# Copyright 2022 Alyssa Rosenzweig # Copyright 2021 Collabora, Ltd. # Copyright 2016 Intel Corporation # SPDX-License-Identifier: MIT import argparse import sys import math a = 'a' b = 'b' c = 'c' d = 'd' e = 'e' lower_sm5_shift = [] # Our shifts differ from SM5 for the upper bits. Mask to match the NIR # behaviour. Because this happens as a late lowering, NIR won't optimize the # masking back out (that happens in the main nir_opt_algebraic). for s in [8, 16, 32, 64]: for shift in ["ishl", "ishr", "ushr"]: lower_sm5_shift += [((shift, f'a@{s}', b), (shift, a, ('iand', b, s - 1)))] lower_pack = [ (('pack_half_2x16_split', a, b), ('pack_32_2x16_split', ('f2f16', a), ('f2f16', b))), # We don't have 8-bit ALU, so we need to lower this. But if we lower it like # this, we can at least coalesce the pack_32_2x16_split and only pay the # cost of the iors and ishl. (u2u16 of 8-bit is assumed free.) (('pack_32_4x8_split', a, b, c, d), ('pack_32_2x16_split', ('ior', ('u2u16', a), ('ishl', ('u2u16', b), 8)), ('ior', ('u2u16', c), ('ishl', ('u2u16', d), 8)))), (('unpack_half_2x16_split_x', a), ('f2f32', ('unpack_32_2x16_split_x', a))), (('unpack_half_2x16_split_y', a), ('f2f32', ('unpack_32_2x16_split_y', a))), (('extract_u16', 'a@32', 0), ('u2u32', ('unpack_32_2x16_split_x', a))), (('extract_u16', 'a@32', 1), ('u2u32', ('unpack_32_2x16_split_y', a))), (('extract_i16', 'a@32', 0), ('i2i32', ('unpack_32_2x16_split_x', a))), (('extract_i16', 'a@32', 1), ('i2i32', ('unpack_32_2x16_split_y', a))), # For optimizing extract->convert sequences for unpack/pack norm (('u2f32', ('u2u32', a)), ('u2f32', a)), (('i2f32', ('i2i32', a)), ('i2f32', a)), # Chew through some 8-bit before the backend has to deal with it (('f2u8', a), ('u2u8', ('f2u16', a))), (('f2i8', a), ('i2i8', ('f2i16', a))), # Duplicated from nir_opt_algebraic since this pattern is generated by our # bounds checking optimization which needs to run relatively late. (('unpack_64_2x32_split_x', ('pack_64_2x32_split', a, b)), a), (('unpack_64_2x32_split_y', ('pack_64_2x32_split', a, b)), b), # Based on the VIR lowering (('f2f16_rtz', 'a@32'), ('bcsel', ('flt', ('fabs', a), ('fabs', ('f2f32', ('f2f16_rtne', a)))), ('isub', ('f2f16_rtne', a), 1), ('f2f16_rtne', a))), # These are based on the lowerings from nir_opt_algebraic, but conditioned # on the number of bits not being constant. If the bit count is constant # (the happy path) we can use our native instruction instead. (('ibitfield_extract', 'value', 'offset', 'bits(is_not_const)'), ('bcsel', ('ieq', 0, 'bits'), 0, ('ishr', ('ishl', 'value', ('isub', ('isub', 32, 'bits'), 'offset')), ('isub', 32, 'bits')))), (('ubitfield_extract', 'value', 'offset', 'bits(is_not_const)'), ('iand', ('ushr', 'value', 'offset'), ('bcsel', ('ieq', 'bits', 32), 0xffffffff, ('isub', ('ishl', 1, 'bits'), 1)))), # Codegen depends on this trivial case being optimized out. (('ubitfield_extract', 'value', 'offset', 0), 0), (('ibitfield_extract', 'value', 'offset', 0), 0), # At this point, bitfield extracts are constant. We can only do constant # unsigned bitfield extract, so lower signed to unsigned + sign extend. (('ibitfield_extract', a, b, '#bits'), ('ishr', ('ishl', ('ubitfield_extract', a, b, 'bits'), ('isub', 32, 'bits')), ('isub', 32, 'bits'))), ] lower_selects = [] for T, sizes, one in [('f', [16, 32], 1.0), ('i', [8, 16, 32], 1), ('b', [16, 32], -1)]: for size in sizes: lower_selects.extend([ ((f'b2{T}{size}', ('inot', 'a@1')), ('bcsel', a, 0, one)), ((f'b2{T}{size}', 'a@1'), ('bcsel', a, one, 0)), ]) # Rewriting bcsel(a || b, ...) in terms of bcsel(a, ...) and bcsel(b, ...) lets # our rules to fuse compare-and-select do a better job, assuming that a and b # are comparisons themselves. # # This needs to be a separate pass that runs after lower_selects, in order to # pick up patterns like b2f32(iand(...)) opt_selects = [ (('bcsel', ('ior(is_used_once)', a, b), c, d), ('bcsel', a, c, ('bcsel', b, c, d))), (('bcsel', ('iand(is_used_once)', a, b), c, d), ('bcsel', a, ('bcsel', b, c, d), d)), ] # When the ior/iand is used multiple times, we can instead fuse the other way. opt_selects.extend([ (('iand', ('inot', 'a@1'), b), ('bcsel', a, False, b)), (('iand', 'a@1', b), ('bcsel', a, b, False)), (('ior', ('inot', 'a@1'), b), ('bcsel', a, b, True)), (('ior', 'a@1', b), ('bcsel', a, True, b)), ]) fuse_extr = [] for start in range(32): fuse_extr.extend([ (('ior', ('ushr', 'a@32', start), ('ishl', 'b@32', 32 - start)), ('extr_agx', a, b, start, 0)), ]) fuse_ubfe = [] for bits in range(1, 32): fuse_ubfe.extend([ (('iand', ('ushr', 'a@32', b), (1 << bits) - 1), ('ubitfield_extract', a, b, bits)) ]) # (x * y) + s = (x * y) + (s << 0) def imad(x, y, z): return ('imadshl_agx', x, y, z, 0) # (x * y) - s = (x * y) - (s << 0) def imsub(x, y, z): return ('imsubshl_agx', x, y, z, 0) # x + (y << s) = (x * 1) + (y << s) def iaddshl(x, y, s): return ('imadshl_agx', x, 1, y, s) # x - (y << s) = (x * 1) - (y << s) def isubshl(x, y, s): return ('imsubshl_agx', x, 1, y, s) fuse_imad = [ # Reassociate imul+iadd chain in order to fuse imads. This pattern comes up # in compute shader lowering. (('iadd', ('iadd(is_used_once)', ('imul(is_used_once)', a, b), ('imul(is_used_once)', c, d)), e), imad(a, b, imad(c, d, e))), # Fuse regular imad (('iadd', ('imul(is_used_once)', a, b), c), imad(a, b, c)), (('isub', ('imul(is_used_once)', a, b), c), imsub(a, b, c)), ] for s in range(1, 5): fuse_imad += [ # Definitions (('iadd', a, ('ishl(is_used_once)', b, s)), iaddshl(a, b, s)), (('isub', a, ('ishl(is_used_once)', b, s)), isubshl(a, b, s)), # ineg(x) is 0 - x (('ineg', ('ishl(is_used_once)', b, s)), isubshl(0, b, s)), # Definitions (imad(a, b, ('ishl(is_used_once)', c, s)), ('imadshl_agx', a, b, c, s)), (imsub(a, b, ('ishl(is_used_once)', c, s)), ('imsubshl_agx', a, b, c, s)), # The above but after the below shift lowering (imad(a, b, ('imadshl_agx(is_used_once)', 0, 1, c, s)), ('imadshl_agx', a, b, c, s)), (imsub(a, b, ('imadshl_agx(is_used_once)', 0, 1, c, s)), ('imsubshl_agx', a, b, c, s)), # a + (a << s) = a + a * (1 << s) = a * (1 + (1 << s)) (('imul', a, 1 + (1 << s)), iaddshl(a, a, s)), # a - (a << s) = a - a * (1 << s) = a * (1 - (1 << s)) (('imul', a, 1 - (1 << s)), isubshl(a, a, s)), # a - (a << s) = a * (1 - (1 << s)) = -(a * (1 << s) - 1) (('ineg', ('imul(is_used_once)', a, (1 << s) - 1)), isubshl(a, a, s)), # iadd is SCIB, general shfit is IC (slower) (('ishl', a, s), iaddshl(0, a, s)), ] # If the above rules failed, we have a large constant shift on the IC unit. # Might as well fuse an add to form an imad, if we're on the IC anyway. fuse_imad += [ (('iadd', a, ('ishl(is_used_once)', b, '#c')), imad(b, ('ishl', 1, c), a)), ] # Discard lowering generates this pattern, clean it up ixor_bcsel = [ (('ixor', ('bcsel', a, '#b', '#c'), '#d'), ('bcsel', a, ('ixor', b, d), ('ixor', c, d))), ] # The main NIR optimizer works on imul, not iadd. We need just enough patterns # for amul to let us fuse lea. cleanup_amul = [ # Neither operation overflows so we can keep the amul. (('amul', ('amul', a, '#b'), '#c'), ('amul', a, ('imul', b, c))), # Result of u2u64 has zero in upper half, so the shift doesn't overflow, so # neither multiplication overflows. (('amul', ('ishl', ('u2u64', 'a@32'), '#b(is_ult_32)'), '#c'), ('amul', ('u2u64', a), ('ishl', c, b))), ] fuse_lea = [] # Handle 64-bit address arithmetic (OpenCL) for s in range(1, 5): pot = 1 << s fuse_lea += [ # A + (#b + c) 2^s = (A + c 2^s) + #b 2^s (('iadd', 'a@64', ('amul', pot, ('iadd', '#b(is_upper_half_zero)', ('u2u64', 'c@32')))), ('ulea_agx', ('ulea_agx', a, c, s), ('u2u32', b), s)), # A + (B + c) 2^s = (A + B 2^s) + c 2^s (('iadd', 'a@64', ('amul', ('iadd', 'b@64', ('i2i64', 'c@32')), pot)), ('ilea_agx', ('iadd', a, ('ishl', b, s)), c, s)), # A + 2^s (B + (C + d)) = (A + (B + C)2^s) + d 2^s (('iadd', 'a@64', ('amul', ('iadd', 'b@64', ('iadd', 'c@64', ('u2u64', 'd@32'))), pot)), ('ulea_agx', ('iadd', a, ('ishl', ('iadd', b, c), s)), d, s)), ] for sgn in ["u", "i"]: upconv = f'{sgn}2{sgn}64' lea = f'{sgn}lea_agx' fuse_lea += [ # Basic pattern match (('iadd', 'a@64', ('amul', (upconv, 'b@32'), pot)), (lea, a, b, s)), (('iadd', 'a@64', ('ishl', (upconv, 'b@32'), s)), (lea, a, b, s)), ] # Handle relaxed 32-bit address arithmetic (OpenGL, Vulkan) for s_ in range(1, 5): # Iterate backwards s = 5 - s_ v = 1 << s is_mult = f'(is_unsigned_multiple_of_{v})' fuse_lea += [ # A + b * s = A + B * s with relaxed multiply (('iadd', 'a@64', ('u2u64', ('amul', 'b@32', v))), ('ulea_agx', a, b, s)), # A + (b * c 2^s) = A + (b * c) 2^s with relaxed multiply (('iadd', 'a@64', ('u2u64', ('amul', 'b@32', f'#c{is_mult}'))), ('ulea_agx', a, ('imul', b, ('ushr', c, s)), s)), # A + (b 2^s + c d 2^s) = A + (b + cd) 2^s with relaxation. # # amul is bounded by the buffer size by definition, and both the GL & VK # limit UBOs and SSBOs to INT32_MAX bytes. Therefore, amul has no signed # wrap. # # Further, because we are zero-extending the 32-bit result, the 32-bit # sum must be nonnegative -- if it were negative, it would represent an # offset above INT32_MAX which would be invalid given the amul and # max buffer size. Thus with signed math # # 0 <= b 2^s + cd 2^s < INT32_MAX # # ..and hence # # 0 <= b + cd < INT32_MAX # # Those bounds together with distributivity mean that # # (b 2^s + cd 2^s) mod 2^32 = 2^s ((b + cd) mod 2^32) # # ...which is exactly what we need to factor out the shift. (('iadd', 'a@64', ('u2u64', ('iadd', f'#b{is_mult}', ('amul', 'c@32', f'#d{is_mult}')))), ('ulea_agx', a, ('iadd', ('ishr', b, s), ('amul', 'c@32', ('ishr', d, s))), s)), ] # 8-bit rules are lowest precedence since we really like to fuse shifts fuse_lea += [ (('iadd', a, ('u2u64', 'b@32')), ('ulea_agx', a, b, 0)), (('iadd', a, ('i2i64', 'b@32')), ('ilea_agx', a, b, 0)), (('iadd', a, ('iadd', ('u2u64', 'b@32'), c)), ('ulea_agx', ('iadd', a, c), b, 0)), (('iadd', a, ('iadd', ('i2i64', 'b@32'), c)), ('ilea_agx', ('iadd', a, c), b, 0)), ] # After lowering address arithmetic, the various address arithmetic opcodes are # no longer useful. Lower them to regular arithmetic to let nir_opt_algebraic # take over. lower_lea = [ (('amul', a, b), ('imul', a, b)), (('ulea_agx', a, b, c), ('iadd', a, ('ishl', ('u2u64', b), c))), (('ilea_agx', a, b, c), ('iadd', a, ('ishl', ('i2i64', b), c))), ] def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--import-path', required=True) args = parser.parse_args() sys.path.insert(0, args.import_path) run() def run(): import nir_algebraic # pylint: disable=import-error print('#include "agx_nir.h"') print(nir_algebraic.AlgebraicPass("agx_nir_cleanup_amul", cleanup_amul).render()) print(nir_algebraic.AlgebraicPass("agx_nir_fuse_lea", fuse_lea).render()) print(nir_algebraic.AlgebraicPass("agx_nir_lower_lea", lower_lea).render()) print(nir_algebraic.AlgebraicPass("agx_nir_lower_algebraic_late", lower_sm5_shift + lower_pack + lower_selects).render()) print(nir_algebraic.AlgebraicPass("agx_nir_fuse_selects", opt_selects).render()) print(nir_algebraic.AlgebraicPass("agx_nir_fuse_algebraic_late", fuse_extr + fuse_ubfe + fuse_imad + ixor_bcsel).render()) if __name__ == '__main__': main()