/* * Copyright 2024 Intel Corporation * SPDX-License-Identifier: MIT */ #include #include "util/half_float.h" #include "brw_fs.h" #include "brw_builder.h" using namespace brw; struct brw_reduction_info { brw_reg identity; enum opcode op; brw_conditional_mod cond_mod; }; static brw_reduction_info brw_get_reduction_info(brw_reduce_op red_op, brw_reg_type type) { struct brw_reduction_info info; info.op = BRW_OPCODE_SEL; info.cond_mod = BRW_CONDITIONAL_NONE; switch (red_op) { case BRW_REDUCE_OP_ADD: info.op = BRW_OPCODE_ADD; break; case BRW_REDUCE_OP_MUL: info.op = BRW_OPCODE_MUL; break; case BRW_REDUCE_OP_AND: info.op = BRW_OPCODE_AND; break; case BRW_REDUCE_OP_OR: info.op = BRW_OPCODE_OR; break; case BRW_REDUCE_OP_XOR: info.op = BRW_OPCODE_XOR; break; case BRW_REDUCE_OP_MIN: info.cond_mod = BRW_CONDITIONAL_L; break; case BRW_REDUCE_OP_MAX: info.cond_mod = BRW_CONDITIONAL_GE; break; default: unreachable("invalid reduce op"); } switch (red_op) { case BRW_REDUCE_OP_ADD: case BRW_REDUCE_OP_XOR: case BRW_REDUCE_OP_OR: info.identity = retype(brw_imm_u64(0), type); return info; case BRW_REDUCE_OP_AND: info.identity = retype(brw_imm_u64(~0ull), type); return info; default: /* Continue below. */ break; } brw_reg id; const unsigned size = brw_type_size_bytes(type); switch (red_op) { case BRW_REDUCE_OP_MUL: { if (brw_type_is_int(type)) { id = size < 4 ? brw_imm_uw(1) : size == 4 ? brw_imm_ud(1) : brw_imm_u64(1); } else { assert(brw_type_is_float(type)); id = size == 2 ? brw_imm_uw(_mesa_float_to_half(1.0)) : size == 4 ? brw_imm_f(1.0) : brw_imm_df(1.0); } break; } case BRW_REDUCE_OP_MIN: { if (brw_type_is_uint(type)) { id = brw_imm_u64(~0ull); } else if (brw_type_is_sint(type)) { id = size == 1 ? brw_imm_w(INT8_MAX) : size == 2 ? brw_imm_w(INT16_MAX) : size == 4 ? brw_imm_d(INT32_MAX) : brw_imm_q(INT64_MAX); } else { assert(brw_type_is_float(type)); id = size == 2 ? brw_imm_uw(_mesa_float_to_half(INFINITY)) : size == 4 ? brw_imm_f(INFINITY) : brw_imm_df(INFINITY); } break; } case BRW_REDUCE_OP_MAX: { if (brw_type_is_uint(type)) { id = brw_imm_u64(0); } else if (brw_type_is_sint(type)) { id = size == 1 ? brw_imm_w(INT8_MIN) : size == 2 ? brw_imm_w(INT16_MIN) : size == 4 ? brw_imm_d(INT32_MIN) : brw_imm_q(INT64_MIN); } else { assert(brw_type_is_float(type)); id = size == 2 ? brw_imm_uw(_mesa_float_to_half(-INFINITY)) : size == 4 ? brw_imm_f(-INFINITY) : brw_imm_df(-INFINITY); } break; } default: unreachable("invalid reduce op"); } /* For some cases above (e.g. all bits zeros, all bits ones, first bit one) * either the size or the signedness was ignored, so adjust the final type * now. * * B/UB types can't have immediates, so used W/UW above and here. */ if (type == BRW_TYPE_UB) type = BRW_TYPE_UW; else if (type == BRW_TYPE_B) type = BRW_TYPE_W; info.identity = retype(id, type); return info; } static void brw_emit_scan_step(const brw_builder &bld, enum opcode opcode, brw_conditional_mod mod, const brw_reg &tmp, unsigned left_offset, unsigned left_stride, unsigned right_offset, unsigned right_stride) { brw_reg left, right; left = horiz_stride(horiz_offset(tmp, left_offset), left_stride); right = horiz_stride(horiz_offset(tmp, right_offset), right_stride); if ((tmp.type == BRW_TYPE_Q || tmp.type == BRW_TYPE_UQ) && (!bld.shader->devinfo->has_64bit_int || bld.shader->devinfo->ver >= 20)) { switch (opcode) { case BRW_OPCODE_MUL: /* This will get lowered by integer MUL lowering */ set_condmod(mod, bld.emit(opcode, right, left, right)); break; case BRW_OPCODE_SEL: { /* In order for the comparisons to work out right, we need our * comparisons to be strict. */ assert(mod == BRW_CONDITIONAL_L || mod == BRW_CONDITIONAL_GE); if (mod == BRW_CONDITIONAL_GE) mod = BRW_CONDITIONAL_G; /* We treat the bottom 32 bits as unsigned regardless of * whether or not the integer as a whole is signed. */ brw_reg right_low = subscript(right, BRW_TYPE_UD, 0); brw_reg left_low = subscript(left, BRW_TYPE_UD, 0); /* The upper bits get the same sign as the 64-bit type */ brw_reg_type type32 = brw_type_with_size(tmp.type, 32); brw_reg right_high = subscript(right, type32, 1); brw_reg left_high = subscript(left, type32, 1); /* Build up our comparison: * * l_hi < r_hi || (l_hi == r_hi && l_low < r_low) */ bld.CMP(bld.null_reg_ud(), retype(left_low, BRW_TYPE_UD), retype(right_low, BRW_TYPE_UD), mod); set_predicate(BRW_PREDICATE_NORMAL, bld.CMP(bld.null_reg_ud(), left_high, right_high, BRW_CONDITIONAL_EQ)); set_predicate_inv(BRW_PREDICATE_NORMAL, true, bld.CMP(bld.null_reg_ud(), left_high, right_high, mod)); /* We could use selects here or we could use predicated MOVs * because the destination and second source (if it were a SEL) * are the same. */ set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(right_low, left_low)); set_predicate(BRW_PREDICATE_NORMAL, bld.MOV(right_high, left_high)); break; } default: unreachable("Unsupported 64-bit scan op"); } } else { set_condmod(mod, bld.emit(opcode, right, left, right)); } } static void brw_emit_scan(const brw_builder &bld, enum opcode opcode, const brw_reg &tmp, unsigned cluster_size, brw_conditional_mod mod) { unsigned dispatch_width = bld.dispatch_width(); assert(dispatch_width >= 8); /* The instruction splitting code isn't advanced enough to split * these so we need to handle that ourselves. */ if (dispatch_width * brw_type_size_bytes(tmp.type) > 2 * REG_SIZE) { const unsigned half_width = dispatch_width / 2; const brw_builder ubld = bld.exec_all().group(half_width, 0); brw_reg left = tmp; brw_reg right = horiz_offset(tmp, half_width); brw_emit_scan(ubld, opcode, left, cluster_size, mod); brw_emit_scan(ubld, opcode, right, cluster_size, mod); if (cluster_size > half_width) { brw_emit_scan_step(ubld, opcode, mod, tmp, half_width - 1, 0, half_width, 1); } return; } if (cluster_size > 1) { const brw_builder ubld = bld.exec_all().group(dispatch_width / 2, 0); brw_emit_scan_step(ubld, opcode, mod, tmp, 0, 2, 1, 2); } if (cluster_size > 2) { if (brw_type_size_bytes(tmp.type) <= 4) { const brw_builder ubld = bld.exec_all().group(dispatch_width / 4, 0); brw_emit_scan_step(ubld, opcode, mod, tmp, 1, 4, 2, 4); brw_emit_scan_step(ubld, opcode, mod, tmp, 1, 4, 3, 4); } else { /* For 64-bit types, we have to do things differently because * the code above would land us with destination strides that * the hardware can't handle. Fortunately, we'll only be * 8-wide in that case and it's the same number of * instructions. */ const brw_builder ubld = bld.exec_all().group(2, 0); for (unsigned i = 0; i < dispatch_width; i += 4) brw_emit_scan_step(ubld, opcode, mod, tmp, i + 1, 0, i + 2, 1); } } for (unsigned i = 4; i < MIN2(cluster_size, dispatch_width); i *= 2) { const brw_builder ubld = bld.exec_all().group(i, 0); brw_emit_scan_step(ubld, opcode, mod, tmp, i - 1, 0, i, 1); if (dispatch_width > i * 2) brw_emit_scan_step(ubld, opcode, mod, tmp, i * 3 - 1, 0, i * 3, 1); if (dispatch_width > i * 4) { brw_emit_scan_step(ubld, opcode, mod, tmp, i * 5 - 1, 0, i * 5, 1); brw_emit_scan_step(ubld, opcode, mod, tmp, i * 7 - 1, 0, i * 7, 1); } } } static bool brw_lower_reduce(fs_visitor &s, bblock_t *block, fs_inst *inst) { const brw_builder bld(&s, block, inst); assert(inst->dst.type == inst->src[0].type); brw_reg dst = inst->dst; brw_reg src = inst->src[0]; assert(inst->src[1].file == IMM); enum brw_reduce_op op = (enum brw_reduce_op)inst->src[1].ud; assert(inst->src[2].file == IMM); unsigned cluster_size = inst->src[2].ud; assert(cluster_size > 0); assert(cluster_size <= s.dispatch_width); struct brw_reduction_info info = brw_get_reduction_info(op, src.type); /* Set up a register for all of our scratching around and initialize it * to reduction operation's identity value. */ brw_reg scan = bld.vgrf(src.type); bld.exec_all().emit(SHADER_OPCODE_SEL_EXEC, scan, src, info.identity); brw_emit_scan(bld, info.op, scan, cluster_size, info.cond_mod); if (cluster_size * brw_type_size_bytes(src.type) >= REG_SIZE * 2) { /* In this case, CLUSTER_BROADCAST instruction isn't needed because * the distance between clusters is at least 2 GRFs. In this case, * we don't need the weird striding of the CLUSTER_BROADCAST * instruction and can just do regular MOVs. */ assert((cluster_size * brw_type_size_bytes(src.type)) % (REG_SIZE * 2) == 0); const unsigned groups = (s.dispatch_width * brw_type_size_bytes(src.type)) / (REG_SIZE * 2); const unsigned group_size = s.dispatch_width / groups; for (unsigned i = 0; i < groups; i++) { const unsigned cluster = (i * group_size) / cluster_size; const unsigned comp = cluster * cluster_size + (cluster_size - 1); bld.group(group_size, i).MOV(horiz_offset(dst, i * group_size), component(scan, comp)); } } else { bld.emit(SHADER_OPCODE_CLUSTER_BROADCAST, dst, scan, brw_imm_ud(cluster_size - 1), brw_imm_ud(cluster_size)); } inst->remove(block); return true; } static bool brw_lower_scan(fs_visitor &s, bblock_t *block, fs_inst *inst) { const brw_builder bld(&s, block, inst); assert(inst->dst.type == inst->src[0].type); brw_reg dst = inst->dst; brw_reg src = inst->src[0]; assert(inst->src[1].file == IMM); enum brw_reduce_op op = (enum brw_reduce_op)inst->src[1].ud; struct brw_reduction_info info = brw_get_reduction_info(op, src.type); /* Set up a register for all of our scratching around and initialize it * to reduction operation's identity value. */ brw_reg scan = bld.vgrf(src.type); const brw_builder ubld = bld.exec_all(); ubld.emit(SHADER_OPCODE_SEL_EXEC, scan, src, info.identity); if (inst->opcode == SHADER_OPCODE_EXCLUSIVE_SCAN) { /* Exclusive scan is a bit harder because we have to do an annoying * shift of the contents before we can begin. To make things worse, * we can't do this with a normal stride; we have to use indirects. */ brw_reg shifted = bld.vgrf(src.type); brw_reg idx = bld.vgrf(BRW_TYPE_UW); /* Set the saturate modifier in the offset index to ensure it's * normalized within the expected range without negative values, * since the situation can cause us to read past the end of the * register file leading to hangs on Xe3. */ set_saturate(true, ubld.ADD(idx, bld.LOAD_SUBGROUP_INVOCATION(), brw_imm_w(-1))); ubld.emit(SHADER_OPCODE_SHUFFLE, shifted, scan, idx); ubld.group(1, 0).MOV(horiz_offset(shifted, 0), info.identity); scan = shifted; } brw_emit_scan(bld, info.op, scan, s.dispatch_width, info.cond_mod); bld.MOV(dst, scan); inst->remove(block); return true; } static brw_reg brw_fill_flag(const brw_builder &bld, unsigned v) { const brw_builder ubld1 = bld.exec_all().group(1, 0); brw_reg flag = brw_flag_reg(0, 0); if (bld.shader->dispatch_width == 32) { /* For SIMD32, we use a UD type so we fill both f0.0 and f0.1. */ flag = retype(flag, BRW_TYPE_UD); ubld1.MOV(flag, brw_imm_ud(v)); } else { ubld1.MOV(flag, brw_imm_uw(v & 0xFFFF)); } return flag; } static void brw_lower_dispatch_width_vote(const brw_builder &bld, enum opcode opcode, brw_reg dst, brw_reg src) { const intel_device_info *devinfo = bld.shader->devinfo; const unsigned dispatch_width = bld.shader->dispatch_width; assert(opcode == SHADER_OPCODE_VOTE_ANY || opcode == SHADER_OPCODE_VOTE_ALL || opcode == SHADER_OPCODE_VOTE_EQUAL); const bool any = opcode == SHADER_OPCODE_VOTE_ANY; const bool equal = opcode == SHADER_OPCODE_VOTE_EQUAL; const brw_reg ref = equal ? bld.emit_uniformize(src) : brw_imm_d(0); /* The any/all predicates do not consider channel enables. To prevent * dead channels from affecting the result, we initialize the flag with * with the identity value for the logical operation. */ brw_fill_flag(bld, any ? 0 : 0xFFFFFFFF); bld.CMP(bld.null_reg_d(), src, ref, equal ? BRW_CONDITIONAL_Z : BRW_CONDITIONAL_NZ); /* For some reason, the any/all predicates don't work properly with * SIMD32. In particular, it appears that a SEL with a QtrCtrl of 2H * doesn't read the correct subset of the flag register and you end up * getting garbage in the second half. Work around this by using a pair * of 1-wide MOVs and scattering the result. * * TODO: Check if we still need this for newer platforms. */ const brw_builder ubld = devinfo->ver >= 20 ? bld.exec_all() : bld.exec_all().group(1, 0); brw_reg res1 = ubld.MOV(brw_imm_d(0)); enum brw_predicate pred; if (any) { pred = devinfo->ver >= 20 ? XE2_PREDICATE_ANY : dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ANY8H : dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ANY16H : BRW_PREDICATE_ALIGN1_ANY32H; } else { pred = devinfo->ver >= 20 ? XE2_PREDICATE_ALL : dispatch_width == 8 ? BRW_PREDICATE_ALIGN1_ALL8H : dispatch_width == 16 ? BRW_PREDICATE_ALIGN1_ALL16H : BRW_PREDICATE_ALIGN1_ALL32H; } set_predicate(pred, ubld.MOV(res1, brw_imm_d(-1))); bld.MOV(retype(dst, BRW_TYPE_D), component(res1, 0)); } static void brw_lower_quad_vote_gfx9(const brw_builder &bld, enum opcode opcode, brw_reg dst, brw_reg src) { assert(opcode == SHADER_OPCODE_VOTE_ANY || opcode == SHADER_OPCODE_VOTE_ALL); const bool any = opcode == SHADER_OPCODE_VOTE_ANY; /* The any/all predicates do not consider channel enables. To prevent * dead channels from affecting the result, we initialize the flag with * with the identity value for the logical operation. */ brw_fill_flag(bld, any ? 0 : 0xFFFFFFFF); bld.CMP(bld.null_reg_ud(), src, brw_imm_ud(0u), BRW_CONDITIONAL_NZ); bld.exec_all().MOV(retype(dst, BRW_TYPE_UD), brw_imm_ud(0)); /* Before Xe2, we can use specialized predicates. */ const enum brw_predicate pred = any ? BRW_PREDICATE_ALIGN1_ANY4H : BRW_PREDICATE_ALIGN1_ALL4H; fs_inst *mov = bld.MOV(retype(dst, BRW_TYPE_D), brw_imm_d(-1)); set_predicate(pred, mov); } static void brw_lower_quad_vote_gfx20(const brw_builder &bld, enum opcode opcode, brw_reg dst, brw_reg src) { assert(opcode == SHADER_OPCODE_VOTE_ANY || opcode == SHADER_OPCODE_VOTE_ALL); const bool any = opcode == SHADER_OPCODE_VOTE_ANY; /* This code is going to manipulate the results of flag mask, so clear it to * avoid any residual value from disabled channels. */ brw_reg flag = brw_fill_flag(bld, 0); /* Mask of invocations where condition is true, note that mask is * replicated to each invocation. */ bld.CMP(bld.null_reg_ud(), src, brw_imm_ud(0u), BRW_CONDITIONAL_NZ); brw_reg cond_mask = bld.vgrf(BRW_TYPE_UD); bld.MOV(cond_mask, flag); /* Mask of invocations in the quad, each invocation will get * all the bits set for their quad, i.e. invocations 0-3 will have * 0b...1111, invocations 4-7 will have 0b...11110000 and so on. */ brw_reg invoc_ud = bld.vgrf(BRW_TYPE_UD); bld.MOV(invoc_ud, bld.LOAD_SUBGROUP_INVOCATION()); brw_reg quad_mask = bld.SHL(brw_imm_ud(0xF), bld.AND(invoc_ud, brw_imm_ud(0xFFFFFFFC))); /* An invocation will have bits set for each quad that passes the * condition. This is uniform among each quad. */ brw_reg tmp = bld.AND(cond_mask, quad_mask); if (any) { bld.CMP(retype(dst, BRW_TYPE_UD), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ); } else { /* Filter out quad_mask to include only active channels. */ brw_reg active = bld.vgrf(BRW_TYPE_UD); bld.exec_all().emit(SHADER_OPCODE_LOAD_LIVE_CHANNELS, active); bld.MOV(active, brw_reg(component(active, 0))); bld.AND(quad_mask, quad_mask, active); bld.CMP(retype(dst, BRW_TYPE_UD), tmp, quad_mask, BRW_CONDITIONAL_Z); } } static bool brw_lower_vote(fs_visitor &s, bblock_t *block, fs_inst *inst) { const brw_builder bld(&s, block, inst); brw_reg dst = inst->dst; brw_reg src = inst->src[0]; unsigned cluster_size; if (inst->sources > 1) { assert(inst->src[1].file == IMM); cluster_size = inst->src[1].ud; } else { cluster_size = s.dispatch_width; } if (cluster_size == s.dispatch_width) { brw_lower_dispatch_width_vote(bld, inst->opcode, dst, src); } else { assert(cluster_size == 4); if (s.devinfo->ver < 20) brw_lower_quad_vote_gfx9(bld, inst->opcode, dst, src); else brw_lower_quad_vote_gfx20(bld, inst->opcode, dst, src); } inst->remove(block); return true; } static bool brw_lower_ballot(fs_visitor &s, bblock_t *block, fs_inst *inst) { const brw_builder bld(&s, block, inst); brw_reg value = retype(inst->src[0], BRW_TYPE_UD); brw_reg dst = inst->dst; const brw_builder xbld = dst.is_scalar ? bld.scalar_group() : bld; if (value.file == IMM) { /* Implement a fast-path for ballot(true). */ if (!value.is_zero()) { brw_reg tmp = bld.vgrf(BRW_TYPE_UD); bld.exec_all().emit(SHADER_OPCODE_LOAD_LIVE_CHANNELS, tmp); xbld.MOV(dst, brw_reg(component(tmp, 0))); } else { brw_reg zero = retype(brw_imm_uq(0), dst.type); xbld.MOV(dst, zero); } } else { brw_reg flag = brw_fill_flag(bld, 0); bld.CMP(bld.null_reg_ud(), value, brw_imm_ud(0u), BRW_CONDITIONAL_NZ); xbld.MOV(dst, flag); } inst->remove(block); return true; } static bool brw_lower_quad_swap(fs_visitor &s, bblock_t *block, fs_inst *inst) { const brw_builder bld(&s, block, inst); assert(inst->dst.type == inst->src[0].type); brw_reg dst = inst->dst; brw_reg value = inst->src[0]; assert(inst->src[1].file == IMM); enum brw_swap_direction dir = (enum brw_swap_direction)inst->src[1].ud; switch (dir) { case BRW_SWAP_HORIZONTAL: { const brw_reg tmp = bld.vgrf(value.type); const brw_builder ubld = bld.exec_all().group(s.dispatch_width / 2, 0); const brw_reg src_left = horiz_stride(value, 2); const brw_reg src_right = horiz_stride(horiz_offset(value, 1), 2); const brw_reg tmp_left = horiz_stride(tmp, 2); const brw_reg tmp_right = horiz_stride(horiz_offset(tmp, 1), 2); ubld.MOV(tmp_left, src_right); ubld.MOV(tmp_right, src_left); bld.MOV(retype(dst, value.type), tmp); break; } case BRW_SWAP_VERTICAL: case BRW_SWAP_DIAGONAL: { if (brw_type_size_bits(value.type) == 32) { /* For 32-bit, we can use a SIMD4x2 instruction to do this easily */ const unsigned swizzle = dir == BRW_SWAP_VERTICAL ? BRW_SWIZZLE4(2,3,0,1) : BRW_SWIZZLE4(3,2,1,0); const brw_reg tmp = bld.vgrf(value.type); const brw_builder ubld = bld.exec_all(); ubld.emit(SHADER_OPCODE_QUAD_SWIZZLE, tmp, value, brw_imm_ud(swizzle)); bld.MOV(dst, tmp); } else { /* For larger data types, we have to either emit dispatch_width many * MOVs or else fall back to doing indirects. */ const unsigned xor_mask = dir == BRW_SWAP_VERTICAL ? 0x2 : 0x3; brw_reg idx = bld.vgrf(BRW_TYPE_W); bld.XOR(idx, bld.LOAD_SUBGROUP_INVOCATION(), brw_imm_w(xor_mask)); bld.emit(SHADER_OPCODE_SHUFFLE, dst, value, idx); } break; } } inst->remove(block); return true; } static bool brw_lower_read_from_live_channel(fs_visitor &s, bblock_t *block, fs_inst *inst) { const brw_builder bld(&s, block, inst); assert(inst->sources == 1); assert(inst->dst.type == inst->src[0].type); brw_reg dst = inst->dst; brw_reg value = inst->src[0]; bld.MOV(dst, bld.emit_uniformize(value)); inst->remove(block); return true; } static bool brw_lower_read_from_channel(fs_visitor &s, bblock_t *block, fs_inst *inst) { const brw_builder bld(&s, block, inst); assert(inst->sources == 2); assert(inst->dst.type == inst->src[0].type); brw_reg dst = inst->dst; brw_reg value = inst->src[0]; brw_reg index = retype(inst->src[1], BRW_TYPE_UD); /* When for some reason the subgroup_size picked by NIR is larger than * the dispatch size picked by the backend (this could happen in RT, * FS), bound the invocation to the dispatch size. */ const unsigned dispatch_width_mask = s.dispatch_width - 1; if (index.file == IMM) { /* Always apply mask here since it is cheap. */ bld.MOV(dst, component(value, index.ud & dispatch_width_mask)); } else { if (s.api_subgroup_size == 0 || s.dispatch_width < s.api_subgroup_size) index = bld.AND(index, brw_imm_ud(dispatch_width_mask)); brw_reg tmp = bld.BROADCAST(value, bld.emit_uniformize(index)); bld.MOV(dst, tmp); } inst->remove(block); return true; } bool brw_lower_subgroup_ops(fs_visitor &s) { bool progress = false; foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) { switch (inst->opcode) { case SHADER_OPCODE_REDUCE: progress |= brw_lower_reduce(s, block, inst); break; case SHADER_OPCODE_INCLUSIVE_SCAN: case SHADER_OPCODE_EXCLUSIVE_SCAN: progress |= brw_lower_scan(s, block, inst); break; case SHADER_OPCODE_VOTE_ANY: case SHADER_OPCODE_VOTE_ALL: case SHADER_OPCODE_VOTE_EQUAL: progress |= brw_lower_vote(s, block, inst); break; case SHADER_OPCODE_BALLOT: progress |= brw_lower_ballot(s, block, inst); break; case SHADER_OPCODE_QUAD_SWAP: progress |= brw_lower_quad_swap(s, block, inst); break; case SHADER_OPCODE_READ_FROM_LIVE_CHANNEL: progress |= brw_lower_read_from_live_channel(s, block, inst); break; case SHADER_OPCODE_READ_FROM_CHANNEL: progress |= brw_lower_read_from_channel(s, block, inst); break; default: /* Nothing to do. */ break; } } if (progress) s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); return progress; }