/* * Copyright © 2012 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file * * Support for global copy propagation in two passes: A local pass that does * intra-block copy (and constant) propagation, and a global pass that uses * dataflow analysis on the copies available at the end of each block to re-do * local copy propagation with more copies available. * * See Muchnick's Advanced Compiler Design and Implementation, section * 12.5 (p356). */ #include "util/bitset.h" #include "util/u_math.h" #include "util/rb_tree.h" #include "brw_fs.h" #include "brw_fs_live_variables.h" #include "brw_cfg.h" #include "brw_eu.h" using namespace brw; namespace { /* avoid conflict with opt_copy_propagation_elements */ struct acp_entry { struct rb_node by_dst; struct rb_node by_src; brw_reg dst; brw_reg src; unsigned global_idx; unsigned size_written; unsigned size_read; enum opcode opcode; bool is_partial_write; bool force_writemask_all; }; /** * Compare two acp_entry::src.nr * * This is intended to be used as the comparison function for rb_tree. */ static int cmp_entry_dst_entry_dst(const struct rb_node *a_node, const struct rb_node *b_node) { const struct acp_entry *a_entry = rb_node_data(struct acp_entry, a_node, by_dst); const struct acp_entry *b_entry = rb_node_data(struct acp_entry, b_node, by_dst); return a_entry->dst.nr - b_entry->dst.nr; } static int cmp_entry_dst_nr(const struct rb_node *a_node, const void *b_key) { const struct acp_entry *a_entry = rb_node_data(struct acp_entry, a_node, by_dst); return a_entry->dst.nr - (uintptr_t) b_key; } static int cmp_entry_src_entry_src(const struct rb_node *a_node, const struct rb_node *b_node) { const struct acp_entry *a_entry = rb_node_data(struct acp_entry, a_node, by_src); const struct acp_entry *b_entry = rb_node_data(struct acp_entry, b_node, by_src); return a_entry->src.nr - b_entry->src.nr; } /** * Compare an acp_entry::src.nr with a raw nr. * * This is intended to be used as the comparison function for rb_tree. */ static int cmp_entry_src_nr(const struct rb_node *a_node, const void *b_key) { const struct acp_entry *a_entry = rb_node_data(struct acp_entry, a_node, by_src); return a_entry->src.nr - (uintptr_t) b_key; } class acp_forward_iterator { public: acp_forward_iterator(struct rb_node *n, unsigned offset) : curr(n), next(nullptr), offset(offset) { next = rb_node_next_or_null(curr); } acp_forward_iterator &operator++() { curr = next; next = rb_node_next_or_null(curr); return *this; } bool operator!=(const acp_forward_iterator &other) const { return curr != other.curr; } struct acp_entry *operator*() const { /* This open-codes part of rb_node_data. */ return curr != NULL ? (struct acp_entry *)(((char *)curr) - offset) : NULL; } private: struct rb_node *curr; struct rb_node *next; unsigned offset; }; struct acp { DECLARE_LINEAR_ALLOC_CXX_OPERATORS(acp); struct rb_tree by_dst; struct rb_tree by_src; acp() { rb_tree_init(&by_dst); rb_tree_init(&by_src); } acp_forward_iterator begin() { return acp_forward_iterator(rb_tree_first(&by_src), rb_tree_offsetof(struct acp_entry, by_src, 0)); } const acp_forward_iterator end() const { return acp_forward_iterator(nullptr, 0); } unsigned length() { unsigned l = 0; for (rb_node *iter = rb_tree_first(&by_src); iter != NULL; iter = rb_node_next(iter)) l++; return l; } void add(acp_entry *entry) { rb_tree_insert(&by_dst, &entry->by_dst, cmp_entry_dst_entry_dst); rb_tree_insert(&by_src, &entry->by_src, cmp_entry_src_entry_src); } void remove(acp_entry *entry) { rb_tree_remove(&by_dst, &entry->by_dst); rb_tree_remove(&by_src, &entry->by_src); } acp_forward_iterator find_by_src(unsigned nr) { struct rb_node *rbn = rb_tree_search(&by_src, (void *)(uintptr_t) nr, cmp_entry_src_nr); return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry, by_src, rbn)); } acp_forward_iterator find_by_dst(unsigned nr) { struct rb_node *rbn = rb_tree_search(&by_dst, (void *)(uintptr_t) nr, cmp_entry_dst_nr); return acp_forward_iterator(rbn, rb_tree_offsetof(struct acp_entry, by_dst, rbn)); } }; struct block_data { /** * Which entries in the fs_copy_prop_dataflow acp table are live at the * start of this block. This is the useful output of the analysis, since * it lets us plug those into the local copy propagation on the second * pass. */ BITSET_WORD *livein; /** * Which entries in the fs_copy_prop_dataflow acp table are live at the end * of this block. This is done in initial setup from the per-block acps * returned by the first local copy prop pass. */ BITSET_WORD *liveout; /** * Which entries in the fs_copy_prop_dataflow acp table are generated by * instructions in this block which reach the end of the block without * being killed. */ BITSET_WORD *copy; /** * Which entries in the fs_copy_prop_dataflow acp table are killed over the * course of this block. */ BITSET_WORD *kill; /** * Which entries in the fs_copy_prop_dataflow acp table are guaranteed to * have a fully uninitialized destination at the end of this block. */ BITSET_WORD *undef; /** * Which entries in the fs_copy_prop_dataflow acp table can the * start of this block be reached from. Note that this is a weaker * condition than livein. */ BITSET_WORD *reachin; /** * Which entries in the fs_copy_prop_dataflow acp table are * overwritten by an instruction with channel masks inconsistent * with the copy instruction (e.g. due to force_writemask_all). * Such an overwrite can cause the copy entry to become invalid * even if the copy instruction is subsequently re-executed for any * given channel i, since the execution of the overwrite for * channel i may corrupt other channels j!=i inactive for the * subsequent copy. */ BITSET_WORD *exec_mismatch; }; class fs_copy_prop_dataflow { public: fs_copy_prop_dataflow(linear_ctx *lin_ctx, cfg_t *cfg, const fs_live_variables &live, struct acp *out_acp); void setup_initial_values(); void run(); void dump_block_data() const UNUSED; cfg_t *cfg; const fs_live_variables &live; acp_entry **acp; int num_acp; int bitset_words; struct block_data *bd; }; } /* anonymous namespace */ fs_copy_prop_dataflow::fs_copy_prop_dataflow(linear_ctx *lin_ctx, cfg_t *cfg, const fs_live_variables &live, struct acp *out_acp) : cfg(cfg), live(live) { bd = linear_zalloc_array(lin_ctx, struct block_data, cfg->num_blocks); num_acp = 0; foreach_block (block, cfg) num_acp += out_acp[block->num].length(); bitset_words = BITSET_WORDS(num_acp); foreach_block (block, cfg) { bd[block->num].livein = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); bd[block->num].liveout = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); bd[block->num].copy = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); bd[block->num].kill = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); bd[block->num].undef = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); bd[block->num].reachin = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); bd[block->num].exec_mismatch = linear_zalloc_array(lin_ctx, BITSET_WORD, bitset_words); } acp = linear_zalloc_array(lin_ctx, struct acp_entry *, num_acp); int next_acp = 0; foreach_block (block, cfg) { for (auto iter = out_acp[block->num].begin(); iter != out_acp[block->num].end(); ++iter) { acp[next_acp] = *iter; (*iter)->global_idx = next_acp; /* opt_copy_propagation_local populates out_acp with copies created * in a block which are still live at the end of the block. This * is exactly what we want in the COPY set. */ BITSET_SET(bd[block->num].copy, next_acp); next_acp++; } } assert(next_acp == num_acp); setup_initial_values(); run(); } /** * Like reg_offset, but register must be VGRF or FIXED_GRF. */ static inline unsigned grf_reg_offset(const brw_reg &r) { return (r.file == VGRF ? 0 : r.nr) * REG_SIZE + r.offset + (r.file == FIXED_GRF ? r.subnr : 0); } /** * Like regions_overlap, but register must be VGRF or FIXED_GRF. */ static inline bool grf_regions_overlap(const brw_reg &r, unsigned dr, const brw_reg &s, unsigned ds) { return reg_space(r) == reg_space(s) && !(grf_reg_offset(r) + dr <= grf_reg_offset(s) || grf_reg_offset(s) + ds <= grf_reg_offset(r)); } /** * Set up initial values for each of the data flow sets, prior to running * the fixed-point algorithm. */ void fs_copy_prop_dataflow::setup_initial_values() { /* Initialize the COPY and KILL sets. */ { struct acp acp_table; /* First, get all the KILLs for instructions which overwrite ACP * destinations. */ for (int i = 0; i < num_acp; i++) acp_table.add(acp[i]); foreach_block (block, cfg) { foreach_inst_in_block(fs_inst, inst, block) { if (inst->dst.file != VGRF && inst->dst.file != FIXED_GRF) continue; for (auto iter = acp_table.find_by_src(inst->dst.nr); iter != acp_table.end() && (*iter)->src.nr == inst->dst.nr; ++iter) { if (grf_regions_overlap(inst->dst, inst->size_written, (*iter)->src, (*iter)->size_read)) { BITSET_SET(bd[block->num].kill, (*iter)->global_idx); if (inst->force_writemask_all && !(*iter)->force_writemask_all) BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx); } } if (inst->dst.file != VGRF) continue; for (auto iter = acp_table.find_by_dst(inst->dst.nr); iter != acp_table.end() && (*iter)->dst.nr == inst->dst.nr; ++iter) { if (grf_regions_overlap(inst->dst, inst->size_written, (*iter)->dst, (*iter)->size_written)) { BITSET_SET(bd[block->num].kill, (*iter)->global_idx); if (inst->force_writemask_all && !(*iter)->force_writemask_all) BITSET_SET(bd[block->num].exec_mismatch, (*iter)->global_idx); } } } } } /* Populate the initial values for the livein and liveout sets. For the * block at the start of the program, livein = 0 and liveout = copy. * For the others, set liveout and livein to ~0 (the universal set). */ foreach_block (block, cfg) { if (block->parents.is_empty()) { for (int i = 0; i < bitset_words; i++) { bd[block->num].livein[i] = 0u; bd[block->num].liveout[i] = bd[block->num].copy[i]; } } else { for (int i = 0; i < bitset_words; i++) { bd[block->num].liveout[i] = ~0u; bd[block->num].livein[i] = ~0u; } } } /* Initialize the undef set. */ foreach_block (block, cfg) { for (int i = 0; i < num_acp; i++) { BITSET_SET(bd[block->num].undef, i); for (unsigned off = 0; off < acp[i]->size_written; off += REG_SIZE) { if (BITSET_TEST(live.block_data[block->num].defout, live.var_from_reg(byte_offset(acp[i]->dst, off)))) BITSET_CLEAR(bd[block->num].undef, i); } } } } /** * Walk the set of instructions in the block, marking which entries in the acp * are killed by the block. */ void fs_copy_prop_dataflow::run() { bool progress; do { progress = false; foreach_block (block, cfg) { if (block->parents.is_empty()) continue; for (int i = 0; i < bitset_words; i++) { const BITSET_WORD old_liveout = bd[block->num].liveout[i]; const BITSET_WORD old_reachin = bd[block->num].reachin[i]; BITSET_WORD livein_from_any_block = 0; /* Update livein for this block. If a copy is live out of all * parent blocks, it's live coming in to this block. */ bd[block->num].livein[i] = ~0u; foreach_list_typed(bblock_link, parent_link, link, &block->parents) { bblock_t *parent = parent_link->block; /* Consider ACP entries with a known-undefined destination to * be available from the parent. This is valid because we're * free to set the undefined variable equal to the source of * the ACP entry without breaking the application's * expectations, since the variable is undefined. */ bd[block->num].livein[i] &= (bd[parent->num].liveout[i] | bd[parent->num].undef[i]); livein_from_any_block |= bd[parent->num].liveout[i]; /* Update reachin for this block. If the end of any * parent block is reachable from the copy, the start * of this block is reachable from it as well. */ bd[block->num].reachin[i] |= (bd[parent->num].reachin[i] | bd[parent->num].copy[i]); } /* Limit to the set of ACP entries that can possibly be available * at the start of the block, since propagating from a variable * which is guaranteed to be undefined (rather than potentially * undefined for some dynamic control-flow paths) doesn't seem * particularly useful. */ bd[block->num].livein[i] &= livein_from_any_block; /* Update liveout for this block. */ bd[block->num].liveout[i] = bd[block->num].copy[i] | (bd[block->num].livein[i] & ~bd[block->num].kill[i]); if (old_liveout != bd[block->num].liveout[i] || old_reachin != bd[block->num].reachin[i]) progress = true; } } } while (progress); /* Perform a second fixed-point pass in order to propagate the * exec_mismatch bitsets. Note that this requires an accurate * value of the reachin bitsets as input, which isn't available * until the end of the first propagation pass, so this loop cannot * be folded into the previous one. */ do { progress = false; foreach_block (block, cfg) { for (int i = 0; i < bitset_words; i++) { const BITSET_WORD old_exec_mismatch = bd[block->num].exec_mismatch[i]; /* Update exec_mismatch for this block. If the end of a * parent block is reachable by an overwrite with * inconsistent execution masking, the start of this block * is reachable by such an overwrite as well. */ foreach_list_typed(bblock_link, parent_link, link, &block->parents) { bblock_t *parent = parent_link->block; bd[block->num].exec_mismatch[i] |= (bd[parent->num].exec_mismatch[i] & bd[parent->num].reachin[i]); } /* Only consider overwrites with inconsistent execution * masking if they are reachable from the copy, since * overwrites unreachable from a copy are harmless to that * copy. */ bd[block->num].exec_mismatch[i] &= bd[block->num].reachin[i]; if (old_exec_mismatch != bd[block->num].exec_mismatch[i]) progress = true; } } } while (progress); } void fs_copy_prop_dataflow::dump_block_data() const { foreach_block (block, cfg) { fprintf(stderr, "Block %d [%d, %d] (parents ", block->num, block->start_ip, block->end_ip); foreach_list_typed(bblock_link, link, link, &block->parents) { bblock_t *parent = link->block; fprintf(stderr, "%d ", parent->num); } fprintf(stderr, "):\n"); fprintf(stderr, " livein = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].livein[i]); fprintf(stderr, ", liveout = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].liveout[i]); fprintf(stderr, ",\n copy = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].copy[i]); fprintf(stderr, ", kill = 0x"); for (int i = 0; i < bitset_words; i++) fprintf(stderr, "%08x", bd[block->num].kill[i]); fprintf(stderr, "\n"); } } static bool is_logic_op(enum opcode opcode) { return (opcode == BRW_OPCODE_AND || opcode == BRW_OPCODE_OR || opcode == BRW_OPCODE_XOR || opcode == BRW_OPCODE_NOT); } static bool can_take_stride(fs_inst *inst, brw_reg_type dst_type, unsigned arg, unsigned stride, const struct brw_compiler *compiler) { const struct intel_device_info *devinfo = compiler->devinfo; if (stride > 4) return false; /* Bail if the channels of the source need to be aligned to the byte offset * of the corresponding channel of the destination, and the provided stride * would break this restriction. */ if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) && !(brw_type_size_bytes(inst->src[arg].type) * stride == brw_type_size_bytes(dst_type) * inst->dst.stride || stride == 0)) return false; /* 3-source instructions can only be Align16, which restricts what strides * they can take. They can only take a stride of 1 (the usual case), or 0 * with a special "repctrl" bit. But the repctrl bit doesn't work for * 64-bit datatypes, so if the source type is 64-bit then only a stride of * 1 is allowed. From the Broadwell PRM, Volume 7 "3D Media GPGPU", page * 944: * * This is applicable to 32b datatypes and 16b datatype. 64b datatypes * cannot use the replicate control. */ if (inst->is_3src(compiler)) { if (brw_type_size_bytes(inst->src[arg].type) > 4) return stride == 1; else return stride == 1 || stride == 0; } if (inst->is_math()) { /* Wa_22016140776: * * Scalar broadcast on HF math (packed or unpacked) must not be used. * Compiler must use a mov instruction to expand the scalar value to * a vector before using in a HF (packed or unpacked) math operation. * * Prevent copy propagating a scalar value into a math instruction. */ if (intel_needs_workaround(devinfo, 22016140776) && stride == 0 && inst->src[arg].type == BRW_TYPE_HF) { return false; } /* From the Broadwell PRM, Volume 2a "Command Reference - Instructions", * page 391 ("Extended Math Function"): * * The following restrictions apply for align1 mode: Scalar source * is supported. Source and destination horizontal stride must be * the same. */ return stride == inst->dst.stride || stride == 0; } return true; } static bool instruction_requires_packed_data(fs_inst *inst) { switch (inst->opcode) { case FS_OPCODE_DDX_FINE: case FS_OPCODE_DDX_COARSE: case FS_OPCODE_DDY_FINE: case FS_OPCODE_DDY_COARSE: case SHADER_OPCODE_QUAD_SWIZZLE: case SHADER_OPCODE_QUAD_SWAP: return true; default: return false; } } static bool try_copy_propagate(const brw_compiler *compiler, fs_inst *inst, acp_entry *entry, int arg, const brw::simple_allocator &alloc, uint8_t max_polygons) { if (inst->src[arg].file != VGRF) return false; const struct intel_device_info *devinfo = compiler->devinfo; assert(entry->src.file == VGRF || entry->src.file == UNIFORM || entry->src.file == ATTR || entry->src.file == FIXED_GRF); /* Avoid propagating a LOAD_PAYLOAD instruction into another if there is a * good chance that we'll be able to eliminate the latter through register * coalescing. If only part of the sources of the second LOAD_PAYLOAD can * be simplified through copy propagation we would be making register * coalescing impossible, ending up with unnecessary copies in the program. * This is also the case for is_multi_copy_payload() copies that can only * be coalesced when the instruction is lowered into a sequence of MOVs. * * Worse -- In cases where the ACP entry was the result of CSE combining * multiple LOAD_PAYLOAD subexpressions, propagating the first LOAD_PAYLOAD * into the second would undo the work of CSE, leading to an infinite * optimization loop. Avoid this by detecting LOAD_PAYLOAD copies from CSE * temporaries which should match is_coalescing_payload(). */ if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD && (is_coalescing_payload(devinfo, alloc, inst) || is_multi_copy_payload(devinfo, inst))) return false; assert(entry->dst.file == VGRF); if (inst->src[arg].nr != entry->dst.nr) return false; /* Bail if inst is reading a range that isn't contained in the range * that entry is writing. */ if (!region_contained_in(inst->src[arg], inst->size_read(devinfo, arg), entry->dst, entry->size_written)) return false; /* Send messages with EOT set are restricted to use g112-g127 (and we * sometimes need g127 for other purposes), so avoid copy propagating * anything that would make it impossible to satisfy that restriction. */ if (inst->eot) { /* Don't propagate things that are already pinned. */ if (entry->src.file != VGRF) return false; /* We might be propagating from a large register, while the SEND only * is reading a portion of it (say the .A channel in an RGBA value). * We need to pin both split SEND sources in g112-g126/127, so only * allow this if the registers aren't too large. */ if (inst->opcode == SHADER_OPCODE_SEND && inst->sources >= 4 && entry->src.file == VGRF) { int other_src = arg == 2 ? 3 : 2; unsigned other_size = inst->src[other_src].file == VGRF ? alloc.sizes[inst->src[other_src].nr] : inst->size_read(devinfo, other_src); unsigned prop_src_size = alloc.sizes[entry->src.nr]; if (other_size + prop_src_size > 15) return false; } } /* we can't generally copy-propagate UD negations because we * can end up accessing the resulting values as signed integers * instead. See also resolve_ud_negate() and comment in * brw_generator::generate_code. */ if (entry->src.type == BRW_TYPE_UD && entry->src.negate) return false; bool has_source_modifiers = entry->src.abs || entry->src.negate; if (has_source_modifiers && !inst->can_do_source_mods(devinfo)) return false; /* Reject cases that would violate register regioning restrictions. */ if ((entry->src.file == UNIFORM || !entry->src.is_contiguous()) && (inst->is_send_from_grf() || inst->uses_indirect_addressing())) { return false; } /* Some instructions implemented in the generator backend, such as * derivatives, assume that their operands are packed so we can't * generally propagate strided regions to them. */ const unsigned entry_stride = (entry->src.file == FIXED_GRF ? 1 : entry->src.stride); if (instruction_requires_packed_data(inst) && entry_stride != 1) return false; const brw_reg_type dst_type = (has_source_modifiers && entry->dst.type != inst->src[arg].type) ? entry->dst.type : inst->dst.type; /* Bail if the result of composing both strides would exceed the * hardware limit. */ if (!can_take_stride(inst, dst_type, arg, entry_stride * inst->src[arg].stride, compiler)) return false; /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU: * EU Overview * Register Region Restrictions * Special Requirements for Handling Double Precision Data Types : * * "When source or destination datatype is 64b or operation is integer * DWord multiply, regioning in Align1 must follow these rules: * * 1. Source and Destination horizontal stride must be aligned to the * same qword. * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride. * 3. Source and Destination offset must be the same, except the case * of scalar source." * * Most of this is already checked in can_take_stride(), we're only left * with checking 3. */ if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) && entry_stride != 0 && (reg_offset(inst->dst) % (REG_SIZE * reg_unit(devinfo))) != (reg_offset(entry->src) % (REG_SIZE * reg_unit(devinfo)))) return false; /* * Bail if the composition of both regions would be affected by the Xe2+ * regioning restrictions that apply to integer types smaller than a dword. * See BSpec #56640 for details. */ const brw_reg tmp = horiz_stride(entry->src, inst->src[arg].stride); if (has_subdword_integer_region_restriction(devinfo, inst, &tmp, 1)) return false; /* The <8;8,0> regions used for FS attributes in multipolygon * dispatch mode could violate regioning restrictions, don't copy * propagate them in such cases. */ if (entry->src.file == ATTR && max_polygons > 1 && (has_dst_aligned_region_restriction(devinfo, inst, dst_type) || instruction_requires_packed_data(inst) || (inst->is_3src(compiler) && arg == 2) || entry->dst.type != inst->src[arg].type)) return false; /* Bail if the source FIXED_GRF region of the copy cannot be trivially * composed with the source region of the instruction -- E.g. because the * copy uses some extended stride greater than 4 not supported natively by * the hardware as a horizontal stride, or because instruction compression * could require us to use a vertical stride shorter than a GRF. */ if (entry->src.file == FIXED_GRF && (inst->src[arg].stride > 4 || inst->dst.component_size(inst->exec_size) > inst->src[arg].component_size(inst->exec_size))) return false; /* Bail if the instruction type is larger than the execution type of the * copy, what implies that each channel is reading multiple channels of the * destination of the copy, and simply replacing the sources would give a * program with different semantics. */ if (brw_type_size_bits(entry->dst.type) < brw_type_size_bits(inst->src[arg].type) || (entry->is_partial_write && inst->opcode != BRW_OPCODE_MOV)) { return false; } /* Bail if the result of composing both strides cannot be expressed * as another stride. This avoids, for example, trying to transform * this: * * MOV (8) rX<1>UD rY<0;1,0>UD * FOO (8) ... rX<8;8,1>UW * * into this: * * FOO (8) ... rY<0;1,0>UW * * Which would have different semantics. */ if (entry_stride != 1 && (inst->src[arg].stride * brw_type_size_bytes(inst->src[arg].type)) % brw_type_size_bytes(entry->src.type) != 0) return false; /* Since semantics of source modifiers are type-dependent we need to * ensure that the meaning of the instruction remains the same if we * change the type. If the sizes of the types are different the new * instruction will read a different amount of data than the original * and the semantics will always be different. */ if (has_source_modifiers && entry->dst.type != inst->src[arg].type && (!inst->can_change_types() || brw_type_size_bits(entry->dst.type) != brw_type_size_bits(inst->src[arg].type))) return false; if ((entry->src.negate || entry->src.abs) && is_logic_op(inst->opcode)) { return false; } /* Save the offset of inst->src[arg] relative to entry->dst for it to be * applied later. */ const unsigned rel_offset = inst->src[arg].offset - entry->dst.offset; /* Fold the copy into the instruction consuming it. */ inst->src[arg].file = entry->src.file; inst->src[arg].nr = entry->src.nr; inst->src[arg].subnr = entry->src.subnr; inst->src[arg].offset = entry->src.offset; /* Compose the strides of both regions. */ if (entry->src.file == FIXED_GRF) { if (inst->src[arg].stride) { const unsigned orig_width = 1 << entry->src.width; const unsigned reg_width = REG_SIZE / (brw_type_size_bytes(inst->src[arg].type) * inst->src[arg].stride); inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1; inst->src[arg].hstride = cvt(inst->src[arg].stride); inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width; } else { inst->src[arg].vstride = inst->src[arg].hstride = inst->src[arg].width = 0; } inst->src[arg].stride = 1; /* Hopefully no Align16 around here... */ assert(entry->src.swizzle == BRW_SWIZZLE_XYZW); inst->src[arg].swizzle = entry->src.swizzle; } else { inst->src[arg].stride *= entry->src.stride; } /* Compute the first component of the copy that the instruction is * reading, and the base byte offset within that component. */ assert(entry->dst.stride == 1); const unsigned component = rel_offset / brw_type_size_bytes(entry->dst.type); const unsigned suboffset = rel_offset % brw_type_size_bytes(entry->dst.type); /* Calculate the byte offset at the origin of the copy of the given * component and suboffset. */ inst->src[arg] = byte_offset(inst->src[arg], component * entry_stride * brw_type_size_bytes(entry->src.type) + suboffset); if (has_source_modifiers) { if (entry->dst.type != inst->src[arg].type) { /* We are propagating source modifiers from a MOV with a different * type. If we got here, then we can just change the source and * destination types of the instruction and keep going. */ for (int i = 0; i < inst->sources; i++) { inst->src[i].type = entry->dst.type; } inst->dst.type = entry->dst.type; } if (!inst->src[arg].abs) { inst->src[arg].abs = entry->src.abs; inst->src[arg].negate ^= entry->src.negate; } } return true; } static bool try_constant_propagate_value(brw_reg val, brw_reg_type dst_type, fs_inst *inst, int arg) { bool progress = false; if (brw_type_size_bytes(val.type) > 4) return false; /* If the size of the use type is smaller than the size of the entry, * clamp the value to the range of the use type. This enables constant * copy propagation in cases like * * * mov(8) g12<1>UD 0x0000000cUD * ... * mul(8) g47<1>D g86<8,8,1>D g12<16,8,2>W */ if (brw_type_size_bits(inst->src[arg].type) < brw_type_size_bits(dst_type)) { if (brw_type_size_bytes(inst->src[arg].type) != 2 || brw_type_size_bytes(dst_type) != 4) return false; assert(inst->src[arg].subnr == 0 || inst->src[arg].subnr == 2); /* When subnr is 0, we want the lower 16-bits, and when it's 2, we * want the upper 16-bits. No other values of subnr are valid for a * UD source. */ const uint16_t v = inst->src[arg].subnr == 2 ? val.ud >> 16 : val.ud; val.ud = v | (uint32_t(v) << 16); } val.type = inst->src[arg].type; if (inst->src[arg].abs) { if (is_logic_op(inst->opcode) || !brw_reg_abs_immediate(&val)) { return false; } } if (inst->src[arg].negate) { if (is_logic_op(inst->opcode) || !brw_reg_negate_immediate(&val)) { return false; } } switch (inst->opcode) { case BRW_OPCODE_MOV: case SHADER_OPCODE_LOAD_PAYLOAD: case SHADER_OPCODE_POW: case FS_OPCODE_PACK: inst->src[arg] = val; progress = true; break; case BRW_OPCODE_SUBB: if (arg == 1) { inst->src[arg] = val; progress = true; } break; case BRW_OPCODE_MACH: case BRW_OPCODE_MUL: case SHADER_OPCODE_MULH: case BRW_OPCODE_ADD: case BRW_OPCODE_XOR: case BRW_OPCODE_ADDC: if (arg == 1) { inst->src[arg] = val; progress = true; } else if (arg == 0 && inst->src[1].file != IMM) { /* We used to not copy propagate the constant in situations like * * mov(8) g8<1>D 0x7fffffffD * mul(8) g16<1>D g8<8,8,1>D g15<16,8,2>W * * On platforms that only have a 32x16 multiplier, this would * result in lowering the multiply to * * mul(8) g15<1>D g14<8,8,1>D 0xffffUW * mul(8) g16<1>D g14<8,8,1>D 0x7fffUW * add(8) g15.1<2>UW g15.1<16,8,2>UW g16<16,8,2>UW * * On Gfx8 and Gfx9, which have the full 32x32 multiplier, it * would results in * * mul(8) g16<1>D g15<16,8,2>W 0x7fffffffD * * Volume 2a of the Skylake PRM says: * * When multiplying a DW and any lower precision integer, the * DW operand must on src0. * * So it would have been invalid. However, brw_fs_combine_constants * will now "fix" the constant. */ if (inst->opcode == BRW_OPCODE_MUL && brw_type_size_bytes(inst->src[1].type) < 4 && (inst->src[0].type == BRW_TYPE_D || inst->src[0].type == BRW_TYPE_UD)) { inst->src[0] = val; inst->src[0].type = BRW_TYPE_D; progress = true; break; } /* Fit this constant in by commuting the operands. * Exception: we can't do this for 32-bit integer MUL/MACH * because it's asymmetric. * * The BSpec says for Broadwell that * * "When multiplying DW x DW, the dst cannot be accumulator." * * Integer MUL with a non-accumulator destination will be lowered * by lower_integer_multiplication(), so don't restrict it. */ if (((inst->opcode == BRW_OPCODE_MUL && inst->dst.is_accumulator()) || inst->opcode == BRW_OPCODE_MACH) && (inst->src[1].type == BRW_TYPE_D || inst->src[1].type == BRW_TYPE_UD)) break; inst->src[0] = inst->src[1]; inst->src[1] = val; progress = true; } break; case BRW_OPCODE_CMP: if (arg == 1) { inst->src[arg] = val; progress = true; } else if (arg == 0 && inst->src[1].file != IMM) { enum brw_conditional_mod new_cmod; new_cmod = brw_swap_cmod(inst->conditional_mod); if (new_cmod != BRW_CONDITIONAL_NONE) { /* Fit this constant in by swapping the operands and * flipping the test */ inst->src[0] = inst->src[1]; inst->src[1] = val; inst->conditional_mod = new_cmod; progress = true; } } break; case BRW_OPCODE_SEL: if (arg == 1) { inst->src[arg] = val; progress = true; } else if (arg == 0) { if (inst->src[1].file != IMM && (inst->conditional_mod == BRW_CONDITIONAL_NONE || /* Only GE and L are commutative. */ inst->conditional_mod == BRW_CONDITIONAL_GE || inst->conditional_mod == BRW_CONDITIONAL_L)) { inst->src[0] = inst->src[1]; inst->src[1] = val; /* If this was predicated, flipping operands means * we also need to flip the predicate. */ if (inst->conditional_mod == BRW_CONDITIONAL_NONE) { inst->predicate_inverse = !inst->predicate_inverse; } } else { inst->src[0] = val; } progress = true; } break; case BRW_OPCODE_CSEL: assert(inst->conditional_mod != BRW_CONDITIONAL_NONE); if (arg == 0 && inst->src[1].file != IMM && (!brw_type_is_float(inst->src[1].type) || inst->conditional_mod == BRW_CONDITIONAL_NZ || inst->conditional_mod == BRW_CONDITIONAL_Z)) { /* Only EQ and NE are commutative due to NaN issues. */ inst->src[0] = inst->src[1]; inst->src[1] = val; inst->conditional_mod = brw_negate_cmod(inst->conditional_mod); } else { /* While CSEL is a 3-source instruction, the last source should never * be a constant. We'll support that, but should it ever happen, we * should add support to the constant folding pass. */ inst->src[arg] = val; } progress = true; break; case FS_OPCODE_FB_WRITE_LOGICAL: /* The stencil and omask sources of FS_OPCODE_FB_WRITE_LOGICAL are * bit-cast using a strided region so they cannot be immediates. */ if (arg != FB_WRITE_LOGICAL_SRC_SRC_STENCIL && arg != FB_WRITE_LOGICAL_SRC_OMASK) { inst->src[arg] = val; progress = true; } break; case SHADER_OPCODE_INT_QUOTIENT: case SHADER_OPCODE_INT_REMAINDER: case BRW_OPCODE_ADD3: case BRW_OPCODE_AND: case BRW_OPCODE_ASR: case BRW_OPCODE_BFE: case BRW_OPCODE_BFI1: case BRW_OPCODE_BFI2: case BRW_OPCODE_ROL: case BRW_OPCODE_ROR: case BRW_OPCODE_SHL: case BRW_OPCODE_SHR: case BRW_OPCODE_OR: case SHADER_OPCODE_TEX_LOGICAL: case SHADER_OPCODE_TXD_LOGICAL: case SHADER_OPCODE_TXF_LOGICAL: case SHADER_OPCODE_TXL_LOGICAL: case SHADER_OPCODE_TXS_LOGICAL: case FS_OPCODE_TXB_LOGICAL: case SHADER_OPCODE_TXF_CMS_W_LOGICAL: case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: case SHADER_OPCODE_TXF_MCS_LOGICAL: case SHADER_OPCODE_LOD_LOGICAL: case SHADER_OPCODE_TG4_BIAS_LOGICAL: case SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL: case SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL: case SHADER_OPCODE_TG4_LOGICAL: case SHADER_OPCODE_TG4_OFFSET_LOGICAL: case SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL: case SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL: case SHADER_OPCODE_SAMPLEINFO_LOGICAL: case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: case SHADER_OPCODE_MEMORY_LOAD_LOGICAL: case SHADER_OPCODE_MEMORY_STORE_LOGICAL: case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL: case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD: case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL: case SHADER_OPCODE_BROADCAST: case BRW_OPCODE_MAD: case BRW_OPCODE_LRP: case FS_OPCODE_PACK_HALF_2x16_SPLIT: case SHADER_OPCODE_SHUFFLE: case SHADER_OPCODE_BALLOT: inst->src[arg] = val; progress = true; break; default: break; } return progress; } static bool try_constant_propagate(const struct intel_device_info *devinfo, fs_inst *inst, acp_entry *entry, int arg) { if (inst->src[arg].file != VGRF) return false; assert(entry->dst.file == VGRF); if (inst->src[arg].nr != entry->dst.nr) return false; /* Bail if inst is reading a range that isn't contained in the range * that entry is writing. */ if (!region_contained_in(inst->src[arg], inst->size_read(devinfo, arg), entry->dst, entry->size_written)) return false; /* If the size of the use type is larger than the size of the entry * type, the entry doesn't contain all of the data that the user is * trying to use. */ if (brw_type_size_bits(inst->src[arg].type) > brw_type_size_bits(entry->dst.type)) return false; return try_constant_propagate_value(entry->src, entry->dst.type, inst, arg); } static bool can_propagate_from(const struct intel_device_info *devinfo, fs_inst *inst) { return (inst->opcode == BRW_OPCODE_MOV && inst->dst.file == VGRF && ((inst->src[0].file == VGRF && !grf_regions_overlap(inst->dst, inst->size_written, inst->src[0], inst->size_read(devinfo, 0))) || inst->src[0].file == ATTR || inst->src[0].file == UNIFORM || inst->src[0].file == IMM || (inst->src[0].file == FIXED_GRF && inst->src[0].is_contiguous())) && /* is_raw_move also rejects source modifiers, but copy propagation * can handle that if the types are the same. */ ((inst->src[0].type == inst->dst.type && !inst->saturate) || inst->is_raw_move()) && /* Subset of !is_partial_write() conditions. */ !inst->predicate && inst->dst.is_contiguous()) || is_identity_payload(devinfo, FIXED_GRF, inst); } static void swap_srcs(fs_inst *inst, unsigned a, unsigned b) { const auto tmp = inst->src[a]; inst->src[a] = inst->src[b]; inst->src[b] = tmp; } static void commute_immediates(fs_inst *inst) { /* ADD3 can have the immediate as src0 or src2. Using one or the other * consistently makes assembly dumps more readable, so we arbitrarily * prefer src0. */ if (inst->opcode == BRW_OPCODE_ADD3) { if (inst->src[1].file == IMM) { if (inst->src[0].file != IMM) swap_srcs(inst, 0, 1); else if (inst->src[2].file != IMM) swap_srcs(inst, 1, 2); } } /* MAD can only have mutliplicand immediate in src2. */ if (inst->opcode == BRW_OPCODE_MAD) { if (inst->src[1].file == IMM && inst->src[2].file != IMM) swap_srcs(inst, 1, 2); } /* If only one of the sources of a 2-source, commutative instruction (e.g., * AND) is immediate, it must be src1. If both are immediate, opt_algebraic * should fold it away. */ if (inst->sources == 2 && inst->is_commutative() && inst->src[0].file == IMM && inst->src[1].file != IMM) { const auto src1 = inst->src[1]; inst->src[1] = inst->src[0]; inst->src[0] = src1; } } /* Walks a basic block and does copy propagation on it using the acp * list. */ static bool opt_copy_propagation_local(const brw_compiler *compiler, linear_ctx *lin_ctx, bblock_t *block, struct acp &acp, const brw::simple_allocator &alloc, uint8_t max_polygons) { const struct intel_device_info *devinfo = compiler->devinfo; bool progress = false; foreach_inst_in_block(fs_inst, inst, block) { /* Try propagating into this instruction. */ bool constant_progress = false; for (int i = inst->sources - 1; i >= 0; i--) { if (inst->src[i].file != VGRF) continue; for (auto iter = acp.find_by_dst(inst->src[i].nr); iter != acp.end() && (*iter)->dst.nr == inst->src[i].nr; ++iter) { if ((*iter)->src.file == IMM) { if (try_constant_propagate(devinfo, inst, *iter, i)) { constant_progress = true; break; } } else { if (try_copy_propagate(compiler, inst, *iter, i, alloc, max_polygons)) { progress = true; break; } } } } if (constant_progress) { commute_immediates(inst); brw_opt_constant_fold_instruction(compiler->devinfo, inst); progress = true; } /* kill the destination from the ACP */ if (inst->dst.file == VGRF || inst->dst.file == FIXED_GRF) { for (auto iter = acp.find_by_dst(inst->dst.nr); iter != acp.end() && (*iter)->dst.nr == inst->dst.nr; ++iter) { if (grf_regions_overlap((*iter)->dst, (*iter)->size_written, inst->dst, inst->size_written)) acp.remove(*iter); } for (auto iter = acp.find_by_src(inst->dst.nr); iter != acp.end() && (*iter)->src.nr == inst->dst.nr; ++iter) { /* Make sure we kill the entry if this instruction overwrites * _any_ of the registers that it reads */ if (grf_regions_overlap((*iter)->src, (*iter)->size_read, inst->dst, inst->size_written)) acp.remove(*iter); } } /* If this instruction's source could potentially be folded into the * operand of another instruction, add it to the ACP. */ if (can_propagate_from(devinfo, inst)) { acp_entry *entry = linear_zalloc(lin_ctx, acp_entry); entry->dst = inst->dst; entry->src = inst->src[0]; entry->size_written = inst->size_written; for (unsigned i = 0; i < inst->sources; i++) entry->size_read += inst->size_read(devinfo, i); entry->opcode = inst->opcode; entry->is_partial_write = inst->is_partial_write(); entry->force_writemask_all = inst->force_writemask_all; acp.add(entry); } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD && inst->dst.file == VGRF) { int offset = 0; for (int i = 0; i < inst->sources; i++) { int effective_width = i < inst->header_size ? 8 : inst->exec_size; const unsigned size_written = effective_width * brw_type_size_bytes(inst->src[i].type); if (inst->src[i].file == VGRF || (inst->src[i].file == FIXED_GRF && inst->src[i].is_contiguous())) { const brw_reg_type t = i < inst->header_size ? BRW_TYPE_UD : inst->src[i].type; brw_reg dst = byte_offset(retype(inst->dst, t), offset); if (!dst.equals(inst->src[i])) { acp_entry *entry = linear_zalloc(lin_ctx, acp_entry); entry->dst = dst; entry->src = retype(inst->src[i], t); entry->size_written = size_written; entry->size_read = inst->size_read(devinfo, i); entry->opcode = inst->opcode; entry->force_writemask_all = inst->force_writemask_all; acp.add(entry); } } offset += size_written; } } } return progress; } bool brw_opt_copy_propagation(fs_visitor &s) { bool progress = false; void *copy_prop_ctx = ralloc_context(NULL); linear_ctx *lin_ctx = linear_context(copy_prop_ctx); struct acp *out_acp = new (lin_ctx) acp[s.cfg->num_blocks]; const fs_live_variables &live = s.live_analysis.require(); /* First, walk through each block doing local copy propagation and getting * the set of copies available at the end of the block. */ foreach_block (block, s.cfg) { progress = opt_copy_propagation_local(s.compiler, lin_ctx, block, out_acp[block->num], s.alloc, s.max_polygons) || progress; /* If the destination of an ACP entry exists only within this block, * then there's no need to keep it for dataflow analysis. We can delete * it from the out_acp table and avoid growing the bitsets any bigger * than we absolutely have to. * * Because nothing in opt_copy_propagation_local touches the block * start/end IPs and opt_copy_propagation_local is incapable of * extending the live range of an ACP destination beyond the block, * it's safe to use the liveness information in this way. */ for (auto iter = out_acp[block->num].begin(); iter != out_acp[block->num].end(); ++iter) { assert((*iter)->dst.file == VGRF); if (block->start_ip <= live.vgrf_start[(*iter)->dst.nr] && live.vgrf_end[(*iter)->dst.nr] <= block->end_ip) { out_acp[block->num].remove(*iter); } } } /* Do dataflow analysis for those available copies. */ fs_copy_prop_dataflow dataflow(lin_ctx, s.cfg, live, out_acp); /* Next, re-run local copy propagation, this time with the set of copies * provided by the dataflow analysis available at the start of a block. */ foreach_block (block, s.cfg) { struct acp in_acp; for (int i = 0; i < dataflow.num_acp; i++) { if (BITSET_TEST(dataflow.bd[block->num].livein, i) && !BITSET_TEST(dataflow.bd[block->num].exec_mismatch, i)) { struct acp_entry *entry = dataflow.acp[i]; in_acp.add(entry); } } progress = opt_copy_propagation_local(s.compiler, lin_ctx, block, in_acp, s.alloc, s.max_polygons) || progress; } ralloc_free(copy_prop_ctx); if (progress) s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW | DEPENDENCY_INSTRUCTION_DETAIL); return progress; } static bool try_copy_propagate_def(const brw_compiler *compiler, const brw::simple_allocator &alloc, fs_inst *def, const brw_reg &val, fs_inst *inst, int arg, uint8_t max_polygons) { const struct intel_device_info *devinfo = compiler->devinfo; assert(val.file != BAD_FILE); /* We can't generally copy-propagate UD negations because we can end up * accessing the resulting values as signed integers instead. */ if (val.negate && val.type == BRW_TYPE_UD) return false; /* Bail if the instruction type is larger than the execution type of the * copy, what implies that each channel is reading multiple channels of the * destination of the copy, and simply replacing the sources would give a * program with different semantics. */ if (brw_type_size_bits(def->dst.type) < brw_type_size_bits(inst->src[arg].type)) return false; const bool has_source_modifiers = val.abs || val.negate; if (has_source_modifiers) { if (is_logic_op(inst->opcode) || !inst->can_do_source_mods(devinfo)) return false; /* Since semantics of source modifiers are type-dependent we need to * ensure that the meaning of the instruction remains the same if we * change the type. If the sizes of the types are different the new * instruction will read a different amount of data than the original * and the semantics will always be different. */ if (def->dst.type != inst->src[arg].type && (!inst->can_change_types() || brw_type_size_bits(def->dst.type) != brw_type_size_bits(inst->src[arg].type))) return false; } /* Send messages with EOT set are restricted to use g112-g127 (and we * sometimes need g127 for other purposes), so avoid copy propagating * anything that would make it impossible to satisfy that restriction. */ if (inst->eot) { /* Don't propagate things that are already pinned. */ if (val.file != VGRF) return false; /* We might be propagating from a large register, while the SEND only * is reading a portion of it (say the .A channel in an RGBA value). * We need to pin both split SEND sources in g112-g126/127, so only * allow this if the registers aren't too large. */ if (inst->opcode == SHADER_OPCODE_SEND && inst->sources >= 4 && val.file == VGRF) { int other_src = arg == 2 ? 3 : 2; unsigned other_size = inst->src[other_src].file == VGRF ? alloc.sizes[inst->src[other_src].nr] : inst->size_read(devinfo, other_src); unsigned prop_src_size = alloc.sizes[val.nr]; if (other_size + prop_src_size > 15) return false; } } /* Reject cases that would violate register regioning restrictions. */ if (inst->opcode == SHADER_OPCODE_BROADCAST) { if (arg == 0) return false; assert(inst->src[arg].stride == 0); } else if ((val.file == UNIFORM || !val.is_contiguous()) && (inst->is_send_from_grf() || inst->uses_indirect_addressing())) { return false; } /* Some instructions implemented in the generator backend, such as * derivatives, assume that their operands are packed so we can't * generally propagate strided regions to them. */ const unsigned entry_stride = val.file == FIXED_GRF ? 1 : val.stride; if (instruction_requires_packed_data(inst) && entry_stride != 1) return false; const brw_reg_type dst_type = (has_source_modifiers && def->dst.type != inst->src[arg].type) ? def->dst.type : inst->dst.type; /* Bail if the result of composing both strides would exceed the * hardware limit. */ if (!can_take_stride(inst, dst_type, arg, entry_stride * inst->src[arg].stride, compiler)) return false; /* Bail if the source FIXED_GRF region of the copy cannot be trivially * composed with the source region of the instruction -- E.g. because the * copy uses some extended stride greater than 4 not supported natively by * the hardware as a horizontal stride, or because instruction compression * could require us to use a vertical stride shorter than a GRF. */ if (val.file == FIXED_GRF && (inst->src[arg].stride > 4 || inst->dst.component_size(inst->exec_size) > inst->src[arg].component_size(inst->exec_size))) return false; /* Bail if the result of composing both strides cannot be expressed * as another stride. This avoids, for example, trying to transform * this: * * MOV (8) rX<1>UD rY<0;1,0>UD * FOO (8) ... rX<8;8,1>UW * * into this: * * FOO (8) ... rY<0;1,0>UW * * Which would have different semantics. */ if (entry_stride != 1 && (inst->src[arg].stride * brw_type_size_bytes(inst->src[arg].type)) % brw_type_size_bytes(val.type) != 0) return false; /* From the Cherry Trail/Braswell PRMs, Volume 7: 3D Media GPGPU: * EU Overview * Register Region Restrictions * Special Requirements for Handling Double Precision Data Types : * * "When source or destination datatype is 64b or operation is integer * DWord multiply, regioning in Align1 must follow these rules: * * 1. Source and Destination horizontal stride must be aligned to the * same qword. * 2. Regioning must ensure Src.Vstride = Src.Width * Src.Hstride. * 3. Source and Destination offset must be the same, except the case * of scalar source." * * Most of this is already checked in can_take_stride(), we're only left * with checking 3. */ if (has_dst_aligned_region_restriction(devinfo, inst, dst_type) && entry_stride != 0 && (reg_offset(inst->dst) % (REG_SIZE * reg_unit(devinfo))) != (reg_offset(val) % (REG_SIZE * reg_unit(devinfo)))) return false; /* The <8;8,0> regions used for FS attributes in multipolygon * dispatch mode could violate regioning restrictions, don't copy * propagate them in such cases. */ if (max_polygons > 1 && val.file == ATTR && (has_dst_aligned_region_restriction(devinfo, inst, dst_type) || instruction_requires_packed_data(inst) || (inst->is_3src(compiler) && arg == 2) || def->dst.type != inst->src[arg].type)) return false; /* Fold the copy into the instruction consuming it. */ inst->src[arg].file = val.file; inst->src[arg].nr = val.nr; inst->src[arg].subnr = val.subnr; inst->src[arg].offset = val.offset; /* Compose the strides of both regions. */ if (val.file == FIXED_GRF) { if (inst->src[arg].stride) { const unsigned orig_width = 1 << val.width; const unsigned reg_width = REG_SIZE / (brw_type_size_bytes(inst->src[arg].type) * inst->src[arg].stride); inst->src[arg].width = cvt(MIN2(orig_width, reg_width)) - 1; inst->src[arg].hstride = cvt(inst->src[arg].stride); inst->src[arg].vstride = inst->src[arg].hstride + inst->src[arg].width; } else { inst->src[arg].vstride = inst->src[arg].hstride = inst->src[arg].width = 0; } inst->src[arg].stride = 1; /* Hopefully no Align16 around here... */ assert(val.swizzle == BRW_SWIZZLE_XYZW); inst->src[arg].swizzle = val.swizzle; } else { inst->src[arg].stride *= val.stride; } /* Handle NoMask cases where the def replicates a small scalar to a number * of channels, but the use is a lower SIMD width but larger type, so each * invocation reads multiple channels worth of data, e.g. * * mov(16) vgrf1:UW, u0<0>:UW NoMask * mov(8) vgrf2:UD, vgrf1:UD NoMask group0 * * In this case, we should just use the scalar's type. */ if (val.stride == 0 && inst->opcode == BRW_OPCODE_MOV && inst->force_writemask_all && def->force_writemask_all && inst->exec_size < def->exec_size && (inst->exec_size * brw_type_size_bytes(inst->src[arg].type) == def->exec_size * brw_type_size_bytes(val.type))) { inst->src[arg].type = val.type; inst->dst.type = val.type; inst->exec_size = def->exec_size; } if (has_source_modifiers) { if (def->dst.type != inst->src[arg].type) { /* We are propagating source modifiers from a MOV with a different * type. If we got here, then we can just change the source and * destination types of the instruction and keep going. */ for (int i = 0; i < inst->sources; i++) { inst->src[i].type = def->dst.type; } inst->dst.type = def->dst.type; } if (!inst->src[arg].abs) { inst->src[arg].abs = val.abs; inst->src[arg].negate ^= val.negate; } } return true; } static bool try_constant_propagate_def(const struct intel_device_info *devinfo, fs_inst *def, brw_reg val, fs_inst *inst, int arg) { /* Bail if inst is reading more than a single vector component of entry */ if (inst->size_read(devinfo, arg) > def->dst.component_size(inst->exec_size)) return false; return try_constant_propagate_value(val, def->dst.type, inst, arg); } /** * Handle cases like UW subreads of a UD immediate, with an offset. */ static brw_reg extract_imm(brw_reg val, brw_reg_type type, unsigned offset) { assert(val.file == IMM); const unsigned bitsize = brw_type_size_bits(type); if (offset == 0 || bitsize == brw_type_size_bits(val.type)) return val; /* The whole extracted value must come from bits that acutally exist in the * original immediate value. */ assert((8 * offset) + bitsize <= brw_type_size_bits(val.type)); val.u64 = (val.u64 >> (8 * offset)) & ((1ull << bitsize) - 1); return val; } static brw_reg find_value_for_offset(fs_inst *def, const brw_reg &src, unsigned src_size) { brw_reg val; switch (def->opcode) { case BRW_OPCODE_MOV: /* is_raw_move also rejects source modifiers, but copy propagation * can handle that if the tyeps are the same. */ if ((def->dst.type == def->src[0].type || def->is_raw_move()) && def->src[0].stride <= 1) { val = def->src[0]; unsigned rel_offset = src.offset - def->dst.offset; if (val.stride == 0) rel_offset %= brw_type_size_bytes(def->dst.type); if (val.file == IMM) val = extract_imm(val, src.type, rel_offset); else val = byte_offset(def->src[0], rel_offset); } break; case SHADER_OPCODE_LOAD_PAYLOAD: { unsigned offset = 0; for (int i = def->header_size; i < def->sources; i++) { /* Ignore the source splat if the source is a scalar. In that case * always use just the first component. */ const unsigned splat = (def->src[i].stride == 0 && !src.is_scalar) || def->src[i].file == IMM ? def->exec_size : 1; const unsigned component_size = def->src[i].component_size(def->exec_size); if (offset == src.offset) { if (def->dst.type == def->src[i].type && def->src[i].stride <= 1 && (component_size * splat == src_size || (def->src[i].file == IMM && component_size == src_size))) val = def->src[i]; break; } offset += def->exec_size * brw_type_size_bytes(def->src[i].type); } break; } default: break; } return val; } bool brw_opt_copy_propagation_defs(fs_visitor &s) { const brw::def_analysis &defs = s.def_analysis.require(); unsigned *uses_deleted = new unsigned[defs.count()](); bool progress = false; foreach_block_and_inst_safe(block, fs_inst, inst, s.cfg) { /* Try propagating into this instruction. */ bool constant_progress = false; for (int i = inst->sources - 1; i >= 0; i--) { fs_inst *def = defs.get(inst->src[i]); if (!def || def->saturate) continue; bool source_progress = false; if (def->opcode == SHADER_OPCODE_LOAD_PAYLOAD) { if (inst->size_read(s.devinfo, i) == def->size_written && def->src[0].file != BAD_FILE && def->src[0].file != IMM && is_identity_payload(s.devinfo, def->src[0].file, def)) { source_progress = try_copy_propagate_def(s.compiler, s.alloc, def, def->src[0], inst, i, s.max_polygons); if (source_progress) { progress = true; ++uses_deleted[def->dst.nr]; if (defs.get_use_count(def->dst) == uses_deleted[def->dst.nr]) def->remove(defs.get_block(def->dst), true); } continue; } } brw_reg val = find_value_for_offset(def, inst->src[i], inst->size_read(s.devinfo, i)); if (val.file == IMM) { if (try_constant_propagate_def(s.devinfo, def, val, inst, i)) { source_progress = true; constant_progress = true; } } else if (val.file == VGRF || val.file == ATTR || val.file == UNIFORM || (val.file == FIXED_GRF && val.is_contiguous())) { source_progress = try_copy_propagate_def(s.compiler, s.alloc, def, val, inst, i, s.max_polygons); } if (source_progress) { progress = true; ++uses_deleted[def->dst.nr]; /* We can copy propagate through an instruction like * * mov.nz.f0.0(8) %2:D, -%78:D * * but deleting the instruction may alter the program. */ if (def->conditional_mod == BRW_CONDITIONAL_NONE && defs.get_use_count(def->dst) == uses_deleted[def->dst.nr]) { def->remove(defs.get_block(def->dst), true); } } } if (constant_progress) { commute_immediates(inst); brw_opt_constant_fold_instruction(s.compiler->devinfo, inst); } } if (progress) { s.cfg->adjust_block_ips(); s.invalidate_analysis(DEPENDENCY_INSTRUCTION_DATA_FLOW | DEPENDENCY_INSTRUCTION_DETAIL); } delete [] uses_deleted; return progress; }