/* * Copyright © 2018 Valve Corporation * * SPDX-License-Identifier: MIT */ #include "aco_instruction_selection.h" #include "common/nir/ac_nir.h" #include "common/sid.h" #include "nir_control_flow.h" #include "nir_builder.h" #include namespace aco { namespace { /* Check whether the given SSA def is only used by cross-lane instructions. */ bool only_used_by_cross_lane_instrs(nir_def* ssa, bool follow_phis = true) { nir_foreach_use (src, ssa) { switch (nir_src_parent_instr(src)->type) { case nir_instr_type_alu: { nir_alu_instr* alu = nir_instr_as_alu(nir_src_parent_instr(src)); if (alu->op != nir_op_unpack_64_2x32_split_x && alu->op != nir_op_unpack_64_2x32_split_y) return false; if (!only_used_by_cross_lane_instrs(&alu->def, follow_phis)) return false; continue; } case nir_instr_type_intrinsic: { nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(nir_src_parent_instr(src)); if (intrin->intrinsic != nir_intrinsic_read_invocation && intrin->intrinsic != nir_intrinsic_read_first_invocation && intrin->intrinsic != nir_intrinsic_lane_permute_16_amd) return false; continue; } case nir_instr_type_phi: { /* Don't follow more than 1 phis, this avoids infinite loops. */ if (!follow_phis) return false; nir_phi_instr* phi = nir_instr_as_phi(nir_src_parent_instr(src)); if (!only_used_by_cross_lane_instrs(&phi->def, false)) return false; continue; } default: return false; } } return true; } /* If one side of a divergent IF ends in a branch and the other doesn't, we * might have to emit the contents of the side without the branch at the merge * block instead. This is so that we can use any SGPR live-out of the side * without the branch without creating a linear phi in the invert or merge block. * * This also removes any unreachable merge blocks. */ bool sanitize_if(nir_function_impl* impl, nir_if* nif) { nir_block* then_block = nir_if_last_then_block(nif); nir_block* else_block = nir_if_last_else_block(nif); bool then_jump = nir_block_ends_in_jump(then_block); bool else_jump = nir_block_ends_in_jump(else_block); if (!then_jump && !else_jump) return false; /* If the continue from block is empty then return as there is nothing to * move. */ if (nir_cf_list_is_empty_block(then_jump ? &nif->else_list : &nif->then_list)) return false; /* Even though this if statement has a jump on one side, we may still have * phis afterwards. Single-source phis can be produced by loop unrolling * or dead control-flow passes and are perfectly legal. Run a quick phi * removal on the block after the if to clean up any such phis. */ nir_remove_single_src_phis_block(nir_cf_node_as_block(nir_cf_node_next(&nif->cf_node))); /* Finally, move the continue from branch after the if-statement. */ nir_block* last_continue_from_blk = then_jump ? else_block : then_block; nir_block* first_continue_from_blk = then_jump ? nir_if_first_else_block(nif) : nir_if_first_then_block(nif); /* We don't need to repair SSA. nir_remove_after_cf_node() replaces any uses with undef. */ if (then_jump && else_jump) nir_remove_after_cf_node(&nif->cf_node); nir_cf_list tmp; nir_cf_extract(&tmp, nir_before_block(first_continue_from_blk), nir_after_block(last_continue_from_blk)); nir_cf_reinsert(&tmp, nir_after_cf_node(&nif->cf_node)); return true; } bool sanitize_cf_list(nir_function_impl* impl, struct exec_list* cf_list) { bool progress = false; foreach_list_typed (nir_cf_node, cf_node, node, cf_list) { switch (cf_node->type) { case nir_cf_node_block: break; case nir_cf_node_if: { nir_if* nif = nir_cf_node_as_if(cf_node); progress |= sanitize_cf_list(impl, &nif->then_list); progress |= sanitize_cf_list(impl, &nif->else_list); progress |= sanitize_if(impl, nif); break; } case nir_cf_node_loop: { nir_loop* loop = nir_cf_node_as_loop(cf_node); assert(!nir_loop_has_continue_construct(loop)); progress |= sanitize_cf_list(impl, &loop->body); /* NIR seems to allow this, and even though the loop exit has no predecessors, SSA defs from the * loop header are live. Handle this without complicating the ACO IR by creating a dummy break. */ if (nir_cf_node_cf_tree_next(&loop->cf_node)->predecessors->entries == 0) { nir_builder b = nir_builder_create(impl); b.cursor = nir_after_block_before_jump(nir_loop_last_block(loop)); nir_def *cond = nir_imm_false(&b); /* We don't use block divergence information, so just this is enough. */ cond->divergent = false; nir_push_if(&b, cond); nir_jump(&b, nir_jump_break); nir_pop_if(&b, NULL); progress = true; } break; } case nir_cf_node_function: unreachable("Invalid cf type"); } } return progress; } void apply_nuw_to_ssa(isel_context* ctx, nir_def* ssa) { nir_scalar scalar; scalar.def = ssa; scalar.comp = 0; if (!nir_scalar_is_alu(scalar) || nir_scalar_alu_op(scalar) != nir_op_iadd) return; nir_alu_instr* add = nir_instr_as_alu(ssa->parent_instr); if (add->no_unsigned_wrap) return; nir_scalar src0 = nir_scalar_chase_alu_src(scalar, 0); nir_scalar src1 = nir_scalar_chase_alu_src(scalar, 1); if (nir_scalar_is_const(src0)) { nir_scalar tmp = src0; src0 = src1; src1 = tmp; } uint32_t src1_ub = nir_unsigned_upper_bound(ctx->shader, ctx->range_ht, src1, &ctx->ub_config); add->no_unsigned_wrap = !nir_addition_might_overflow(ctx->shader, ctx->range_ht, src0, src1_ub, &ctx->ub_config); } void apply_nuw_to_offsets(isel_context* ctx, nir_function_impl* impl) { nir_foreach_block (block, impl) { nir_foreach_instr (instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(instr); switch (intrin->intrinsic) { case nir_intrinsic_load_constant: case nir_intrinsic_load_uniform: case nir_intrinsic_load_push_constant: if (!nir_src_is_divergent(&intrin->src[0])) apply_nuw_to_ssa(ctx, intrin->src[0].ssa); break; case nir_intrinsic_load_ubo: case nir_intrinsic_load_ssbo: if (!nir_src_is_divergent(&intrin->src[1])) apply_nuw_to_ssa(ctx, intrin->src[1].ssa); break; case nir_intrinsic_store_ssbo: if (!nir_src_is_divergent(&intrin->src[2])) apply_nuw_to_ssa(ctx, intrin->src[2].ssa); break; case nir_intrinsic_load_scratch: apply_nuw_to_ssa(ctx, intrin->src[0].ssa); break; case nir_intrinsic_store_scratch: case nir_intrinsic_load_smem_amd: apply_nuw_to_ssa(ctx, intrin->src[1].ssa); break; default: break; } } } } RegClass get_reg_class(isel_context* ctx, RegType type, unsigned components, unsigned bitsize) { if (bitsize == 1) return RegClass(RegType::sgpr, ctx->program->lane_mask.size() * components); else return RegClass::get(type, components * bitsize / 8u); } void setup_tcs_info(isel_context* ctx) { ctx->tcs_in_out_eq = ctx->program->info.vs.tcs_in_out_eq; ctx->any_tcs_inputs_via_lds = ctx->program->info.vs.any_tcs_inputs_via_lds; } void setup_lds_size(isel_context* ctx, nir_shader* nir) { /* TCS and GFX9 GS are special cases, already in units of the allocation granule. */ if (ctx->stage.has(SWStage::TCS)) ctx->program->config->lds_size = ctx->program->info.tcs.num_lds_blocks; else if (ctx->stage.hw == AC_HW_LEGACY_GEOMETRY_SHADER && ctx->options->gfx_level >= GFX9) ctx->program->config->lds_size = ctx->program->info.gfx9_gs_ring_lds_size; else ctx->program->config->lds_size = DIV_ROUND_UP(nir->info.shared_size, ctx->program->dev.lds_encoding_granule); /* Make sure we fit the available LDS space. */ assert((ctx->program->config->lds_size * ctx->program->dev.lds_encoding_granule) <= ctx->program->dev.lds_limit); } void setup_nir(isel_context* ctx, nir_shader* nir) { nir_convert_to_lcssa(nir, true, false); if (nir_lower_phis_to_scalar(nir, true)) { nir_copy_prop(nir); nir_opt_dce(nir); } nir_function_impl* func = nir_shader_get_entrypoint(nir); nir_index_ssa_defs(func); } /* Returns true if we can skip uniformization of a merge phi. This makes the destination divergent, * and so is only safe if the inconsistency it introduces into the divergence analysis won't break * code generation. If we unsafely skip uniformization, later instructions (such as SSBO loads, * some subgroup intrinsics and certain conversions) can use divergence analysis information which * is no longer correct. */ bool skip_uniformize_merge_phi(nir_def* ssa, unsigned depth) { if (depth >= 16) return false; nir_foreach_use (src, ssa) { switch (nir_src_parent_instr(src)->type) { case nir_instr_type_alu: { nir_alu_instr* alu = nir_instr_as_alu(nir_src_parent_instr(src)); if (alu->def.divergent) break; switch (alu->op) { case nir_op_f2i16: case nir_op_f2u16: case nir_op_f2i32: case nir_op_f2u32: case nir_op_b2i8: case nir_op_b2i16: case nir_op_b2i32: case nir_op_b2b32: case nir_op_b2f16: case nir_op_b2f32: case nir_op_b2f64: case nir_op_mov: /* These opcodes p_as_uniform or vote_any() the source, so fail immediately. We don't * need to do this for non-nir_op_b2 if we know we'll move it back into a VGPR, * in which case the p_as_uniform would be eliminated. This would be way too fragile, * though. */ return false; default: if (!skip_uniformize_merge_phi(&alu->def, depth + 1)) return false; break; } break; } case nir_instr_type_intrinsic: { nir_intrinsic_instr* intrin = nir_instr_as_intrinsic(nir_src_parent_instr(src)); unsigned src_idx = src - intrin->src; /* nir_intrinsic_lane_permute_16_amd is only safe because we don't use divergence analysis * for it's instruction selection. We use that intrinsic for NGG culling. All others are * stores with VGPR sources. */ if (intrin->intrinsic == nir_intrinsic_lane_permute_16_amd || intrin->intrinsic == nir_intrinsic_export_amd || intrin->intrinsic == nir_intrinsic_export_dual_src_blend_amd || (intrin->intrinsic == nir_intrinsic_export_row_amd && src_idx == 0) || (intrin->intrinsic == nir_intrinsic_store_buffer_amd && src_idx == 0) || (intrin->intrinsic == nir_intrinsic_store_ssbo && src_idx == 0) || (intrin->intrinsic == nir_intrinsic_store_global && src_idx == 0) || (intrin->intrinsic == nir_intrinsic_store_scratch && src_idx == 0) || (intrin->intrinsic == nir_intrinsic_store_shared && src_idx == 0)) break; return false; } case nir_instr_type_phi: { nir_phi_instr* phi = nir_instr_as_phi(nir_src_parent_instr(src)); if (phi->def.divergent || skip_uniformize_merge_phi(&phi->def, depth + 1)) break; return false; } case nir_instr_type_tex: { /* This is either used as a VGPR source or it's a (potentially undef) descriptor. */ break; } default: { return false; } } } return true; } } /* end namespace */ void init_context(isel_context* ctx, nir_shader* shader) { nir_function_impl* impl = nir_shader_get_entrypoint(shader); ctx->shader = shader; /* Init NIR range analysis. */ ctx->range_ht = _mesa_pointer_hash_table_create(NULL); ctx->ub_config.min_subgroup_size = ctx->program->wave_size; ctx->ub_config.max_subgroup_size = ctx->program->wave_size; ctx->ub_config.max_workgroup_invocations = 2048; ctx->ub_config.max_workgroup_count[0] = 4294967295; ctx->ub_config.max_workgroup_count[1] = 65535; ctx->ub_config.max_workgroup_count[2] = 65535; ctx->ub_config.max_workgroup_size[0] = 1024; ctx->ub_config.max_workgroup_size[1] = 1024; ctx->ub_config.max_workgroup_size[2] = 1024; uint32_t options = shader->options->divergence_analysis_options | nir_divergence_ignore_undef_if_phi_srcs; nir_divergence_analysis_impl(impl, (nir_divergence_options)options); shader->info.divergence_analysis_run = true; apply_nuw_to_offsets(ctx, impl); ac_nir_flag_smem_for_loads(shader, ctx->program->gfx_level, false, true); /* sanitize control flow */ sanitize_cf_list(impl, &impl->body); nir_metadata_preserve(impl, nir_metadata_none); /* we'll need these for isel */ nir_metadata_require(impl, nir_metadata_block_index); if (ctx->options->dump_preoptir) { fprintf(stderr, "NIR shader before instruction selection:\n"); nir_print_shader(shader, stderr); } ctx->first_temp_id = ctx->program->peekAllocationId(); ctx->program->allocateRange(impl->ssa_alloc); RegClass* regclasses = ctx->program->temp_rc.data() + ctx->first_temp_id; /* TODO: make this recursive to improve compile times */ bool done = false; while (!done) { done = true; nir_foreach_block (block, impl) { nir_foreach_instr (instr, block) { switch (instr->type) { case nir_instr_type_alu: { nir_alu_instr* alu_instr = nir_instr_as_alu(instr); RegType type = RegType::sgpr; /* packed 16bit instructions have to be VGPR */ if (alu_instr->def.num_components == 2 && nir_op_infos[alu_instr->op].output_size == 0) type = RegType::vgpr; switch (alu_instr->op) { case nir_op_f2i16: case nir_op_f2u16: case nir_op_f2i32: case nir_op_f2u32: case nir_op_mov: if (alu_instr->def.divergent && regclasses[alu_instr->src[0].src.ssa->index].type() == RegType::vgpr) type = RegType::vgpr; break; case nir_op_fmulz: case nir_op_ffmaz: case nir_op_f2f64: case nir_op_u2f64: case nir_op_i2f64: case nir_op_pack_unorm_2x16: case nir_op_pack_snorm_2x16: case nir_op_pack_uint_2x16: case nir_op_pack_sint_2x16: case nir_op_ldexp: case nir_op_frexp_sig: case nir_op_frexp_exp: case nir_op_cube_amd: case nir_op_msad_4x8: case nir_op_mqsad_4x8: case nir_op_udot_4x8_uadd: case nir_op_sdot_4x8_iadd: case nir_op_sudot_4x8_iadd: case nir_op_udot_4x8_uadd_sat: case nir_op_sdot_4x8_iadd_sat: case nir_op_sudot_4x8_iadd_sat: case nir_op_udot_2x16_uadd: case nir_op_sdot_2x16_iadd: case nir_op_udot_2x16_uadd_sat: case nir_op_sdot_2x16_iadd_sat: case nir_op_alignbyte_amd: type = RegType::vgpr; break; case nir_op_fmul: case nir_op_ffma: case nir_op_fadd: case nir_op_fsub: case nir_op_fmax: case nir_op_fmin: case nir_op_fsat: case nir_op_fneg: case nir_op_fabs: case nir_op_fsign: case nir_op_i2f16: case nir_op_i2f32: case nir_op_u2f16: case nir_op_u2f32: case nir_op_f2f16: case nir_op_f2f16_rtz: case nir_op_f2f16_rtne: case nir_op_f2f32: case nir_op_fquantize2f16: case nir_op_ffract: case nir_op_ffloor: case nir_op_fceil: case nir_op_ftrunc: case nir_op_fround_even: case nir_op_frcp: case nir_op_frsq: case nir_op_fsqrt: case nir_op_fexp2: case nir_op_flog2: case nir_op_fsin_amd: case nir_op_fcos_amd: case nir_op_pack_half_2x16_rtz_split: case nir_op_pack_half_2x16_split: case nir_op_unpack_half_2x16_split_x: case nir_op_unpack_half_2x16_split_y: { if (ctx->program->gfx_level < GFX11_5 || alu_instr->src[0].src.ssa->bit_size > 32) { type = RegType::vgpr; break; } FALLTHROUGH; } default: for (unsigned i = 0; i < nir_op_infos[alu_instr->op].num_inputs; i++) { if (alu_instr->src[i].src.ssa->bit_size == 1 ? nir_src_is_divergent(&alu_instr->src[i].src) : regclasses[alu_instr->src[i].src.ssa->index].type() == RegType::vgpr) type = RegType::vgpr; } break; } RegClass rc = get_reg_class(ctx, type, alu_instr->def.num_components, alu_instr->def.bit_size); regclasses[alu_instr->def.index] = rc; break; } case nir_instr_type_load_const: { unsigned num_components = nir_instr_as_load_const(instr)->def.num_components; unsigned bit_size = nir_instr_as_load_const(instr)->def.bit_size; RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size); regclasses[nir_instr_as_load_const(instr)->def.index] = rc; break; } case nir_instr_type_intrinsic: { nir_intrinsic_instr* intrinsic = nir_instr_as_intrinsic(instr); if (!nir_intrinsic_infos[intrinsic->intrinsic].has_dest) break; if (intrinsic->intrinsic == nir_intrinsic_strict_wqm_coord_amd) { regclasses[intrinsic->def.index] = RegClass::get(RegType::vgpr, intrinsic->def.num_components * 4 + nir_intrinsic_base(intrinsic)) .as_linear(); break; } RegType type = RegType::sgpr; switch (intrinsic->intrinsic) { case nir_intrinsic_load_push_constant: case nir_intrinsic_load_workgroup_id: case nir_intrinsic_load_num_workgroups: case nir_intrinsic_load_sbt_base_amd: case nir_intrinsic_load_subgroup_id: case nir_intrinsic_load_num_subgroups: case nir_intrinsic_vote_all: case nir_intrinsic_vote_any: case nir_intrinsic_read_first_invocation: case nir_intrinsic_as_uniform: case nir_intrinsic_read_invocation: case nir_intrinsic_first_invocation: case nir_intrinsic_ballot: case nir_intrinsic_ballot_relaxed: case nir_intrinsic_bindless_image_samples: case nir_intrinsic_load_scalar_arg_amd: case nir_intrinsic_load_lds_ngg_scratch_base_amd: case nir_intrinsic_load_lds_ngg_gs_out_vertex_base_amd: case nir_intrinsic_load_smem_amd: case nir_intrinsic_unit_test_uniform_amd: type = RegType::sgpr; break; case nir_intrinsic_load_input: case nir_intrinsic_load_per_primitive_input: case nir_intrinsic_load_output: case nir_intrinsic_load_input_vertex: case nir_intrinsic_load_per_vertex_input: case nir_intrinsic_load_per_vertex_output: case nir_intrinsic_load_interpolated_input: case nir_intrinsic_write_invocation_amd: case nir_intrinsic_mbcnt_amd: case nir_intrinsic_lane_permute_16_amd: case nir_intrinsic_dpp16_shift_amd: case nir_intrinsic_ssbo_atomic: case nir_intrinsic_ssbo_atomic_swap: case nir_intrinsic_global_atomic_amd: case nir_intrinsic_global_atomic_swap_amd: case nir_intrinsic_bindless_image_atomic: case nir_intrinsic_bindless_image_atomic_swap: case nir_intrinsic_bindless_image_size: case nir_intrinsic_shared_atomic: case nir_intrinsic_shared_atomic_swap: case nir_intrinsic_load_scratch: case nir_intrinsic_load_typed_buffer_amd: case nir_intrinsic_load_buffer_amd: case nir_intrinsic_load_initial_edgeflags_amd: case nir_intrinsic_gds_atomic_add_amd: case nir_intrinsic_bvh64_intersect_ray_amd: case nir_intrinsic_load_vector_arg_amd: case nir_intrinsic_ordered_xfb_counter_add_gfx11_amd: case nir_intrinsic_cmat_muladd_amd: case nir_intrinsic_unit_test_divergent_amd: type = RegType::vgpr; break; case nir_intrinsic_load_shared: case nir_intrinsic_load_shared2_amd: /* When the result of these loads is only used by cross-lane instructions, * it is beneficial to use a VGPR destination. This is because this allows * to put the s_waitcnt further down, which decreases latency. */ if (only_used_by_cross_lane_instrs(&intrinsic->def)) { type = RegType::vgpr; break; } FALLTHROUGH; case nir_intrinsic_shuffle: case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: case nir_intrinsic_quad_swizzle_amd: case nir_intrinsic_masked_swizzle_amd: case nir_intrinsic_rotate: case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: case nir_intrinsic_reduce: case nir_intrinsic_load_ubo: case nir_intrinsic_load_ssbo: case nir_intrinsic_load_global_amd: type = intrinsic->def.divergent ? RegType::vgpr : RegType::sgpr; break; case nir_intrinsic_ddx: case nir_intrinsic_ddy: case nir_intrinsic_ddx_fine: case nir_intrinsic_ddy_fine: case nir_intrinsic_ddx_coarse: case nir_intrinsic_ddy_coarse: type = RegType::vgpr; break; default: for (unsigned i = 0; i < nir_intrinsic_infos[intrinsic->intrinsic].num_srcs; i++) { if (regclasses[intrinsic->src[i].ssa->index].type() == RegType::vgpr) type = RegType::vgpr; } break; } RegClass rc = get_reg_class(ctx, type, intrinsic->def.num_components, intrinsic->def.bit_size); regclasses[intrinsic->def.index] = rc; break; } case nir_instr_type_tex: { nir_tex_instr* tex = nir_instr_as_tex(instr); RegType type = tex->def.divergent ? RegType::vgpr : RegType::sgpr; if (tex->op == nir_texop_texture_samples) { assert(!tex->def.divergent); } RegClass rc = get_reg_class(ctx, type, tex->def.num_components, tex->def.bit_size); regclasses[tex->def.index] = rc; break; } case nir_instr_type_undef: { unsigned num_components = nir_instr_as_undef(instr)->def.num_components; unsigned bit_size = nir_instr_as_undef(instr)->def.bit_size; RegClass rc = get_reg_class(ctx, RegType::sgpr, num_components, bit_size); regclasses[nir_instr_as_undef(instr)->def.index] = rc; break; } case nir_instr_type_phi: { nir_phi_instr* phi = nir_instr_as_phi(instr); RegType type = RegType::sgpr; unsigned num_components = phi->def.num_components; assert((phi->def.bit_size != 1 || num_components == 1) && "Multiple components not supported on boolean phis."); if (phi->def.divergent) { type = RegType::vgpr; } else { bool vgpr_src = false; nir_foreach_phi_src (src, phi) vgpr_src |= regclasses[src->src.ssa->index].type() == RegType::vgpr; if (vgpr_src) { type = RegType::vgpr; /* This might be the case because of nir_divergence_ignore_undef_if_phi_srcs. */ bool divergent_merge = false; if (nir_cf_node_prev(&block->cf_node) && nir_cf_node_prev(&block->cf_node)->type == nir_cf_node_if) { nir_if* nif = nir_cf_node_as_if(nir_cf_node_prev(&block->cf_node)); divergent_merge = nir_src_is_divergent(&nif->condition); } /* In case of uniform phis after divergent merges, ensure that the dst is an * SGPR and does not contain undefined values for some invocations. */ if (divergent_merge && !skip_uniformize_merge_phi(&phi->def, 0)) type = RegType::sgpr; } } RegClass rc = get_reg_class(ctx, type, num_components, phi->def.bit_size); if (rc != regclasses[phi->def.index]) done = false; regclasses[phi->def.index] = rc; break; } default: break; } } } } ctx->program->config->spi_ps_input_ena = ctx->program->info.ps.spi_ps_input_ena; ctx->program->config->spi_ps_input_addr = ctx->program->info.ps.spi_ps_input_addr; /* align and copy constant data */ while (ctx->program->constant_data.size() % 4u) ctx->program->constant_data.push_back(0); ctx->constant_data_offset = ctx->program->constant_data.size(); ctx->program->constant_data.insert(ctx->program->constant_data.end(), (uint8_t*)shader->constant_data, (uint8_t*)shader->constant_data + shader->constant_data_size); BITSET_CLEAR_RANGE(ctx->output_args, 0, BITSET_SIZE(ctx->output_args)); } void cleanup_context(isel_context* ctx) { _mesa_hash_table_destroy(ctx->range_ht, NULL); } isel_context setup_isel_context(Program* program, unsigned shader_count, struct nir_shader* const* shaders, ac_shader_config* config, const struct aco_compiler_options* options, const struct aco_shader_info* info, const struct ac_shader_args* args, SWStage sw_stage) { for (unsigned i = 0; i < shader_count; i++) { switch (shaders[i]->info.stage) { case MESA_SHADER_VERTEX: sw_stage = sw_stage | SWStage::VS; break; case MESA_SHADER_TESS_CTRL: sw_stage = sw_stage | SWStage::TCS; break; case MESA_SHADER_TESS_EVAL: sw_stage = sw_stage | SWStage::TES; break; case MESA_SHADER_GEOMETRY: sw_stage = sw_stage | SWStage::GS; break; case MESA_SHADER_FRAGMENT: sw_stage = sw_stage | SWStage::FS; break; case MESA_SHADER_KERNEL: case MESA_SHADER_COMPUTE: sw_stage = sw_stage | SWStage::CS; break; case MESA_SHADER_TASK: sw_stage = sw_stage | SWStage::TS; break; case MESA_SHADER_MESH: sw_stage = sw_stage | SWStage::MS; break; case MESA_SHADER_RAYGEN: case MESA_SHADER_CLOSEST_HIT: case MESA_SHADER_MISS: case MESA_SHADER_CALLABLE: case MESA_SHADER_INTERSECTION: case MESA_SHADER_ANY_HIT: sw_stage = SWStage::RT; break; default: unreachable("Shader stage not implemented"); } } init_program(program, Stage{info->hw_stage, sw_stage}, info, options->gfx_level, options->family, options->wgp_mode, config); isel_context ctx = {}; ctx.program = program; ctx.args = args; ctx.options = options; ctx.stage = program->stage; program->workgroup_size = program->info.workgroup_size; assert(program->workgroup_size); /* Mesh shading only works on GFX10.3+. */ ASSERTED bool mesh_shading = ctx.stage.has(SWStage::TS) || ctx.stage.has(SWStage::MS); assert(!mesh_shading || ctx.program->gfx_level >= GFX10_3); setup_tcs_info(&ctx); calc_min_waves(program); unsigned scratch_size = 0; for (unsigned i = 0; i < shader_count; i++) { nir_shader* nir = shaders[i]; setup_nir(&ctx, nir); setup_lds_size(&ctx, nir); } for (unsigned i = 0; i < shader_count; i++) scratch_size = std::max(scratch_size, shaders[i]->scratch_size); ctx.program->config->scratch_bytes_per_wave = scratch_size * ctx.program->wave_size; unsigned nir_num_blocks = 0; for (unsigned i = 0; i < shader_count; i++) nir_num_blocks += nir_shader_get_entrypoint(shaders[i])->num_blocks; ctx.program->blocks.reserve(nir_num_blocks * 2); ctx.block = ctx.program->create_and_insert_block(); ctx.block->kind = block_kind_top_level; return ctx; } } // namespace aco