/* * Copyright © 2024 Intel Corporation * SPDX-License-Identifier: MIT */ #include "brw_eu.h" #include "brw_fs.h" #include "brw_builder.h" using namespace brw; static unsigned dest_comps_for_txf(const fs_visitor &s, const fs_inst *txf) { if (!txf) return 0; const unsigned grf_size = REG_SIZE * reg_unit(s.devinfo); const unsigned per_component_regs = DIV_ROUND_UP(brw_type_size_bytes(txf->dst.type) * txf->exec_size, grf_size); const unsigned dest_regs = txf->size_written / grf_size; const unsigned dest_comps = dest_regs / per_component_regs; return dest_comps; } static bool is_def(const def_analysis &defs, const brw_reg &r) { return r.file == IMM || r.file == BAD_FILE || defs.get(r) != NULL; } static bool is_uniform_def(const def_analysis &defs, const brw_reg &r) { return is_def(defs, r) && is_uniform(r); } /** * Check if two texture instructions have a matching source (either the same * immediate value, or both references to the same immutable SSA def and * with matching source modifiers and regions). */ static bool sources_match(ASSERTED const def_analysis &defs, const fs_inst *a, const fs_inst *b, enum tex_logical_srcs src) { assert(is_def(defs, a->src[src])); assert(is_def(defs, b->src[src])); return brw_regs_equal(&a->src[src], &b->src[src]); } /** * Look for a series of convergent texture buffer fetches within a basic * block and combine them into a single divergent load with one lane for * each original fetch. For example, this series of convergent fetches: * * txf(16) %12:UD, coord = 12d, lod = 0u, handle = %1<0>:D * txf(16) %13:UD, coord = 13d, lod = 0u, handle = %1<0>:D * txf(16) %14:UD, coord = 14d, lod = 0u, handle = %1<0>:D * txf(16) %15:UD, coord = 15d, lod = 0u, handle = %1<0>:D * txf(16) %16:UD, coord = 16d, lod = 0u, handle = %1<0>:D * txf(16) %17:UD, coord = 17d, lod = 0u, handle = %1<0>:D * txf(16) %18:UD, coord = 18d, lod = 0u, handle = %1<0>:D * txf(16) %19:UD, coord = 19d, lod = 0u, handle = %1<0>:D * * can be combined into a single divergent load and scalar-expansion moves * (which can easily be copy propagated away): * * load_payload(1) %2:D 12d, 13d, 14d, 15d, 16d, 17d, 18d, 19d * txf(8) %3:UD, coord = %2, lod = 0u, handle = %1<0>:D * mov(16) %12:UD, %3+0.0<0>:UD * ... * mov(16) %19:UD, %3+0.28<0>:UD * * Our sampler hardware doesn't have any special support for convergent * loads (like LSC transpose/block loads), and always performs SIMD8/16/32 * per-channel loads. But with this trick, we can still combine multiple * convergent loads into a single message with fewer round-trips, and much * lower register pressure. */ bool brw_opt_combine_convergent_txf(fs_visitor &s) { const def_analysis &defs = s.def_analysis.require(); const unsigned min_simd = 8 * reg_unit(s.devinfo); const unsigned max_simd = 16 * reg_unit(s.devinfo); const unsigned grf_size = REG_SIZE * reg_unit(s.devinfo); bool progress = false; foreach_block(block, s.cfg) { /* Gather a list of convergent TXFs to the same surface in this block */ fs_inst *txfs[32] = {}; unsigned count = 0; foreach_inst_in_block(fs_inst, inst, block) { if (inst->opcode != SHADER_OPCODE_TXF_LOGICAL) continue; /* Only handle buffers or single miplevel 1D images for now */ if (inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud > 1) continue; if (inst->src[TEX_LOGICAL_SRC_RESIDENCY].ud != 0) continue; if (inst->predicate || inst->force_writemask_all) continue; if (!is_uniform_def(defs, inst->src[TEX_LOGICAL_SRC_LOD]) || !is_uniform_def(defs, inst->src[TEX_LOGICAL_SRC_SURFACE]) || !is_uniform_def(defs, inst->src[TEX_LOGICAL_SRC_SURFACE_HANDLE])) continue; /* Only handle immediates for now: we could check is_uniform(), * but we'd need to ensure the coordinate's definition reaches * txfs[0] which is where we'll insert the combined coordinate. */ if (inst->src[TEX_LOGICAL_SRC_COORDINATE].file != IMM) continue; /* texelFetch from 1D buffers shouldn't have any of these */ assert(inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE); assert(inst->src[TEX_LOGICAL_SRC_LOD2].file == BAD_FILE); assert(inst->src[TEX_LOGICAL_SRC_MIN_LOD].file == BAD_FILE); assert(inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX].file == BAD_FILE); assert(inst->src[TEX_LOGICAL_SRC_MCS].file == BAD_FILE); assert(inst->src[TEX_LOGICAL_SRC_TG4_OFFSET].file == BAD_FILE); assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM && inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud == 0); if (count > 0 && (!sources_match(defs, inst, txfs[0], TEX_LOGICAL_SRC_LOD) || !sources_match(defs, inst, txfs[0], TEX_LOGICAL_SRC_SURFACE) || !sources_match(defs, inst, txfs[0], TEX_LOGICAL_SRC_SURFACE_HANDLE))) continue; txfs[count++] = inst; if (count == ARRAY_SIZE(txfs)) break; } /* Need at least two things to combine. */ if (count < 2) continue; /* Emit divergent TXFs and replace the original ones with MOVs */ for (unsigned curr = 0; curr < count; curr += max_simd) { const unsigned lanes = CLAMP(count - curr, min_simd, max_simd); const unsigned width = util_next_power_of_two(lanes); const brw_builder ubld = brw_builder(&s).at(block, txfs[curr]).exec_all().group(width, 0); const brw_builder ubld1 = ubld.group(1, 0); enum brw_reg_type coord_type = txfs[curr]->src[TEX_LOGICAL_SRC_COORDINATE].type; brw_reg coord = ubld.vgrf(coord_type); brw_reg coord_comps[32]; for (unsigned i = 0; i < width; i++) { /* Our block size might be larger than the number of convergent * loads we're combining. If so, repeat the last component. */ if (txfs[curr+i]) coord_comps[i] = txfs[curr+i]->src[TEX_LOGICAL_SRC_COORDINATE]; else coord_comps[i] = coord_comps[i-1]; } ubld1.VEC(coord, coord_comps, width); brw_reg srcs[TEX_LOGICAL_NUM_SRCS]; srcs[TEX_LOGICAL_SRC_COORDINATE] = coord; srcs[TEX_LOGICAL_SRC_LOD] = txfs[0]->src[TEX_LOGICAL_SRC_LOD]; srcs[TEX_LOGICAL_SRC_SURFACE] = txfs[0]->src[TEX_LOGICAL_SRC_SURFACE]; srcs[TEX_LOGICAL_SRC_SURFACE_HANDLE] = txfs[0]->src[TEX_LOGICAL_SRC_SURFACE_HANDLE]; srcs[TEX_LOGICAL_SRC_SAMPLER] = txfs[0]->src[TEX_LOGICAL_SRC_SAMPLER]; srcs[TEX_LOGICAL_SRC_SAMPLER_HANDLE] = txfs[0]->src[TEX_LOGICAL_SRC_SAMPLER_HANDLE]; srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_ud(1); srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_ud(0); srcs[TEX_LOGICAL_SRC_RESIDENCY] = brw_imm_ud(0); /* Each of our txf may have a reduced response length if some * components are never read. Use the maximum of the sizes. */ unsigned new_dest_comps = 0; for (unsigned i = 0; i < width; i++) { const unsigned this_comps = dest_comps_for_txf(s, txfs[curr+i]); new_dest_comps = MAX2(new_dest_comps, this_comps); } /* Emit the new divergent TXF */ brw_reg div = ubld.vgrf(BRW_TYPE_UD, new_dest_comps); fs_inst *div_txf = ubld.emit(SHADER_OPCODE_TXF_LOGICAL, div, srcs, TEX_LOGICAL_NUM_SRCS); /* Update it to also use response length reduction */ const unsigned per_component_regs = DIV_ROUND_UP(brw_type_size_bytes(div.type) * div_txf->exec_size, grf_size); div_txf->size_written = new_dest_comps * per_component_regs * grf_size; for (unsigned i = 0; i < width; i++) { fs_inst *txf = txfs[curr+i]; if (!txf) break; const brw_builder ibld = brw_builder(&s, block, txf); /* Replace each of the original TXFs with MOVs from our new one */ const unsigned dest_comps = dest_comps_for_txf(s, txf); assert(dest_comps <= 4); brw_reg v[4]; for (unsigned c = 0; c < dest_comps; c++) v[c] = component(offset(div, ubld, c), i); ibld.VEC(retype(txf->dst, BRW_TYPE_UD), v, dest_comps); txf->remove(block); } progress = true; } } if (progress) s.invalidate_analysis(DEPENDENCY_INSTRUCTIONS); return progress; }