ib->family, R_030930_VGT_NUM_INDICES, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_0287F0_VGT_DRAW_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_DRAW_INDIRECT: case PKT3_DRAW_INDEX_INDIRECT: print_named_value(f, "OFFSET", ac_ib_get(ib), 32); print_named_value(f, "VERTEX_OFFSET_REG", ac_ib_get(ib), 32); print_named_value(f, "START_INSTANCE_REG", ac_ib_get(ib), 32); ac_dump_reg(f, ib->gfx_level, ib->family, R_0287F0_VGT_DRAW_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_DRAW_INDIRECT_MULTI: case PKT3_DRAW_INDEX_INDIRECT_MULTI: print_named_value(f, "OFFSET", ac_ib_get(ib), 32); print_named_value(f, "VERTEX_OFFSET_REG", ac_ib_get(ib), 32); print_named_value(f, "START_INSTANCE_REG", ac_ib_get(ib), 32); tmp = ac_ib_get(ib); print_named_value(f, "DRAW_ID_REG", tmp & 0xFFFF, 16); print_named_value(f, "DRAW_ID_ENABLE", tmp >> 31, 1); print_named_value(f, "COUNT_INDIRECT_ENABLE", (tmp >> 30) & 1, 1); print_named_value(f, "DRAW_COUNT", ac_ib_get(ib), 32); print_addr(ib, "COUNT_ADDR", ac_ib_get64(ib), 0); print_named_value(f, "STRIDE", ac_ib_get(ib), 32); ac_dump_reg(f, ib->gfx_level, ib->family, R_0287F0_VGT_DRAW_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_INDEX_BASE: print_addr(ib, "ADDR", ac_ib_get64(ib), 0); break; case PKT3_INDEX_TYPE: ac_dump_reg(f, ib->gfx_level, ib->family, R_028A7C_VGT_DMA_INDEX_TYPE, ac_ib_get(ib), ~0); break; case PKT3_NUM_INSTANCES: ac_dump_reg(f, ib->gfx_level, ib->family, R_030934_VGT_NUM_INSTANCES, ac_ib_get(ib), ~0); break; case PKT3_WRITE_DATA: { uint32_t control = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_370_CONTROL, control, ~0); uint32_t dst_sel = G_370_DST_SEL(control); uint64_t addr = ac_ib_get64(ib); uint32_t dword_count = first_dw + count + 1 - ib->cur_dw; bool writes_memory = dst_sel == V_370_MEM_GRBM || dst_sel == V_370_TC_L2 || dst_sel == V_370_MEM; print_addr(ib, "DST_ADDR", addr, writes_memory ? dword_count * 4 : AC_ADDR_SIZE_NOT_MEMORY); for (uint32_t i = 0; i < dword_count; i++) print_data_dword(f, ac_ib_get(ib), "data"); break; } case PKT3_CP_DMA: ac_dump_reg(f, ib->gfx_level, ib->family, R_410_CP_DMA_WORD0, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_411_CP_DMA_WORD1, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_412_CP_DMA_WORD2, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_413_CP_DMA_WORD3, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_415_COMMAND, ac_ib_get(ib), ~0); break; case PKT3_DMA_DATA: { uint32_t header = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_501_DMA_DATA_WORD0, header, ~0); uint64_t src_addr = ac_ib_get64(ib); uint64_t dst_addr = ac_ib_get64(ib); uint32_t command = ac_ib_get(ib); uint32_t size = ib->gfx_level >= GFX9 ? G_415_BYTE_COUNT_GFX9(command) : G_415_BYTE_COUNT_GFX6(command); uint32_t src_sel = G_501_SRC_SEL(header); bool src_mem = (src_sel == V_501_SRC_ADDR && G_415_SAS(command) == V_415_MEMORY) || src_sel == V_411_SRC_ADDR_TC_L2; uint32_t dst_sel = G_501_DST_SEL(header); bool dst_mem = (dst_sel == V_501_DST_ADDR && G_415_DAS(command) == V_415_MEMORY) || dst_sel == V_411_DST_ADDR_TC_L2; print_addr(ib, "SRC_ADDR", src_addr, src_mem ? size : AC_ADDR_SIZE_NOT_MEMORY); print_addr(ib, "DST_ADDR", dst_addr, dst_mem ? size : AC_ADDR_SIZE_NOT_MEMORY); ac_dump_reg(f, ib->gfx_level, ib->family, R_415_COMMAND, command, ~0); break; } case PKT3_INDIRECT_BUFFER_SI: case PKT3_INDIRECT_BUFFER_CONST: case PKT3_INDIRECT_BUFFER: { uint32_t base_lo_dw = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_3F0_IB_BASE_LO, base_lo_dw, ~0); uint32_t base_hi_dw = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_3F1_IB_BASE_HI, base_hi_dw, ~0); uint32_t control_dw = ac_ib_get(ib); ac_dump_reg(f, ib->gfx_level, ib->family, R_3F2_IB_CONTROL, control_dw, ~0); if (!ib->addr_callback) break; uint64_t addr = ((uint64_t)base_hi_dw << 32) | base_lo_dw; struct ac_addr_info addr_info; ib->addr_callback(ib->addr_callback_data, addr, &addr_info); void *data = addr_info.cpu_addr; if (!data) break; if (G_3F2_CHAIN(control_dw)) { ib->ib = data; ib->num_dw = G_3F2_IB_SIZE(control_dw); ib->cur_dw = 0; return; } struct ac_ib_parser ib_recurse; memcpy(&ib_recurse, ib, sizeof(ib_recurse)); ib_recurse.ib = data; ib_recurse.num_dw = G_3F2_IB_SIZE(control_dw); ib_recurse.cur_dw = 0; if (ib_recurse.trace_id_count) { if (*current_trace_id == *ib->trace_ids) { ++ib_recurse.trace_ids; --ib_recurse.trace_id_count; } else { ib_recurse.trace_id_count = 0; } } fprintf(f, "\n\035>------------------ nested begin ------------------\n"); parse_gfx_compute_ib(f, &ib_recurse); fprintf(f, "\n\035<------------------- nested end -------------------\n"); break; } case PKT3_CLEAR_STATE: case PKT3_INCREMENT_DE_COUNTER: case PKT3_PFP_SYNC_ME: print_data_dword(f, ac_ib_get(ib), "reserved"); break; case PKT3_NOP: if (header == PKT3_NOP_PAD) { count = -1; /* One dword NOP. */ } else if (count == 0 && ib->cur_dw < ib->num_dw && AC_IS_TRACE_POINT(ib->ib[ib->cur_dw])) { unsigned packet_id = AC_GET_TRACE_POINT_ID(ib->ib[ib->cur_dw]); print_spaces(f, INDENT_PKT); fprintf(f, "%sTrace point ID: %u%s\n", O_COLOR_RED, packet_id, O_COLOR_RESET); if (!ib->trace_id_count) break; /* tracing was disabled */ *current_trace_id = packet_id; print_spaces(f, INDENT_PKT); if (packet_id < *ib->trace_ids) { fprintf(f, "%sThis trace point was reached by the CP.%s\n", O_COLOR_RED, O_COLOR_RESET); } else if (packet_id == *ib->trace_ids) { fprintf(f, "%s!!!!! This is the last trace point that " "was reached by the CP !!!!!%s\n", O_COLOR_RED, O_COLOR_RESET); } else if (packet_id + 1 == *ib->trace_ids) { fprintf(f, "%s!!!!! This is the first trace point that " "was NOT been reached by the CP !!!!!%s\n", O_COLOR_RED, O_COLOR_RESET); } else { fprintf(f, "%s!!!!! This trace point was NOT reached " "by the CP !!!!!%s\n", O_COLOR_RED, O_COLOR_RESET); } } else { while (ib->cur_dw <= first_dw + count) print_data_dword(f, ac_ib_get(ib), "unused"); } break; case PKT3_DISPATCH_DIRECT: case PKT3_DISPATCH_DIRECT_INTERLEAVED: ac_dump_reg(f, ib->gfx_level, ib->family, R_00B804_COMPUTE_DIM_X, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_00B808_COMPUTE_DIM_Y, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_00B80C_COMPUTE_DIM_Z, ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_00B800_COMPUTE_DISPATCH_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_DISPATCH_INDIRECT: case PKT3_DISPATCH_INDIRECT_INTERLEAVED: if (count > 1) print_addr(ib, "ADDR", ac_ib_get64(ib), 12); else print_named_value(f, "DATA_OFFSET", ac_ib_get(ib), 32); ac_dump_reg(f, ib->gfx_level, ib->family, R_00B800_COMPUTE_DISPATCH_INITIATOR, ac_ib_get(ib), ~0); break; case PKT3_SET_BASE: tmp = ac_ib_get(ib); print_string_value(f, "BASE_INDEX", tmp == 1 ? "INDIRECT_BASE" : COLOR_RED "UNKNOWN" COLOR_RESET); print_addr(ib, "ADDR", ac_ib_get64(ib), 0); break; case PKT3_PRIME_UTCL2: tmp = ac_ib_get(ib); print_named_value(f, "CACHE_PERM[rwx]", tmp & 0x7, 3); print_string_value(f, "PRIME_MODE", tmp & 0x8 ? "WAIT_FOR_XACK" : "DONT_WAIT_FOR_XACK"); print_named_value(f, "ENGINE_SEL", tmp >> 30, 2); print_addr(ib, "ADDR", ac_ib_get64(ib), 0); print_named_value(f, "REQUESTED_PAGES", ac_ib_get(ib), 14); break; case PKT3_ATOMIC_MEM: tmp = ac_ib_get(ib); print_named_value(f, "ATOMIC", tmp & 0x7f, 7); print_named_value(f, "COMMAND", (tmp >> 8) & 0xf, 4); print_named_value(f, "CACHE_POLICY", (tmp >> 25) & 0x3, 2); print_named_value(f, "ENGINE_SEL", tmp >> 30, 2); print_addr(ib, "ADDR", ac_ib_get64(ib), 8); print_named_value(f, "SRC_DATA_LO", ac_ib_get(ib), 32); print_named_value(f, "SRC_DATA_HI", ac_ib_get(ib), 32); print_named_value(f, "CMP_DATA_LO", ac_ib_get(ib), 32); print_named_value(f, "CMP_DATA_HI", ac_ib_get(ib), 32); print_named_value(f, "LOOP_INTERVAL", ac_ib_get(ib) & 0x1fff, 13); break; case PKT3_INDEX_BUFFER_SIZE: print_named_value(f, "COUNT", ac_ib_get(ib), 32); break; case PKT3_COND_EXEC: { uint32_t size = ac_ib_get(ib) * 4; print_addr(ib, "ADDR", ac_ib_get64(ib), size); print_named_value(f, "SIZE", size, 32); break; } case PKT3_DISPATCH_TASKMESH_GFX: tmp = ac_ib_get(ib); print_named_value(f, "RING_ENTRY_REG", (tmp >> 16) & 0xffff, 16); print_named_value(f, "XYZ_DIM_REG", (tmp & 0xffff), 16); tmp = ac_ib_get(ib); print_named_value(f, "THREAD_TRACE_MARKER_ENABLE", (tmp >> 31) & 0x1, 1); if (ib->gfx_level >= GFX11) { print_named_value(f, "XYZ_DIM_ENABLE", (tmp >> 30) & 0x1, 1); print_named_value(f, "MODE1_ENABLE", (tmp >> 29) & 0x1, 1); print_named_value(f, "LINEAR_DISPATCH_ENABLED", (tmp >> 28) & 0x1, 1); } print_named_value(f, "DI_SRC_SEL_AUTO_INDEX", ac_ib_get(ib), ~0); break; case PKT3_DISPATCH_TASKMESH_DIRECT_ACE: print_named_value(f, "X_DIM", ac_ib_get(ib), ~0); print_named_value(f, "Y_DIM", ac_ib_get(ib), ~0); print_named_value(f, "Z_DIM", ac_ib_get(ib), ~0); ac_dump_reg(f, ib->gfx_level, ib->family, R_00B800_COMPUTE_DISPATCH_INITIATOR, ac_ib_get(ib), ~0); print_named_value(f, "RING_ENTRY_REG", ac_ib_get(ib), 16); break; } /* print additional dwords */ while (ib->cur_dw <= first_dw + count) ac_ib_get(ib); if (ib->cur_dw > first_dw + count + 1) fprintf(f, "%s !!!!! count in header too low !!!!!%s\n", O_COLOR_RED, O_COLOR_RESET); } /** * Parse and print an IB into a file. */ static void parse_gfx_compute_ib(FILE *f, struct ac_ib_parser *ib) { int current_trace_id = -1; while (ib->cur_dw < ib->num_dw) { if (ib->annotations) { struct hash_entry *marker = _mesa_hash_table_search(ib->annotations, ib->ib + ib->cur_dw); if (marker) fprintf(f, "\n%s:", (char *)marker->data); } uint32_t header = ac_ib_get(ib); unsigned type = PKT_TYPE_G(header); switch (type) { case 3: ac_parse_packet3(f, header, ib, ¤t_trace_id); break; case 2: /* type-2 nop */ if (header == 0x80000000) { fprintf(f, "%sNOP (type 2)%s\n", O_COLOR_GREEN, O_COLOR_RESET); break; } FALLTHROUGH; default: fprintf(f, "Unknown packet type %i\n", type); break; } } } static void format_ib_output(FILE *f, char *out) { unsigned depth = 0; for (;;) { char op = 0; if (out[0] == '\n' && out[1] == '\035') out++; if (out[0] == '\035') { op = out[1]; out += 2; } if (op == '<') depth--; unsigned indent = 4 * depth; if (op != '#') indent += 9; if (indent) print_spaces(f, indent); char *end = strchrnul(out, '\n'); fwrite(out, end - out, 1, f); fputc('\n', f); /* always end with a new line */ if (!*end) break; out = end + 1; if (op == '>') depth++; } } static void parse_sdma_ib(FILE *f, struct ac_ib_parser *ib) { while (ib->cur_dw < ib->num_dw) { const uint32_t header = ac_ib_get(ib); const uint32_t opcode = header & 0xff; const uint32_t sub_op = (header >> 8) & 0xff; switch (opcode) { case SDMA_OPCODE_NOP: { fprintf(f, "NOP\n"); const uint32_t count = header >> 16; for (unsigned i = 0; i < count; ++i) { ac_ib_get(ib); fprintf(f, "\n"); } break; } case SDMA_OPCODE_CONSTANT_FILL: { fprintf(f, "CONSTANT_FILL\n"); uint32_t fill_va_lo = ac_ib_get(ib); fprintf(f, " fill va lo = %08x\n", fill_va_lo); uint32_t fill_va_hi = ac_ib_get(ib); fprintf(f, " fill va hi = %08x\n", fill_va_hi); uint32_t value = ac_ib_get(ib); fprintf(f, " fill value = %u\n", value); uint32_t byte_count = ac_ib_get(ib) + 1; fprintf(f, " fill byte count = %u\n", byte_count); break; } case SDMA_OPCODE_WRITE: { fprintf(f, "WRITE\n"); /* VA */ uint32_t va_lo = ac_ib_get(ib); fprintf(f, " va lo = %08x\n", va_lo); uint32_t va_hi = ac_ib_get(ib); fprintf(f, " va hi = %08x\n", va_hi); uint32_t dwords = ac_ib_get(ib) + 1; fprintf(f, " written dword count = %u\n", dwords); for (unsigned i = 0; i < dwords; ++i) { ac_ib_get(ib); fprintf(f, "\n"); } break; } case SDMA_OPCODE_COPY: { switch (sub_op) { case SDMA_COPY_SUB_OPCODE_LINEAR: { fprintf(f, "COPY LINEAR\n"); uint32_t copy_bytes = ac_ib_get(ib) + (ib->gfx_level >= GFX9 ? 1 : 0); fprintf(f, " copy bytes: %u\n", copy_bytes); ac_ib_get(ib); fprintf(f, "\n"); ac_ib_get(ib); fprintf(f, " src VA low\n"); ac_ib_get(ib); fprintf(f, " src VA high\n"); ac_ib_get(ib); fprintf(f, " dst VA low\n"); ac_ib_get(ib); fprintf(f, " dst VA high\n"); break; } case SDMA_COPY_SUB_OPCODE_LINEAR_SUB_WINDOW: { fprintf(f, "COPY LINEAR_SUB_WINDOW\n"); for (unsigned i = 0; i < 12; ++i) { ac_ib_get(ib); fprintf(f, "\n"); } break; } case SDMA_COPY_SUB_OPCODE_TILED_SUB_WINDOW: { fprintf(f, "COPY TILED_SUB_WINDOW %s\n", header >> 31 ? "t2l" : "l2t"); uint32_t dcc = (header >> 19) & 1; /* Tiled VA */ ac_ib_get(ib); fprintf(f, " tiled VA low\n"); ac_ib_get(ib); fprintf(f, " tiled VA high\n"); uint32_t dw3 = ac_ib_get(ib); fprintf(f, " tiled offset x = %u, y=%u\n", dw3 & 0xffff, dw3 >> 16); uint32_t dw4 = ac_ib_get(ib); fprintf(f, " tiled offset z = %u, tiled width = %u\n", dw4 & 0xffff, (dw4 >> 16) + 1); uint32_t dw5 = ac_ib_get(ib); fprintf(f, " tiled height = %u, tiled depth = %u\n", (dw5 & 0xffff) + 1, (dw5 >> 16) + 1); /* Tiled image info */ ac_ib_get(ib); fprintf(f, " (tiled image info)\n"); /* Linear VA */ ac_ib_get(ib); fprintf(f, " linear VA low\n"); ac_ib_get(ib); fprintf(f, " linear VA high\n"); uint32_t dw9 = ac_ib_get(ib); fprintf(f, " linear offset x = %u, y=%u\n", dw9 & 0xffff, dw9 >> 16); uint32_t dw10 = ac_ib_get(ib); fprintf(f, " linear offset z = %u, linear pitch = %u\n", dw10 & 0xffff, (dw10 >> 16) + 1); uint32_t dw11 = ac_ib_get(ib); fprintf(f, " linear slice pitch = %u\n", dw11 + 1); uint32_t dw12 = ac_ib_get(ib); fprintf(f, " copy width = %u, copy height = %u\n", (dw12 & 0xffff) + 1, (dw12 >> 16) + 1); uint32_t dw13 = ac_ib_get(ib); fprintf(f, " copy depth = %u\n", dw13 + 1); if (dcc) { ac_ib_get(ib); fprintf(f, " metadata VA low\n"); ac_ib_get(ib); fprintf(f, " metadata VA high\n"); ac_ib_get(ib); fprintf(f, " (metadata config)\n"); } break; } case SDMA_COPY_SUB_OPCODE_T2T_SUB_WINDOW: { fprintf(f, "COPY T2T_SUB_WINDOW\n"); uint32_t dcc = (header >> 19) & 1; for (unsigned i = 0; i < 14; ++i) { ac_ib_get(ib); fprintf(f, "\n"); } if (dcc) { ac_ib_get(ib); fprintf(f, " metadata VA low\n"); ac_ib_get(ib); fprintf(f, " metadata VA high\n"); ac_ib_get(ib); fprintf(f, " (metadata config)\n"); } break; } default: fprintf(f, "(unrecognized COPY sub op)\n"); break; } break; } default: fprintf(f, " (unrecognized opcode)\n"); break; } } } static void print_vcn_unrecognized_params(FILE *f, struct ac_ib_parser *ib, uint32_t start_dw, uint32_t size) { int32_t remaining = size / 4 - (ib->cur_dw - start_dw); if (remaining < 0) { fprintf(f, "%s%d incorrectly parsed DWORDs%s\n", O_COLOR_RED, remaining * -1, O_COLOR_RESET); ib->cur_dw += remaining; } else { while (remaining--) { ac_ib_get(ib); fprintf(f, " %s(unrecognized)%s\n", O_COLOR_RED, O_COLOR_RESET); } } } static const char *vcn_picture_type(uint32_t type) { switch (type) { case RENCODE_PICTURE_TYPE_B: return "B"; case RENCODE_PICTURE_TYPE_P: return "P"; case RENCODE_PICTURE_TYPE_I: return "I"; case RENCODE_PICTURE_TYPE_P_SKIP: return "P SKIP"; default: return "???"; } } static const char *vcn_picture_structure(uint32_t structure) { switch (structure) { case RENCODE_H264_PICTURE_STRUCTURE_FRAME: return "FRAME"; case RENCODE_H264_PICTURE_STRUCTURE_TOP_FIELD: return "TOP FIELD"; case RENCODE_H264_PICTURE_STRUCTURE_BOTTOM_FIELD: return "BOTTOM FIELD"; default: return "???"; } } static const char *vcn_color_volume(uint32_t color_volume) { switch (color_volume) { case RENCODE_COLOR_VOLUME_G22_BT709: return "G22 BT.709"; default: return "???"; } } static const char *vcn_color_range(uint32_t color_range) { switch (color_range) { case RENCODE_COLOR_RANGE_FULL: return "FULL"; case RENCODE_COLOR_RANGE_STUDIO: return "STUDIO"; default: return "???"; } } static const char *vcn_chroma_subsampling(uint32_t chroma_subsampling) { switch (chroma_subsampling) { case RENCODE_CHROMA_SUBSAMPLING_4_2_0: return "4:2:0"; case RENCODE_CHROMA_SUBSAMPLING_4_4_4: return "4:4:4"; default: return "???"; } } static const char *vcn_chroma_location(uint32_t chroma_location) { switch (chroma_location) { case RENCODE_CHROMA_LOCATION_INTERSTITIAL: return "INTERSTITIAL"; default: return "???"; } } static const char *vcn_color_bit_depth(uint32_t bit_depth) { switch (bit_depth) { case RENCODE_COLOR_BIT_DEPTH_8_BIT: return "8 BIT"; case RENCODE_COLOR_BIT_DEPTH_10_BIT: return "10 BIT"; default: return "???"; } } static void print_vcn_addr(FILE *f, struct ac_ib_parser *ib, const char *prefix_format, ...) { uint32_t high = ac_ib_get(ib); fprintf(f, "\n"); uint32_t low = ac_ib_get(ib); va_list args; va_start(args, prefix_format); vfprintf(f, prefix_format, args); va_end(args); fprintf(f, " VA = 0x%"PRIx64"\n", ((uint64_t)high << 32) | low); } static void print_vcn_ref_pic_info(FILE *f, struct ac_ib_parser *ib, const char *prefix) { uint32_t pic_type = ac_ib_get(ib); fprintf(f, "%s picture type = %s\n", prefix, vcn_picture_type(pic_type)); uint32_t long_term = ac_ib_get(ib); fprintf(f, "%s is long term = %u\n", prefix, long_term); uint32_t pic_structure = ac_ib_get(ib); fprintf(f, "%s picture structure = %s\n", prefix, vcn_picture_structure(pic_structure)); uint32_t pic_order_cnt = ac_ib_get(ib); fprintf(f, "%s pic order cnt = %u\n", prefix, pic_order_cnt); } static void print_vcn_reconstructed_picture(FILE *f, struct ac_ib_parser *ib, bool valid, const char *prefix_format, ...) { char prefix[128]; va_list args; va_start(args, prefix_format); vsnprintf(prefix, sizeof(prefix), prefix_format, args); va_end(args); if (ib->vcn_version >= VCN_5_0_0) { if (valid) { print_vcn_addr(f, ib, "%s luma", prefix); uint32_t luma_pitch = ac_ib_get(ib); fprintf(f, "%s luma pitch = %u\n", prefix, luma_pitch); print_vcn_addr(f, ib, "%s chroma", prefix); uint32_t chroma_pitch = ac_ib_get(ib); fprintf(f, "%s chroma pitch = %u\n", prefix, chroma_pitch); print_vcn_addr(f, ib, "%s chroma V", prefix); uint32_t chroma_v_pitch = ac_ib_get(ib); fprintf(f, "%s chroma V pitch = %u\n", prefix, chroma_v_pitch); uint32_t swizzle = ac_ib_get(ib); fprintf(f, "%s swizzle mode = %u\n", prefix, swizzle); print_vcn_addr(f, ib, "%s frame context buffer", prefix); uint32_t frame_context_offset = ac_ib_get(ib); fprintf(f, "%s AV1 cdf frame context offset / colloc buffer offset = %u\n", prefix, frame_context_offset); uint32_t cdef_offset = ac_ib_get(ib); fprintf(f, "%s AV1 cdef algorithm context offset = %u\n", prefix, cdef_offset); uint32_t metadata_offset = ac_ib_get(ib); fprintf(f, "%s encode metadata offset = %u\n", prefix, metadata_offset); } else { ib->cur_dw += 15; } } else { if (valid) { uint32_t luma_offset = ac_ib_get(ib); fprintf(f, "%s luma offset = %u\n", prefix, luma_offset); uint32_t chroma_offset = ac_ib_get(ib); fprintf(f, "%s chroma offset = %u\n", prefix, chroma_offset); } else { ib->cur_dw += 2; } if (ib->vcn_version >= VCN_4_0_0) { if (valid) { uint32_t frame_context_offset = ac_ib_get(ib); fprintf(f, "%s AV1 cdf frame context offset = %u\n", prefix, frame_context_offset); uint32_t cdef_offset = ac_ib_get(ib); fprintf(f, "%s AV1 cdef algorithm context offset = %u\n", prefix, cdef_offset); } else { ib->cur_dw += 2; } } } } static void print_vcn_preencode_input_picture(FILE *f, struct ac_ib_parser *ib, const char *prefix) { uint32_t r_offset = ac_ib_get(ib); fprintf(f, "%s luma offset / red offset = %u\n", prefix, r_offset); uint32_t g_offset = ac_ib_get(ib); fprintf(f, "%s chroma offset / green offset = %u\n", prefix, g_offset); uint32_t b_offset = ac_ib_get(ib); fprintf(f, "%s blue offset = %u\n", prefix, b_offset); } static void parse_vcn_enc_ib(FILE *f, struct ac_ib_parser *ib) { rvcn_enc_cmd_t cmd = {}; ac_vcn_enc_init_cmds(&cmd, ib->vcn_version); while (ib->cur_dw < ib->num_dw) { const uint32_t start_dw = ib->cur_dw; const uint32_t size = ac_ib_get(ib); const uint32_t op = ac_ib_get(ib); if (op == RENCODE_IB_OP_INITIALIZE) { fprintf(f, "%sINITIALIZE%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_CLOSE_SESSION) { fprintf(f, "%sCLOSE_SESSION%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_ENCODE) { fprintf(f, "%sENCODE%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_INIT_RC) { fprintf(f, "%sINIT_RC%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_INIT_RC_VBV_BUFFER_LEVEL) { fprintf(f, "%sINIT_RC_VBV_BUFFER_LEVEL%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_SET_SPEED_ENCODING_MODE) { fprintf(f, "%sSET_SPEED_ENCODING_MODE%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_SET_BALANCE_ENCODING_MODE) { fprintf(f, "%sSET_BALANCE_ENCODING_MODE%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_SET_QUALITY_ENCODING_MODE) { fprintf(f, "%sSET_QUALITY_ENCODING_MODE%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == RENCODE_IB_OP_SET_HIGH_QUALITY_ENCODING_MODE) { fprintf(f, "%sSET_HIGH_QUALITY_ENCODING_MODE%s\n", O_COLOR_PURPLE, O_COLOR_RESET); } else if (op == cmd.session_info) { fprintf(f, "%sSESSION_INFO%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t version = ac_ib_get(ib); fprintf(f, " interface version = %u.%u\n", (version & RENCODE_IF_MAJOR_VERSION_MASK) >> RENCODE_IF_MAJOR_VERSION_SHIFT, (version & RENCODE_IF_MINOR_VERSION_MASK) >> RENCODE_IF_MINOR_VERSION_SHIFT); print_vcn_addr(f, ib, " sw context"); if (ib->vcn_version < VCN_3_0_0) { uint32_t engine = ac_ib_get(ib); fprintf(f, " engine type = %s\n", engine == RENCODE_ENGINE_TYPE_ENCODE ? "ENCODE" : "???"); } } else if (op == cmd.task_info) { fprintf(f, "%sTASK_INFO%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t total_size = ac_ib_get(ib); fprintf(f, " size of all packages = %u\n", total_size); uint32_t task_id = ac_ib_get(ib); fprintf(f, " task id = %u\n", task_id); uint32_t num_feedbacks = ac_ib_get(ib); fprintf(f, " allowed max num feedbacks = %u\n", num_feedbacks); } else if (op == cmd.session_init) { fprintf(f, "%sSESSION_INIT%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t standard = ac_ib_get(ib); fprintf(f, " encode standard = %s\n", standard == RENCODE_ENCODE_STANDARD_H264 ? "H264" : standard == RENCODE_ENCODE_STANDARD_HEVC ? "HEVC" : standard == RENCODE_ENCODE_STANDARD_AV1 ? "AV1" : "???"); uint32_t pic_width = ac_ib_get(ib); fprintf(f, " aligned picture width = %u\n", pic_width); uint32_t pic_height = ac_ib_get(ib); fprintf(f, " aligned picture height = %u\n", pic_height); uint32_t padding_width = ac_ib_get(ib); fprintf(f, " padding width = %u\n", padding_width); uint32_t padding_height = ac_ib_get(ib); fprintf(f, " padding height = %u\n", padding_height); uint32_t preenc = ac_ib_get(ib); fprintf(f, " preencode mode = %s\n", preenc == RENCODE_PREENCODE_MODE_NONE ? "NONE" : preenc == RENCODE_PREENCODE_MODE_1X ? "1X" : preenc == RENCODE_PREENCODE_MODE_2X ? "2X" : preenc == RENCODE_PREENCODE_MODE_4X ? "4X" : "???"); uint32_t preenc_chroma = ac_ib_get(ib); fprintf(f, " preencode chroma enabled = %u\n", preenc_chroma); if (ib->vcn_version >= VCN_3_0_0) { uint32_t slice_output = ac_ib_get(ib); fprintf(f, " slice output enabled = %u\n", slice_output); } uint32_t display_remote = ac_ib_get(ib); fprintf(f, " display remote = %u\n", display_remote); if (ib->vcn_version >= VCN_4_0_0 && ib->vcn_version < VCN_5_0_0) { uint32_t wa_flags = ac_ib_get(ib); fprintf(f, " WA flags = %u\n", wa_flags); } } else if (op == cmd.layer_control) { fprintf(f, "%sLAYER_CONTROL%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t max_num_layers = ac_ib_get(ib); fprintf(f, " max num temporal layers = %u\n", max_num_layers); uint32_t num_layers = ac_ib_get(ib); fprintf(f, " num temporal layers = %u\n", num_layers); } else if (op == cmd.layer_select) { fprintf(f, "%sLAYER_SELECT%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t index = ac_ib_get(ib); fprintf(f, " temporal layer index = %u\n", index); } else if (op == cmd.rc_session_init) { fprintf(f, "%sRATE_CONTROL_SESSION_INIT%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t method = ac_ib_get(ib); fprintf(f, " rate control method = %s\n", method == RENCODE_RATE_CONTROL_METHOD_NONE ? "NONE" : method == RENCODE_RATE_CONTROL_METHOD_LATENCY_CONSTRAINED_VBR ? "LATENCY CONSTRAINED VBR" : method == RENCODE_RATE_CONTROL_METHOD_PEAK_CONSTRAINED_VBR ? "PEAK CONSTRAINED VBR" : method == RENCODE_RATE_CONTROL_METHOD_CBR ? "CBR" : method == RENCODE_RATE_CONTROL_METHOD_QUALITY_VBR ? "QUALITY VBR" : "???"); uint32_t buf_lvl = ac_ib_get(ib); fprintf(f, " vbv buffer level = %u\n", buf_lvl); } else if (op == cmd.rc_layer_init) { fprintf(f, "%sRATE_CONTROL_LAYER_INIT%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t target_bitrate = ac_ib_get(ib); fprintf(f, " target bitrate = %u\n", target_bitrate); uint32_t peak_bitrate = ac_ib_get(ib); fprintf(f, " peak bitrate = %u\n", peak_bitrate); uint32_t frame_rate_num = ac_ib_get(ib); fprintf(f, " frame rate numerator = %u\n", frame_rate_num); uint32_t frame_rate_den = ac_ib_get(ib); fprintf(f, " frame rate denominator = %u\n", frame_rate_den); uint32_t vbv_size = ac_ib_get(ib); fprintf(f, " vbv buffer size = %u\n", vbv_size); uint32_t avg_bits = ac_ib_get(ib); fprintf(f, " average target bits per picture = %u\n", avg_bits); uint32_t peak_bits_integer = ac_ib_get(ib); fprintf(f, " peak bits per picture (integer) = %u\n", peak_bits_integer); uint32_t peak_bits_fractional = ac_ib_get(ib); fprintf(f, " peak bits per picture (fractional) = %u\n", peak_bits_fractional); } else if (op == cmd.quality_params) { fprintf(f, "%sQUALITY_PARAMS%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t vbaq_mode = ac_ib_get(ib); fprintf(f, " VBAQ mode = %s\n", vbaq_mode == RENCODE_VBAQ_NONE ? "NONE" : vbaq_mode == RENCODE_VBAQ_AUTO ? "AUTO" : "???"); uint32_t scene_change_sens = ac_ib_get(ib); fprintf(f, " scene change sensitivity = %u\n", scene_change_sens); uint32_t scene_change_interval = ac_ib_get(ib); fprintf(f, " scene change min IDR interval = %u\n", scene_change_interval); uint32_t search_map_mode = ac_ib_get(ib); fprintf(f, " 2-pass search center map mode = %u\n", search_map_mode); if (ib->vcn_version >= VCN_2_0_0) { uint32_t vbaq_strength = ac_ib_get(ib); fprintf(f, " VBAQ strength = %u\n", vbaq_strength); } } else if (op == cmd.slice_control_hevc) { fprintf(f, "%sHEVC_SLICE_CONTROL%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t mode = ac_ib_get(ib); fprintf(f, " slice control mode = %s\n", mode == RENCODE_HEVC_SLICE_CONTROL_MODE_FIXED_CTBS ? "FIXED CTBS" : mode == RENCODE_HEVC_SLICE_CONTROL_MODE_FIXED_BITS ? "FIXED BITS" : "???"); uint32_t per_slice = ac_ib_get(ib); fprintf(f, " num %s per slice = %u\n", mode == RENCODE_HEVC_SLICE_CONTROL_MODE_FIXED_CTBS ? "ctbs" : "bits", per_slice); uint32_t per_slice_segment = ac_ib_get(ib); fprintf(f, " num %s per slice segment = %u\n", mode == RENCODE_HEVC_SLICE_CONTROL_MODE_FIXED_CTBS ? "ctbs" : "bits", per_slice_segment); } else if (op == cmd.spec_misc_hevc) { fprintf(f, "%sHEVC_SPEC_MISC%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t min_coding_block_size = ac_ib_get(ib); fprintf(f, " log2_min_luma_coding_block_size_minus3 = %u\n", min_coding_block_size); uint32_t amp_disabled = ac_ib_get(ib); fprintf(f, " amp disabled = %u\n", amp_disabled); uint32_t intra_smooth = ac_ib_get(ib); fprintf(f, " strong_intra_smoothing_enabled_flag = %u\n", intra_smooth); uint32_t constrained_intra = ac_ib_get(ib); fprintf(f, " constrained_intra_pred_flag = %u\n", constrained_intra); uint32_t cabac_init_flag = ac_ib_get(ib); fprintf(f, " cabac_init_flag = %u\n", cabac_init_flag); uint32_t half_pel_enabled = ac_ib_get(ib); fprintf(f, " half pel motion estimation = %u\n", half_pel_enabled); uint32_t quarter_pel_enabled = ac_ib_get(ib); fprintf(f, " quarter pel motion estimation = %u\n", quarter_pel_enabled); if (ib->vcn_version >= VCN_3_0_0) { uint32_t transform_skip_disabled = ac_ib_get(ib); fprintf(f, " transform skip disabled = %u\n", transform_skip_disabled); if (ib->vcn_version >= VCN_5_0_0) { uint32_t transquant_bypass = ac_ib_get(ib); fprintf(f, " transquant bypass enabled = %u\n", transquant_bypass); } } if (ib->vcn_version >= VCN_2_0_0) { uint32_t cu_qp_delta = ac_ib_get(ib); fprintf(f, " cu_qp_delta_enabled_flag = %u\n", cu_qp_delta); } } else if (op == cmd.deblocking_filter_hevc) { fprintf(f, "%sHEVC_DEBLOCKING_FILTER%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t across_slices = ac_ib_get(ib); fprintf(f, " loop filter across slices enabled = %u\n", across_slices); uint32_t deblock_disabled = ac_ib_get(ib); fprintf(f, " deblocking filter disabled = %u\n", deblock_disabled); uint32_t beta_offset = ac_ib_get(ib); fprintf(f, " beta offset div2 = %u\n", beta_offset); uint32_t tc_offset = ac_ib_get(ib); fprintf(f, " tc offset div2 = %u\n", tc_offset); uint32_t cb_qp_offset = ac_ib_get(ib); fprintf(f, " cb_qp_offset = %u\n", cb_qp_offset); uint32_t cr_qp_offset = ac_ib_get(ib); fprintf(f, " cr_qp_offset = %u\n", cr_qp_offset); if (ib->vcn_version >= VCN_2_0_0) { uint32_t disable_sao = ac_ib_get(ib); fprintf(f, " force disable SAO = %u\n", disable_sao); } } else if (op == cmd.slice_control_h264) { fprintf(f, "%sH264_SLICE_CONTROL%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t mode = ac_ib_get(ib); fprintf(f, " slice control mode = %s\n", mode == RENCODE_H264_SLICE_CONTROL_MODE_FIXED_MBS ? "FIXED MBS" : mode == RENCODE_H264_SLICE_CONTROL_MODE_FIXED_BITS ? "FIXED BITS" : "???"); uint32_t per_slice = ac_ib_get(ib); fprintf(f, " num %s per slice = %u\n", mode == RENCODE_H264_SLICE_CONTROL_MODE_FIXED_MBS ? "mbs" : "bits", per_slice); } else if (op == cmd.spec_misc_h264) { fprintf(f, "%sH264_SPEC_MISC%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t constrained_intra = ac_ib_get(ib); fprintf(f, " constrained_intra_pred_flag = %u\n", constrained_intra); uint32_t cabac_enable = ac_ib_get(ib); fprintf(f, " cabac enable = %u\n", cabac_enable); uint32_t cabac_init_idc = ac_ib_get(ib); fprintf(f, " cabac_init_idc = %u\n", cabac_init_idc); if (ib->vcn_version >= VCN_5_0_0) { uint32_t transform8x8 = ac_ib_get(ib); fprintf(f, " transform 8x8 enable = %u\n", transform8x8); } uint32_t half_pel_enabled = ac_ib_get(ib); fprintf(f, " half pel motion estimation = %u\n", half_pel_enabled); uint32_t quarter_pel_enabled = ac_ib_get(ib); fprintf(f, " quarter pel motion estimation = %u\n", quarter_pel_enabled); uint32_t profile_idc = ac_ib_get(ib); fprintf(f, " profile_idc = %u\n", profile_idc); uint32_t level_idc = ac_ib_get(ib); fprintf(f, " level_idc = %u\n", level_idc); if (ib->vcn_version >= VCN_3_0_0) { uint32_t b_pic = ac_ib_get(ib); fprintf(f, " B picture enabled = %u\n", b_pic); uint32_t weighted_bipred = ac_ib_get(ib); fprintf(f, " weighted_bipred_idc = %u\n", weighted_bipred); } } else if (op == cmd.enc_params_h264) { fprintf(f, "%sH264_ENCODE_PARAMS%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t input_structure = ac_ib_get(ib); fprintf(f, " input picture structure = %s\n", vcn_picture_structure(input_structure)); if (ib->vcn_version >= VCN_3_0_0) { uint32_t pic_order_cnt = ac_ib_get(ib); fprintf(f, " input pic order cnt = %u\n", pic_order_cnt); if (ib->vcn_version >= VCN_5_0_0) { uint32_t ref = ac_ib_get(ib); fprintf(f, " is reference = %u\n", ref); uint32_t long_term = ac_ib_get(ib); fprintf(f, " is long term reference = %u\n", long_term); } } uint32_t interlaced_mode = ac_ib_get(ib); fprintf(f, " interlaced mode = %s\n", interlaced_mode == RENCODE_H264_INTERLACING_MODE_PROGRESSIVE ? "PROGRESSIVE" : interlaced_mode == RENCODE_H264_INTERLACING_MODE_INTERLACED_STACKED ? "INTERLACED STACKED" : interlaced_mode == RENCODE_H264_INTERLACING_MODE_INTERLACED_INTERLEAVED ? "INTERLACED INTERLEAVED" : "???"); if (ib->vcn_version < VCN_3_0_0) { uint32_t ref_pic_structure = ac_ib_get(ib); fprintf(f, " reference picture structure = %s\n", vcn_picture_structure(ref_pic_structure)); uint32_t ref_pic1_index = ac_ib_get(ib); fprintf(f, " reference picture1 index = %u\n", ref_pic1_index); } else if (ib->vcn_version < VCN_5_0_0) { print_vcn_ref_pic_info(f, ib, " l0[0] reference"); uint32_t l0_pic1_idx = ac_ib_get(ib); fprintf(f, " l0[1] reference picture index = %u\n", l0_pic1_idx); print_vcn_ref_pic_info(f, ib, " l0[1] reference"); uint32_t l1_pic0_idx = ac_ib_get(ib); fprintf(f, " l1[0] reference picture index = %u\n", l1_pic0_idx); print_vcn_ref_pic_info(f, ib, " l1[0] reference"); uint32_t ref = ac_ib_get(ib); fprintf(f, " is reference = %u\n", ref); } else if (ib->vcn_version >= VCN_5_0_0) { for (uint32_t i = 0; i < RENCODE_H264_MAX_REFERENCE_LIST_SIZE; i++) { uint32_t idx = ac_ib_get(ib); fprintf(f, " ref_list0[%u] = %u\n", i, idx); } uint32_t num_refs0 = ac_ib_get(ib); fprintf(f, " num active references l0 = %u\n", num_refs0); for (uint32_t i = 0; i < RENCODE_H264_MAX_REFERENCE_LIST_SIZE; i++) { uint32_t idx = ac_ib_get(ib); fprintf(f, " ref_list1[%u] = %u\n", i, idx); } uint32_t num_refs1 = ac_ib_get(ib); fprintf(f, " num active references l1 = %u\n", num_refs1); for (uint32_t i = 0; i < 2; i++) { uint32_t list = ac_ib_get(ib); fprintf(f, " lsm_reference_pictures[%u].list = %u\n", i, list); uint32_t list_index = ac_ib_get(ib); fprintf(f, " lsm_reference_pictures[%u].list_index = %u\n", i, list_index); } } } else if (op == cmd.deblocking_filter_h264) { fprintf(f, "%sH264_DEBLOCKING_FILTER%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t disable_filter = ac_ib_get(ib); fprintf(f, " disable_deblocking_filter_idc = %u\n", disable_filter); uint32_t alpha_offset = ac_ib_get(ib); fprintf(f, " alpha c0 offset div2 = %u\n", alpha_offset); uint32_t beta_offset = ac_ib_get(ib); fprintf(f, " beta offset div2 = %u\n", beta_offset); uint32_t cb_qp_offset = ac_ib_get(ib); fprintf(f, " cb_qp_offset = %u\n", cb_qp_offset); uint32_t cr_qp_offset = ac_ib_get(ib); fprintf(f, " cr_qp_offset = %u\n", cr_qp_offset); } else if (ib->vcn_version < VCN_5_0_0 && op == cmd.rc_per_pic) { fprintf(f, "%sRATE_CONTROL_PER_PICTURE%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t qp = ac_ib_get(ib); fprintf(f, " QP = %u\n", qp); uint32_t min_qp = ac_ib_get(ib); fprintf(f, " min QP = %u\n", min_qp); uint32_t max_qp = ac_ib_get(ib); fprintf(f, " max QP = %u\n", max_qp); uint32_t max_au_size = ac_ib_get(ib); fprintf(f, " max access unit size = %u\n", max_au_size); uint32_t filler_data = ac_ib_get(ib); fprintf(f, " filler data enabled = %u\n", filler_data); uint32_t skip_frame = ac_ib_get(ib); fprintf(f, " skip frame enabled = %u\n", skip_frame); uint32_t enforce_hrd = ac_ib_get(ib); fprintf(f, " enforce HRD = %u\n", enforce_hrd); } else if ((ib->vcn_version >= VCN_5_0_0 && op == cmd.rc_per_pic) || (ib->vcn_version < VCN_5_0_0 && op == cmd.rc_per_pic_ex)) { fprintf(f, "%sRATE_CONTROL_PER_PICTURE%s%s\n", O_COLOR_GREEN, ib->vcn_version < VCN_5_0_0 ? "_EX" : "", O_COLOR_RESET); uint32_t qp_i = ac_ib_get(ib); fprintf(f, " QP I = %u\n", qp_i); uint32_t qp_p = ac_ib_get(ib); fprintf(f, " QP P = %u\n", qp_p); uint32_t qp_b = ac_ib_get(ib); fprintf(f, " QP B = %u\n", qp_b); uint32_t min_qp_i = ac_ib_get(ib); fprintf(f, " min QP I = %u\n", min_qp_i); uint32_t max_qp_i = ac_ib_get(ib); fprintf(f, " max QP I = %u\n", max_qp_i); uint32_t min_qp_p = ac_ib_get(ib); fprintf(f, " min QP P = %u\n", min_qp_p); uint32_t max_qp_p = ac_ib_get(ib); fprintf(f, " max QP P = %u\n", max_qp_p); uint32_t min_qp_b = ac_ib_get(ib); fprintf(f, " min QP B = %u\n", min_qp_b); uint32_t max_qp_b = ac_ib_get(ib); fprintf(f, " max QP B = %u\n", max_qp_b); uint32_t max_au_size_i = ac_ib_get(ib); fprintf(f, " max access unit size I = %u\n", max_au_size_i); uint32_t max_au_size_p = ac_ib_get(ib); fprintf(f, " max access unit size P = %u\n", max_au_size_p); uint32_t max_au_size_b = ac_ib_get(ib); fprintf(f, " max access unit size B = %u\n", max_au_size_b); uint32_t filler_data = ac_ib_get(ib); fprintf(f, " filler data enabled = %u\n", filler_data); uint32_t skip_frame = ac_ib_get(ib); fprintf(f, " skip frame enabled = %u\n", skip_frame); uint32_t enforce_hrd = ac_ib_get(ib); fprintf(f, " enforce HRD = %u\n", enforce_hrd); if (ib->vcn_version >= VCN_3_0_0) { uint32_t qvbr_level = ac_ib_get(ib); fprintf(f, " QVBR quality level = %u\n", qvbr_level); } } else if (op == cmd.slice_header) { fprintf(f, "%sSLICE_HEADER%s\n", O_COLOR_GREEN, O_COLOR_RESET); for (uint32_t i = 0; i < RENCODE_SLICE_HEADER_TEMPLATE_MAX_TEMPLATE_SIZE_IN_DWORDS; i++) { uint32_t value = ac_ib_get(ib); fprintf(f, " %s\n", value ? "bitstream template" : ""); } bool at_end = false; for (uint32_t i = 0; i < RENCODE_SLICE_HEADER_TEMPLATE_MAX_NUM_INSTRUCTIONS; i++) { if (at_end) { ib->cur_dw += 2; continue; } uint32_t instruction = ac_ib_get(ib); fprintf(f, " instruction = %s\n", instruction == RENCODE_HEADER_INSTRUCTION_END ? "END" : instruction == RENCODE_HEADER_INSTRUCTION_COPY ? "COPY" : instruction == RENCODE_HEVC_HEADER_INSTRUCTION_DEPENDENT_SLICE_END ? "DEPENDENT SLICE END" : instruction == RENCODE_HEVC_HEADER_INSTRUCTION_FIRST_SLICE ? "FIRST SLICE" : instruction == RENCODE_HEVC_HEADER_INSTRUCTION_SLICE_SEGMENT ? "SLICE SEGMENT" : instruction == RENCODE_HEVC_HEADER_INSTRUCTION_SLICE_QP_DELTA ? "SLICE QP DELTA" : instruction == RENCODE_HEVC_HEADER_INSTRUCTION_SAO_ENABLE ? "SAO ENABLE" : instruction == RENCODE_HEVC_HEADER_INSTRUCTION_LOOP_FILTER_ACROSS_SLICES_ENABLE ? "LOOP FILTER ACROSS SLICES ENABLE" : instruction == RENCODE_H264_HEADER_INSTRUCTION_FIRST_MB ? "FIRST MB" : instruction == RENCODE_H264_HEADER_INSTRUCTION_SLICE_QP_DELTA ? "SLICE QP DELTA" : "???"); uint32_t bits = ac_ib_get(ib); if (instruction == RENCODE_HEADER_INSTRUCTION_COPY) fprintf(f, " num bits = %u\n", bits); else fprintf(f, "\n"); at_end = instruction == RENCODE_HEADER_INSTRUCTION_END; } } else if (op == cmd.enc_params) { fprintf(f, "%sENCODE_PARAMS%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t pic_type = ac_ib_get(ib); fprintf(f, " picture type = %s\n", vcn_picture_type(pic_type)); uint32_t bs_size = ac_ib_get(ib); fprintf(f, " allowed max bitstream size = %u\n", bs_size); print_vcn_addr(f, ib, " input picture luma"); print_vcn_addr(f, ib, " input picture chroma"); uint32_t luma_pitch = ac_ib_get(ib); fprintf(f, " input picture luma pitch = %u\n", luma_pitch); uint32_t chroma_pitch = ac_ib_get(ib); fprintf(f, " input picture chroma pitch = %u\n", chroma_pitch); uint32_t swizzle = ac_ib_get(ib); fprintf(f, " input picture swizzle mode = %s\n", swizzle == RENCODE_INPUT_SWIZZLE_MODE_LINEAR ? "LINEAR" : swizzle == RENCODE_INPUT_SWIZZLE_MODE_256B_S ? "256B S" : swizzle == RENCODE_INPUT_SWIZZLE_MODE_4kB_S ? "4kB S" : swizzle == RENCODE_INPUT_SWIZZLE_MODE_64kB_S ? "64kB S" : "???"); if (ib->vcn_version < VCN_5_0_0) { uint32_t ref_pic_idx = ac_ib_get(ib); fprintf(f, " reference picture index = %u\n", ref_pic_idx); } uint32_t recon_pic_idx = ac_ib_get(ib); fprintf(f, " reconstructed picture index = %u\n", recon_pic_idx); } else if (op == cmd.intra_refresh) { fprintf(f, "%sINTRA_REFRESH%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t mode = ac_ib_get(ib); fprintf(f, " intra refresh mode = %s\n", mode == RENCODE_INTRA_REFRESH_MODE_NONE ? "NONE" : mode == RENCODE_INTRA_REFRESH_MODE_CTB_MB_ROWS ? "CTB MB ROWS" : mode == RENCODE_INTRA_REFRESH_MODE_CTB_MB_COLUMNS ? "CTB MB COLUMNS" : "???"); uint32_t offset = ac_ib_get(ib); fprintf(f, " offset = %u\n", offset); uint32_t region_size = ac_ib_get(ib); fprintf(f, " region size = %u\n", region_size); } else if (op == cmd.ctx) { fprintf(f, "%sENCODE_CONTEXT_BUFFER%s\n", O_COLOR_GREEN, O_COLOR_RESET); print_vcn_addr(f, ib, " encode context buffer"); if (ib->vcn_version < VCN_5_0_0) { uint32_t swizzle = ac_ib_get(ib); fprintf(f, " swizzle mode = %s\n", swizzle == RENCODE_REC_SWIZZLE_MODE_LINEAR ? "LINEAR" : (ib->vcn_version < VCN_5_0_0 && swizzle == RENCODE_REC_SWIZZLE_MODE_256B_D) || (ib->vcn_version >= VCN_5_0_0 && swizzle == RENCODE_REC_SWIZZLE_MODE_256B_D_VCN5) ? "256B D" : swizzle == RENCODE_REC_SWIZZLE_MODE_256B_S ? "256B S" : swizzle == RENCODE_REC_SWIZZLE_MODE_8x8_1D_THIN_12_24BPP ? "8x8 1D THIN 12 24BPP" : "???"); uint32_t luma_pitch = ac_ib_get(ib); fprintf(f, " reconstructed surface luma pitch = %u\n", luma_pitch); uint32_t chroma_pitch = ac_ib_get(ib); fprintf(f, " reconstructed surface chroma pitch = %u\n", chroma_pitch); } uint32_t num_recons = ac_ib_get(ib); fprintf(f, " num reconstructed pictures = %u\n", num_recons); for (uint32_t i = 0; i < RENCODE_MAX_NUM_RECONSTRUCTED_PICTURES; i++) print_vcn_reconstructed_picture(f, ib, i < num_recons, " recon[%u]", i); if (ib->vcn_version >= VCN_3_0_0 && ib->vcn_version < VCN_4_0_0) { uint32_t colloc_offset = ac_ib_get(ib); fprintf(f, " collocated buffer offset = %u\n", colloc_offset); } if (ib->vcn_version < VCN_5_0_0) { uint32_t luma_pitch = ac_ib_get(ib); fprintf(f, " preencode reconstructed surface luma pitch = %u\n", luma_pitch); uint32_t chroma_pitch = ac_ib_get(ib); fprintf(f, " preencode reconstructed surface chroma pitch = %u\n", chroma_pitch); } for (uint32_t i = 0; i < RENCODE_MAX_NUM_RECONSTRUCTED_PICTURES; i++) print_vcn_reconstructed_picture(f, ib, i < num_recons, " preenc recon[%u]", i); if (ib->vcn_version >= VCN_5_0_0) { uint32_t luma_pitch = ac_ib_get(ib); fprintf(f, " preencode input surface luma pitch = %u\n", luma_pitch); uint32_t chroma_pitch = ac_ib_get(ib); fprintf(f, " preencode input surface chroma pitch = %u\n", chroma_pitch); } if (ib->vcn_version < VCN_2_0_0) print_vcn_reconstructed_picture(f, ib, true, " preencode input"); else if (ib->vcn_version < VCN_3_0_0) print_vcn_reconstructed_picture(f, ib, true, " preencode input old"); else print_vcn_preencode_input_picture(f, ib, " preencode input"); if (ib->vcn_version < VCN_5_0_0) { uint32_t search_offset = ac_ib_get(ib); fprintf(f, " 2-pass search center map offset = %u\n", search_offset); } if (ib->vcn_version >= VCN_2_0_0 && ib->vcn_version < VCN_3_0_0) print_vcn_preencode_input_picture(f, ib, " preencode input"); if (ib->vcn_version >= VCN_4_0_0 && ib->vcn_version < VCN_5_0_0) { uint32_t colloc_offset = ac_ib_get(ib); fprintf(f, " colloc buffer offset / AV1 sdb intermediate context offset = %u\n", colloc_offset); } else if (ib->vcn_version >= VCN_5_0_0) { uint32_t sdb_offset = ac_ib_get(ib); fprintf(f, " AV1 sdb intermediate context offset = %u\n", sdb_offset); } } else if (op == cmd.bitstream) { fprintf(f, "%sVIDEO_BITSTREAM_BUFFER%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t mode = ac_ib_get(ib); fprintf(f, " mode = %s\n", mode == RENCODE_VIDEO_BITSTREAM_BUFFER_MODE_LINEAR ? "LINEAR" : mode == RENCODE_VIDEO_BITSTREAM_BUFFER_MODE_CIRCULAR ? "CIRCULAR" : "???"); print_vcn_addr(f, ib, " video bitstream buffer"); uint32_t size = ac_ib_get(ib); fprintf(f, " video bitstream buffer size = %u\n", size); uint32_t offset = ac_ib_get(ib); fprintf(f, " video bitstream buffer data offset = %u\n", offset); } else if (op == cmd.feedback) { fprintf(f, "%sFEEDBACK_BUFFER%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t mode = ac_ib_get(ib); fprintf(f, " mode = %s\n", mode == RENCODE_FEEDBACK_BUFFER_MODE_LINEAR ? "LINEAR" : mode == RENCODE_FEEDBACK_BUFFER_MODE_CIRCULAR ? "CIRCULAR" : "???"); print_vcn_addr(f, ib, " feedback buffer"); uint32_t size = ac_ib_get(ib); fprintf(f, " feedback buffer size = %u\n", size); uint32_t data_size = ac_ib_get(ib); fprintf(f, " feedback buffer data size = %u\n", data_size); } else if (op == cmd.enc_qp_map) { fprintf(f, "%sQP_MAP%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t type = ac_ib_get(ib); fprintf(f, " QP map type = %s\n", type == RENCODE_QP_MAP_TYPE_NONE ? "NONE" : type == RENCODE_QP_MAP_TYPE_DELTA ? "DELTA" : type == RENCODE_QP_MAP_TYPE_MAP_PA ? "PA" : "???"); print_vcn_addr(f, ib, " QP map buffer"); uint32_t pitch = ac_ib_get(ib); fprintf(f, " QP map buffer pitch = %u\n", pitch); } else if (op == cmd.enc_statistics) { fprintf(f, "%sENCODE_STATISTICS%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t type = ac_ib_get(ib); fprintf(f, " encode statistics type = %u\n", type); print_vcn_addr(f, ib, " encode statistics buffer"); } else if (op == cmd.enc_latency) { fprintf(f, "%sENCODE_LATENCY%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t latency = ac_ib_get(ib); fprintf(f, " encode latency = %u\n", latency); } else if (op == cmd.input_format) { fprintf(f, "%sINPUT_FORMAT%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t color_volume = ac_ib_get(ib); fprintf(f, " color volume = %s\n", vcn_color_volume(color_volume)); uint32_t color_space = ac_ib_get(ib); fprintf(f, " color space = %s\n", color_space == RENCODE_COLOR_SPACE_RGB ? "RGB" : color_space == RENCODE_COLOR_SPACE_YUV ? "YUV" : "???"); uint32_t color_range = ac_ib_get(ib); fprintf(f, " color range = %s\n", vcn_color_range(color_range)); uint32_t chroma_subsampling = ac_ib_get(ib); fprintf(f, " chroma subsampling = %s\n", vcn_chroma_subsampling(chroma_subsampling)); uint32_t chroma_location = ac_ib_get(ib); fprintf(f, " chroma location = %s\n", vcn_chroma_location(chroma_location)); uint32_t bit_depth = ac_ib_get(ib); fprintf(f, " color bit depth = %s\n", vcn_color_bit_depth(bit_depth)); uint32_t packing_format = ac_ib_get(ib); fprintf(f, " packing format = %s\n", packing_format == RENCODE_COLOR_PACKING_FORMAT_NV12 ? "NV12" : packing_format == RENCODE_COLOR_PACKING_FORMAT_P010 ? "P010" : packing_format == RENCODE_COLOR_PACKING_FORMAT_A8R8G8B8 ? "A8R8G8B8" : packing_format == RENCODE_COLOR_PACKING_FORMAT_A2R10G10B10 ? "A2R10G10B10" : packing_format == RENCODE_COLOR_PACKING_FORMAT_A8B8G8R8 ? "A8B8G8R8" : packing_format == RENCODE_COLOR_PACKING_FORMAT_A2B10G10R10 ? "A2B10G10R10" : "???"); } else if (op == cmd.output_format) { fprintf(f, "%sOUTPUT_FORMAT%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t color_volume = ac_ib_get(ib); fprintf(f, " color volume = %s\n", vcn_color_volume(color_volume)); uint32_t color_range = ac_ib_get(ib); fprintf(f, " color range = %s\n", vcn_color_range(color_range)); uint32_t chroma_location = ac_ib_get(ib); if (ib->vcn_version >= VCN_5_0_0) { uint32_t chroma_subsampling = ac_ib_get(ib); fprintf(f, " chroma subsampling = %s\n", vcn_chroma_subsampling(chroma_subsampling)); } fprintf(f, " chroma location = %s\n", vcn_chroma_location(chroma_location)); uint32_t bit_depth = ac_ib_get(ib); fprintf(f, " color bit depth = %s\n", vcn_color_bit_depth(bit_depth)); } else if (op == cmd.cdf_default_table_av1) { fprintf(f, "%sCDF_DEFAULT_TABLE_BUFFER%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t use_default = ac_ib_get(ib); fprintf(f, " use cdf default = %u\n", use_default); ac_ib_get(ib); fprintf(f, " cdf default buffer VA low\n"); ac_ib_get(ib); fprintf(f, " cdf default buffer VA high\n"); } else if (op == cmd.spec_misc_av1) { fprintf(f, "%sAV1_SPEC_MISC%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t palette = ac_ib_get(ib); fprintf(f, " palette mode enable = %u\n", palette); uint32_t mv_precision = ac_ib_get(ib); fprintf(f, " motion vector precision = %s\n", mv_precision == RENCODE_AV1_MV_PRECISION_ALLOW_HIGH_PRECISION ? "ALLOW HIGH PRECISION" : mv_precision == RENCODE_AV1_MV_PRECISION_DISALLOW_HIGH_PRECISION ? "DISALLOW HIGH PRECISION" : mv_precision == RENCODE_AV1_MV_PRECISION_FORCE_INTEGER_MV ? "FORCE INTEGER MV" : "???"); uint32_t cdef_mode = ac_ib_get(ib); fprintf(f, " cdef mode = %s\n", cdef_mode == RENCODE_AV1_CDEF_MODE_DISABLE ? "DISABLE" : cdef_mode == RENCODE_AV1_CDEF_MODE_DEFAULT ? "DEFAULT" : cdef_mode == RENCODE_AV1_CDEF_MODE_EXPLICIT ? "EXPLICIT" : "???"); if (ib->vcn_version >= VCN_5_0_0) { uint32_t cdef_bits = ac_ib_get(ib); fprintf(f, " cdef_bits = %u\n", cdef_bits); uint32_t cdef_damping_minus_3 = ac_ib_get(ib); fprintf(f, " cdef_damping_minus_3 = %u\n", cdef_damping_minus_3); for (uint32_t i = 0; i < RENCODE_AV1_CDEF_MAX_NUM; i++) { uint32_t cdef_y_pri_strength = ac_ib_get(ib); fprintf(f, " cdef_y_pri_strength[%u] = %u\n", i, cdef_y_pri_strength); } for (uint32_t i = 0; i < RENCODE_AV1_CDEF_MAX_NUM; i++) { uint32_t cdef_y_sec_strength = ac_ib_get(ib); fprintf(f, " cdef_y_sec_strength[%u] = %u\n", i, cdef_y_sec_strength); } for (uint32_t i = 0; i < RENCODE_AV1_CDEF_MAX_NUM; i++) { uint32_t cdef_uv_pri_strength = ac_ib_get(ib); fprintf(f, " cdef_uv_pri_strength[%u] = %u\n", i, cdef_uv_pri_strength); } for (uint32_t i = 0; i < RENCODE_AV1_CDEF_MAX_NUM; i++) { uint32_t cdef_uv_sec_strength = ac_ib_get(ib); fprintf(f, " cdef_uv_sec_strength[%u] = %u\n", i, cdef_uv_sec_strength); } uint32_t intrabc = ac_ib_get(ib); fprintf(f, " allow intrabc = %u\n", intrabc); } uint32_t cdf_update = ac_ib_get(ib); fprintf(f, " disable cdf update = %u\n", cdf_update); uint32_t frame_end_update = ac_ib_get(ib); fprintf(f, " disable frame end update cdf = %u\n", frame_end_update); if (ib->vcn_version >= VCN_5_0_0) { uint32_t skip_mode = ac_ib_get(ib); fprintf(f, " disallow skip mode = %u\n", skip_mode); uint32_t delta_q_y_dc = ac_ib_get(ib); fprintf(f, " delta QYDc = %u\n", delta_q_y_dc); uint32_t delta_q_u_dc = ac_ib_get(ib); fprintf(f, " delta QUDc = %u\n", delta_q_u_dc); uint32_t delta_q_u_ac = ac_ib_get(ib); fprintf(f, " delta QUAc = %u\n", delta_q_u_ac); uint32_t delta_q_v_dc = ac_ib_get(ib); fprintf(f, " delta QVDc = %u\n", delta_q_v_dc); uint32_t delta_q_v_ac = ac_ib_get(ib); fprintf(f, " delta QVAc = %u\n", delta_q_v_ac); } else { uint32_t num_tiles = ac_ib_get(ib); fprintf(f, " num tiles per picture = %u\n", num_tiles); } uint32_t screen_content_detect = ac_ib_get(ib); fprintf(f, " enable screen content auto detection = %u\n", screen_content_detect); uint32_t screen_content_threshold = ac_ib_get(ib); fprintf(f, " screen content frame percentage threshold = %u\n", screen_content_threshold); } else if (op == cmd.bitstream_instruction_av1) { fprintf(f, "%sAV1_BITSTREAM_INSTRUCTION%s\n", O_COLOR_GREEN, O_COLOR_RESET); while (true) { ac_ib_get(ib); /* size */ fprintf(f, "\n"); uint32_t type = ac_ib_get(ib); fprintf(f, " type = %s\n", type == RENCODE_AV1_BITSTREAM_INSTRUCTION_END ? "END" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_COPY ? "COPY" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_OBU_START ? "OBU START" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_OBU_SIZE ? "OBU SIZE" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_OBU_END ? "OBU END" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_ALLOW_HIGH_PRECISION_MV ? "ALLOW HIGH PRECISION MV" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_DELTA_LF_PARAMS ? "DELTA LF PARAMS" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_READ_INTERPOLATION_FILTER ? "READ INTERPOLATION FILTER" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_LOOP_FILTER_PARAMS ? "LOOP FILTER PARAMS" : (ib->vcn_version >= VCN_5_0_0 && type == RENCODE_V5_AV1_BITSTREAM_INSTRUCTION_CONTEXT_UPDATE_TILE_ID) ? "CONTEXT UPDATE TILE ID" : (ib->vcn_version >= VCN_5_0_0 && type == RENCODE_V5_AV1_BITSTREAM_INSTRUCTION_BASE_Q_IDX) ? "BASE Q IDX" : type == RENCODE_V4_AV1_BITSTREAM_INSTRUCTION_TILE_INFO ? "TILE INFO" : type == RENCODE_V4_AV1_BITSTREAM_INSTRUCTION_QUANTIZATION_PARAMS ? "QUANTIZATION PARAMS" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_DELTA_Q_PARAMS ? "DELTA Q PARAMS" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_CDEF_PARAMS ? "CDEF PARAMS" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_READ_TX_MODE ? "READ TX MODE" : type == RENCODE_AV1_BITSTREAM_INSTRUCTION_TILE_GROUP_OBU ? "TILE GROUP OBU" : "???"); if (type == RENCODE_AV1_BITSTREAM_INSTRUCTION_COPY) { uint32_t num_bits = ac_ib_get(ib); fprintf(f, " num bits = %u\n", num_bits); for (uint32_t i = 0; i < num_bits; i += 32) { ac_ib_get(ib); fprintf(f, " bitstream data\n"); } } else if (type == RENCODE_AV1_BITSTREAM_INSTRUCTION_OBU_START) { uint32_t type = ac_ib_get(ib); fprintf(f, " OBU type = %s\n", type == RENCODE_OBU_START_TYPE_FRAME ? "FRAME" : type == RENCODE_OBU_START_TYPE_FRAME_HEADER ? "FRAME HEADER" : type == RENCODE_OBU_START_TYPE_TILE_GROUP ? "TILE GROUP" : "???"); } else if (type == RENCODE_AV1_BITSTREAM_INSTRUCTION_END) { break; } } } else if (op == cmd.metadata) { fprintf(f, "%sMETADATA_BUFFER%s\n", O_COLOR_GREEN, O_COLOR_RESET); print_vcn_addr(f, ib, " metadata buffer"); uint32_t search_offset = ac_ib_get(ib); fprintf(f, " 2-pass search center map offset = %u\n", search_offset); } else if (op == cmd.enc_params_hevc) { fprintf(f, "%sHEVC_ENCODE_PARAMS%s\n", O_COLOR_GREEN, O_COLOR_RESET); for (uint32_t i = 0; i < RENCODE_HEVC_MAX_REFERENCE_LIST_SIZE; i++) { uint32_t ref = ac_ib_get(ib); fprintf(f, " ref list[%u] = %u\n", i, ref); } uint32_t num_active = ac_ib_get(ib); fprintf(f, " num active references l0 = %u\n", num_active); uint32_t lsm_idx = ac_ib_get(ib); fprintf(f, " lsm reference picture list index = %u\n", lsm_idx); } else if (op == cmd.tile_config_av1) { fprintf(f, "%sAV1_TILE_CONFIG%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t num_cols = ac_ib_get(ib); fprintf(f, " num tile columns = %u\n", num_cols); uint32_t num_rows = ac_ib_get(ib); fprintf(f, " num tile rows = %u\n", num_rows); for (uint32_t i = 0; i < RENCODE_AV1_TILE_CONFIG_MAX_NUM_COLS; i++) { uint32_t w = ac_ib_get(ib); fprintf(f, " tile width[%u] = %u\n", i, w); } for (uint32_t i = 0; i < RENCODE_AV1_TILE_CONFIG_MAX_NUM_ROWS; i++) { uint32_t h = ac_ib_get(ib); fprintf(f, " tile height[%u] = %u\n", i, h); } uint32_t num_groups = ac_ib_get(ib); fprintf(f, " num tile groups = %u\n", num_groups); for (uint32_t i = 0; i < RENCODE_AV1_TILE_CONFIG_MAX_NUM_COLS * RENCODE_AV1_TILE_CONFIG_MAX_NUM_ROWS; i++) { uint32_t start = ac_ib_get(ib); fprintf(f, " tile group[%u] start = %u\n", i, start); uint32_t end = ac_ib_get(ib); fprintf(f, " tile group[%u] end = %u\n", i, end); } uint32_t tile_id_mode = ac_ib_get(ib); fprintf(f, " context update tile id mode = %s\n", tile_id_mode == RENCODE_AV1_CONTEXT_UPDATE_TILE_ID_MODE_CUSTOMIZED ? "CUSTOMIZED" : tile_id_mode == RENCODE_AV1_CONTEXT_UPDATE_TILE_ID_MODE_DEFAULT ? "DEFAULT" : "???"); uint32_t tile_id = ac_ib_get(ib); fprintf(f, " context_update_tile_id = %u\n", tile_id); uint32_t tile_size_bytes = ac_ib_get(ib); fprintf(f, " tile_size_bytes_minus_1 = %u\n", tile_size_bytes); } else if (op == cmd.enc_params_av1) { fprintf(f, "%sAV1_ENCODE_PARAMS%s\n", O_COLOR_GREEN, O_COLOR_RESET); for (uint32_t i = 0; i < RENCODE_AV1_REFS_PER_FRAME; i++) { uint32_t ref = ac_ib_get(ib); fprintf(f, " ref frame[%u] = %u\n", i, ref); } for (uint32_t i = 0; i < 2; i++) { uint32_t idx = ac_ib_get(ib); fprintf(f, " lsm reference frame index[%u] = %u\n", i, idx); } } else { fprintf(f, "%sUNRECOGNIZED%s\n", O_COLOR_RED, O_COLOR_RESET); } print_vcn_unrecognized_params(f, ib, start_dw, size); } } static void parse_vcn_ib(FILE *f, struct ac_ib_parser *ib) { uint32_t engine = 0; if (ib->vcn_version >= VCN_4_0_0) { while (ib->cur_dw < ib->num_dw) { const uint32_t start_dw = ib->cur_dw; const uint32_t size = ac_ib_get(ib); const uint32_t op = ac_ib_get(ib); switch (op) { case RADEON_VCN_ENGINE_INFO: { fprintf(f, "%sENGINE_INFO%s\n", O_COLOR_CYAN, O_COLOR_RESET); engine = ac_ib_get(ib); fprintf(f, " engine = %s\n", engine == RADEON_VCN_ENGINE_TYPE_COMMON ? "COMMON" : engine == RADEON_VCN_ENGINE_TYPE_ENCODE ? "ENCODE" : engine == RADEON_VCN_ENGINE_TYPE_DECODE ? "DECODE" : "???"); uint32_t total_size = ac_ib_get(ib); fprintf(f, " size of all packages = %u\n", total_size); break; } case RADEON_VCN_SIGNATURE: { fprintf(f, "%sSIGNATURE%s\n", O_COLOR_CYAN, O_COLOR_RESET); ac_ib_get(ib); fprintf(f, " checksum\n"); uint32_t num_dwords = ac_ib_get(ib); fprintf(f, " num dwords = %u\n", num_dwords); break; } case RADEON_VCN_IB_COMMON_OP_WRITEMEMORY: { fprintf(f, "%sOP_WRITEMEMORY%s\n", O_COLOR_CYAN, O_COLOR_RESET); print_vcn_addr(f, ib, " dest"); uint32_t data = ac_ib_get(ib); fprintf(f, " data = %u\n", data); break; } case RDECODE_IB_PARAM_DECODE_BUFFER: { fprintf(f, "%sDECODE_BUFFER%s\n", O_COLOR_GREEN, O_COLOR_RESET); uint32_t valid = ac_ib_get(ib); fprintf(f, " valid =\n"); for (uint32_t i = 0; i < 32; i++) { uint32_t buf = 1 << i; if ((valid & buf) != buf) continue; fprintf(f, " "); switch (buf) { case RDECODE_CMDBUF_FLAGS_MSG_BUFFER: fprintf(f, "MSG BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_DPB_BUFFER: fprintf(f, "DPB BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_BITSTREAM_BUFFER: fprintf(f, "BITSTREAM BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_DECODING_TARGET_BUFFER: fprintf(f, "DECODING TARGET BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_FEEDBACK_BUFFER: fprintf(f, "FEEDBACK BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_PICTURE_PARAM_BUFFER: fprintf(f, "PICTURE PARAM BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_MB_CONTROL_BUFFER: fprintf(f, "MB CONTROL BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_IDCT_COEF_BUFFER: fprintf(f, "IDCT COEFF BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_PREEMPT_BUFFER: fprintf(f, "PREEMPT BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_IT_SCALING_BUFFER: fprintf(f, "IT SCALING BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_SCALER_TARGET_BUFFER: fprintf(f, "SCALER TARGET BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_CONTEXT_BUFFER: fprintf(f, "CONTEXT BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_PROB_TBL_BUFFER: fprintf(f, "PROB TBL BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_QUERY_BUFFER: fprintf(f, "QUERY BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_PREDICATION_BUFFER: fprintf(f, "PREDICATION BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_SCLR_COEF_BUFFER: fprintf(f, "SCRL COEF BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_RECORD_TIMESTAMP: fprintf(f, "RECORD TIMESTAMP\n"); break; case RDECODE_CMDBUF_FLAGS_REPORT_EVENT_STATUS: fprintf(f, "REPORT EVENT STATUS\n"); break; case RDECODE_CMDBUF_FLAGS_RESERVED_SIZE_INFO_BUFFER: fprintf(f, "RESERVED SIZE INFO BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_LUMA_HIST_BUFFER: fprintf(f, "LUMA HIST BUFFER\n"); break; case RDECODE_CMDBUF_FLAGS_SESSION_CONTEXT_BUFFER: fprintf(f, "SESSION CONTEXT BUFFER\n"); break; default: fprintf(f, "%s(UNRECOGNIZED)%s\n", O_COLOR_RED, O_COLOR_RESET); break; } } print_vcn_addr(f, ib, " msg buffer"); print_vcn_addr(f, ib, " dpb buffer"); print_vcn_addr(f, ib, " target buffer"); print_vcn_addr(f, ib, " session context buffer"); print_vcn_addr(f, ib, " bitstream buffer"); print_vcn_addr(f, ib, " context buffer"); print_vcn_addr(f, ib, " feedback buffer"); print_vcn_addr(f, ib, " luma hist buffer"); print_vcn_addr(f, ib, " prob tbl buffer"); print_vcn_addr(f, ib, " sclr coeff buffer"); print_vcn_addr(f, ib, " it sclr table buffer"); print_vcn_addr(f, ib, " sclr target buffer"); print_vcn_addr(f, ib, " reserved size info buffer"); print_vcn_addr(f, ib, " mpeg2 pic param buffer"); print_vcn_addr(f, ib, " mpeg2 mb control buffer"); print_vcn_addr(f, ib, " mpeg2 idct coeff buffer"); break; } default: fprintf(f, "%sUNRECOGNIZED%s\n", O_COLOR_RED, O_COLOR_RESET); break; } print_vcn_unrecognized_params(f, ib, start_dw, size); if (engine == RADEON_VCN_ENGINE_TYPE_ENCODE) { parse_vcn_enc_ib(f, ib); return; } } } else { if (ib->ip_type == AMD_IP_VCN_ENC) { parse_vcn_enc_ib(f, ib); return; } } } /** * Parse and print an IB into a file. * * \param f file * \param ib_ptr IB * \param num_dw size of the IB * \param gfx_level gfx level * \param vcn_version vcn version * \param family chip family * \param ip_type IP type * \param trace_ids the last trace IDs that are known to have been reached * and executed by the CP, typically read from a buffer * \param trace_id_count The number of entries in the trace_ids array. * \param addr_callback Get a mapped pointer of the IB at a given address. Can * be NULL. * \param addr_callback_data user data for addr_callback */ void ac_parse_ib_chunk(struct ac_ib_parser *ib) { struct ac_ib_parser tmp_ib = *ib; char *out; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &out, &outsize); FILE *const memf = u_memstream_get(&mem); tmp_ib.f = memf; if (ib->ip_type == AMD_IP_GFX || ib->ip_type == AMD_IP_COMPUTE) parse_gfx_compute_ib(memf, &tmp_ib); else if (ib->ip_type == AMD_IP_SDMA) parse_sdma_ib(memf, &tmp_ib); else if (ib->ip_type == AMD_IP_VCN_DEC || ib->ip_type == AMD_IP_VCN_ENC) parse_vcn_ib(memf, &tmp_ib); else unreachable("unsupported IP type"); u_memstream_close(&mem); if (out) { format_ib_output(ib->f, out); free(out); } if (tmp_ib.cur_dw > tmp_ib.num_dw) { printf("\nPacket ends after the end of IB.\n"); exit(1); } } /** * Parse and print an IB into a file. * * \param f file * \param ib IB * \param num_dw size of the IB * \param gfx_level gfx level * \param family chip family * \param ip_type IP type * \param trace_ids the last trace IDs that are known to have been reached * and executed by the CP, typically read from a buffer * \param trace_id_count The number of entries in the trace_ids array. * \param addr_callback Get a mapped pointer of the IB at a given address. Can * be NULL. * \param addr_callback_data user data for addr_callback */ void ac_parse_ib(struct ac_ib_parser *ib, const char *name) { fprintf(ib->f, "------------------ %s begin - %s ------------------\n", name, ac_get_ip_type_string(NULL, ib->ip_type)); ac_parse_ib_chunk(ib); fprintf(ib->f, "------------------- %s end - %s -------------------\n\n", name, ac_get_ip_type_string(NULL, ib->ip_type)); }