/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Eric Anholt * */ #include "brw_eu.h" #include "brw_fs.h" #include "brw_builder.h" #include "brw_cfg.h" #include "util/set.h" #include "util/register_allocate.h" using namespace brw; static void assign_reg(const struct intel_device_info *devinfo, unsigned *reg_hw_locations, brw_reg *reg) { if (reg->file == VGRF) { reg->nr = reg_unit(devinfo) * reg_hw_locations[reg->nr] + reg->offset / REG_SIZE; reg->offset %= REG_SIZE; } } void brw_assign_regs_trivial(fs_visitor &s) { const struct intel_device_info *devinfo = s.devinfo; unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, s.alloc.count + 1); unsigned i; int reg_width = s.dispatch_width / 8; /* Note that compressed instructions require alignment to 2 registers. */ hw_reg_mapping[0] = ALIGN(s.first_non_payload_grf, reg_width); for (i = 1; i <= s.alloc.count; i++) { hw_reg_mapping[i] = (hw_reg_mapping[i - 1] + DIV_ROUND_UP(s.alloc.sizes[i - 1], reg_unit(devinfo))); } s.grf_used = hw_reg_mapping[s.alloc.count]; foreach_block_and_inst(block, fs_inst, inst, s.cfg) { assign_reg(devinfo, hw_reg_mapping, &inst->dst); for (i = 0; i < inst->sources; i++) { assign_reg(devinfo, hw_reg_mapping, &inst->src[i]); } } if (s.grf_used >= BRW_MAX_GRF) { s.fail("Ran out of regs on trivial allocator (%d/%d)\n", s.grf_used, BRW_MAX_GRF); } else { s.alloc.count = s.grf_used; } ralloc_free(hw_reg_mapping); } extern "C" void brw_fs_alloc_reg_sets(struct brw_compiler *compiler) { const struct intel_device_info *devinfo = compiler->devinfo; int base_reg_count = (devinfo->ver >= 30 ? XE3_MAX_GRF / reg_unit(devinfo) : BRW_MAX_GRF); /* The registers used to make up almost all values handled in the compiler * are a scalar value occupying a single register (or 2 registers in the * case of SIMD16, which is handled by dividing base_reg_count by 2 and * multiplying allocated register numbers by 2). Things that were * aggregates of scalar values at the GLSL level were split to scalar * values by split_virtual_grfs(). * * However, texture SEND messages return a series of contiguous registers * to write into. We currently always ask for 4 registers, but we may * convert that to use less some day. * * Additionally, on gfx5 we need aligned pairs of registers for the PLN * instruction, and on gfx4 we need 8 contiguous regs for workaround simd16 * texturing. */ assert(REG_CLASS_COUNT == MAX_VGRF_SIZE(devinfo) / reg_unit(devinfo)); int class_sizes[REG_CLASS_COUNT]; for (unsigned i = 0; i < REG_CLASS_COUNT; i++) class_sizes[i] = i + 1; struct ra_regs *regs = ra_alloc_reg_set(compiler, base_reg_count, false); if (devinfo->ver < 30) ra_set_allocate_round_robin(regs); struct ra_class **classes = ralloc_array(compiler, struct ra_class *, REG_CLASS_COUNT); /* Now, make the register classes for each size of contiguous register * allocation we might need to make. */ for (int i = 0; i < REG_CLASS_COUNT; i++) { classes[i] = ra_alloc_contig_reg_class(regs, class_sizes[i]); for (int reg = 0; reg <= base_reg_count - class_sizes[i]; reg++) ra_class_add_reg(classes[i], reg); } ra_set_finalize(regs, NULL); compiler->reg_set.regs = regs; for (unsigned i = 0; i < ARRAY_SIZE(compiler->reg_set.classes); i++) compiler->reg_set.classes[i] = NULL; for (int i = 0; i < REG_CLASS_COUNT; i++) compiler->reg_set.classes[class_sizes[i] - 1] = classes[i]; } static int count_to_loop_end(const bblock_t *block) { if (block->end()->opcode == BRW_OPCODE_WHILE) return block->end_ip; int depth = 1; /* Skip the first block, since we don't want to count the do the calling * function found. */ for (block = block->next(); depth > 0; block = block->next()) { if (block->start()->opcode == BRW_OPCODE_DO) depth++; if (block->end()->opcode == BRW_OPCODE_WHILE) { depth--; if (depth == 0) return block->end_ip; } } unreachable("not reached"); } void fs_visitor::calculate_payload_ranges(bool allow_spilling, unsigned payload_node_count, int *payload_last_use_ip) const { int loop_depth = 0; int loop_end_ip = 0; for (unsigned i = 0; i < payload_node_count; i++) payload_last_use_ip[i] = -1; int ip = 0; foreach_block_and_inst(block, fs_inst, inst, cfg) { switch (inst->opcode) { case BRW_OPCODE_DO: loop_depth++; /* Since payload regs are deffed only at the start of the shader * execution, any uses of the payload within a loop mean the live * interval extends to the end of the outermost loop. Find the ip of * the end now. */ if (loop_depth == 1) loop_end_ip = count_to_loop_end(block); break; case BRW_OPCODE_WHILE: loop_depth--; break; default: break; } int use_ip; if (loop_depth > 0) use_ip = loop_end_ip; else use_ip = ip; /* Note that UNIFORM args have been turned into FIXED_GRF by * assign_curbe_setup(), and interpolation uses fixed hardware regs from * the start (see interp_reg()). */ for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file == FIXED_GRF) { unsigned reg_nr = inst->src[i].nr; if (reg_nr / reg_unit(devinfo) >= payload_node_count) continue; for (unsigned j = reg_nr / reg_unit(devinfo); j < DIV_ROUND_UP(reg_nr + regs_read(devinfo, inst, i), reg_unit(devinfo)); j++) { payload_last_use_ip[j] = use_ip; assert(j < payload_node_count); } } } if (inst->dst.file == FIXED_GRF) { unsigned reg_nr = inst->dst.nr; if (reg_nr / reg_unit(devinfo) < payload_node_count) { for (unsigned j = reg_nr / reg_unit(devinfo); j < DIV_ROUND_UP(reg_nr + regs_written(inst), reg_unit(devinfo)); j++) { payload_last_use_ip[j] = use_ip; assert(j < payload_node_count); } } } ip++; } /* g0 is needed to construct scratch headers for spilling. While we could * extend its live range each time we spill a register, and update the * interference graph accordingly, this would get pretty messy. Instead, * simply consider g0 live for the whole program if spilling is required. */ if (allow_spilling) payload_last_use_ip[0] = ip - 1; } class brw_reg_alloc { public: brw_reg_alloc(fs_visitor *fs): fs(fs), devinfo(fs->devinfo), compiler(fs->compiler), live(fs->live_analysis.require()), g(NULL), have_spill_costs(false) { mem_ctx = ralloc_context(NULL); /* Stash the number of instructions so we can sanity check that our * counts still match liveness. */ live_instr_count = fs->cfg->last_block()->end_ip + 1; spill_insts = _mesa_pointer_set_create(mem_ctx); /* Most of this allocation was written for a reg_width of 1 * (dispatch_width == 8). In extending to SIMD16, the code was * left in place and it was converted to have the hardware * registers it's allocating be contiguous physical pairs of regs * for reg_width == 2. */ int reg_width = fs->dispatch_width / 8; payload_node_count = ALIGN(fs->first_non_payload_grf, reg_width); /* Get payload IP information */ payload_last_use_ip = ralloc_array(mem_ctx, int, payload_node_count); node_count = 0; first_payload_node = 0; grf127_send_hack_node = 0; first_vgrf_node = 0; last_vgrf_node = 0; first_spill_node = 0; spill_vgrf_ip = NULL; spill_vgrf_ip_alloc = 0; spill_node_count = 0; } ~brw_reg_alloc() { ralloc_free(mem_ctx); } bool assign_regs(bool allow_spilling, bool spill_all); private: void setup_live_interference(unsigned node, int node_start_ip, int node_end_ip); void setup_inst_interference(const fs_inst *inst); void build_interference_graph(bool allow_spilling); brw_reg build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill); brw_reg build_lane_offsets(const brw_builder &bld, uint32_t spill_offset, int ip); brw_reg build_single_offset(const brw_builder &bld, uint32_t spill_offset, int ip); brw_reg build_legacy_scratch_header(const brw_builder &bld, uint32_t spill_offset, int ip); void emit_unspill(const brw_builder &bld, struct brw_shader_stats *stats, brw_reg dst, uint32_t spill_offset, unsigned count, int ip); void emit_spill(const brw_builder &bld, struct brw_shader_stats *stats, brw_reg src, uint32_t spill_offset, unsigned count, int ip); void set_spill_costs(); int choose_spill_reg(); brw_reg alloc_spill_reg(unsigned size, int ip); void spill_reg(unsigned spill_reg); void *mem_ctx; fs_visitor *fs; const intel_device_info *devinfo; const brw_compiler *compiler; const fs_live_variables &live; int live_instr_count; set *spill_insts; ra_graph *g; bool have_spill_costs; int payload_node_count; int *payload_last_use_ip; int node_count; int first_payload_node; int grf127_send_hack_node; int first_vgrf_node; int last_vgrf_node; int first_spill_node; int *spill_vgrf_ip; int spill_vgrf_ip_alloc; int spill_node_count; }; namespace { /** * Maximum spill block size we expect to encounter in 32B units. * * This is somewhat arbitrary and doesn't necessarily limit the maximum * variable size that can be spilled -- A higher value will allow a * variable of a given size to be spilled more efficiently with a smaller * number of scratch messages, but will increase the likelihood of a * collision between the MRFs reserved for spilling and other MRFs used by * the program (and possibly increase GRF register pressure on platforms * without hardware MRFs), what could cause register allocation to fail. * * For the moment reserve just enough space so a register of 32 bit * component type and natural region width can be spilled without splitting * into multiple (force_writemask_all) scratch messages. */ unsigned spill_max_size(const fs_visitor *s) { /* LSC is limited to SIMD16 sends (SIMD32 on Xe2) */ if (s->devinfo->has_lsc) return 2 * reg_unit(s->devinfo); /* FINISHME - On Gfx7+ it should be possible to avoid this limit * altogether by spilling directly from the temporary GRF * allocated to hold the result of the instruction (and the * scratch write header). */ /* FINISHME - The shader's dispatch width probably belongs in * backend_shader (or some nonexistent fs_shader class?) * rather than in the visitor class. */ return s->dispatch_width / 8; } } void brw_reg_alloc::setup_live_interference(unsigned node, int node_start_ip, int node_end_ip) { /* Mark any virtual grf that is live between the start of the program and * the last use of a payload node interfering with that payload node. */ for (int i = 0; i < payload_node_count; i++) { if (payload_last_use_ip[i] == -1) continue; /* Note that we use a <= comparison, unlike vgrfs_interfere(), * in order to not have to worry about the uniform issue described in * calculate_live_intervals(). */ if (node_start_ip <= payload_last_use_ip[i]) ra_add_node_interference(g, node, first_payload_node + i); } /* Add interference with every vgrf whose live range intersects this * node's. We only need to look at nodes below this one as the reflexivity * of interference will take care of the rest. */ for (unsigned n2 = first_vgrf_node; n2 <= (unsigned)last_vgrf_node && n2 < node; n2++) { unsigned vgrf = n2 - first_vgrf_node; if (!(node_end_ip <= live.vgrf_start[vgrf] || live.vgrf_end[vgrf] <= node_start_ip)) ra_add_node_interference(g, node, n2); } } /** * Returns true if this instruction's sources and destinations cannot * safely be the same register. * * In most cases, a register can be written over safely by the same * instruction that is its last use. For a single instruction, the * sources are dereferenced before writing of the destination starts * (naturally). * * However, there are a few cases where this can be problematic: * * - Virtual opcodes that translate to multiple instructions in the * code generator: if src == dst and one instruction writes the * destination before a later instruction reads the source, then * src will have been clobbered. * * - SIMD16 compressed instructions with certain regioning (see below). * * The register allocator uses this information to set up conflicts between * GRF sources and the destination. */ static bool brw_inst_has_source_and_destination_hazard(const fs_inst *inst) { switch (inst->opcode) { case FS_OPCODE_PACK_HALF_2x16_SPLIT: /* Multiple partial writes to the destination */ return true; case SHADER_OPCODE_SHUFFLE: /* This instruction returns an arbitrary channel from the source and * gets split into smaller instructions in the generator. It's possible * that one of the instructions will read from a channel corresponding * to an earlier instruction. */ case SHADER_OPCODE_SEL_EXEC: /* This is implemented as * * mov(16) g4<1>D 0D { align1 WE_all 1H }; * mov(16) g4<1>D g5<8,8,1>D { align1 1H } * * Because the source is only read in the second instruction, the first * may stomp all over it. */ return true; case SHADER_OPCODE_QUAD_SWIZZLE: switch (inst->src[1].ud) { case BRW_SWIZZLE_XXXX: case BRW_SWIZZLE_YYYY: case BRW_SWIZZLE_ZZZZ: case BRW_SWIZZLE_WWWW: case BRW_SWIZZLE_XXZZ: case BRW_SWIZZLE_YYWW: case BRW_SWIZZLE_XYXY: case BRW_SWIZZLE_ZWZW: /* These can be implemented as a single Align1 region on all * platforms, so there's never a hazard between source and * destination. C.f. brw_generator::generate_quad_swizzle(). */ return false; default: return !is_uniform(inst->src[0]); } case BRW_OPCODE_DPAS: /* This is overly conservative. The actual hazard is more complicated to * describe. When the repeat count is N, the single instruction behaves * like N instructions with a repeat count of one, but the destination * and source registers are incremented (in somewhat complex ways) for * each instruction. * * This means the source and destination register is actually a range of * registers. The hazard exists of an earlier iteration would write a * register that should be read by a later iteration. * * There may be some advantage to properly modeling this, but for now, * be overly conservative. */ return inst->rcount > 1; default: /* The SIMD16 compressed instruction * * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F * * is actually decoded in hardware as: * * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F * * Which is safe. However, if we have uniform accesses * happening, we get into trouble: * * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F * * Now our destination for the first instruction overwrote the * second instruction's src0, and we get garbage for those 8 * pixels. There's a similar issue for the pre-gfx6 * pixel_x/pixel_y, which are registers of 16-bit values and thus * would get stomped by the first decode as well. */ if (inst->exec_size == 16) { for (int i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF && (inst->src[i].stride == 0 || inst->src[i].type == BRW_TYPE_UW || inst->src[i].type == BRW_TYPE_W || inst->src[i].type == BRW_TYPE_UB || inst->src[i].type == BRW_TYPE_B)) { return true; } } } return false; } } void brw_reg_alloc::setup_inst_interference(const fs_inst *inst) { /* Certain instructions can't safely use the same register for their * sources and destination. Add interference. */ if (inst->dst.file == VGRF && brw_inst_has_source_and_destination_hazard(inst)) { for (unsigned i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) { ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, first_vgrf_node + inst->src[i].nr); } } } /* A compressed instruction is actually two instructions executed * simultaneously. On most platforms, it ok to have the source and * destination registers be the same. In this case, each instruction * over-writes its own source and there's no problem. The real problem * here is if the source and destination registers are off by one. Then * you can end up in a scenario where the first instruction over-writes the * source of the second instruction. Since the compiler doesn't know about * this level of granularity, we simply make the source and destination * interfere. */ if (inst->dst.component_size(inst->exec_size) > REG_SIZE && inst->dst.file == VGRF) { for (int i = 0; i < inst->sources; ++i) { if (inst->src[i].file == VGRF) { ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, first_vgrf_node + inst->src[i].nr); } } } if (grf127_send_hack_node >= 0) { /* At Intel Broadwell PRM, vol 07, section "Instruction Set Reference", * subsection "EUISA Instructions", Send Message (page 990): * * "r127 must not be used for return address when there is a src and * dest overlap in send instruction." * * We are avoiding using grf127 as part of the destination of send * messages adding a node interference to the grf127_send_hack_node. * This node has a fixed assignment to grf127. * * We don't apply it to SIMD16 instructions because previous code avoids * any register overlap between sources and destination. */ if (inst->exec_size < 16 && inst->is_send_from_grf() && inst->dst.file == VGRF) ra_add_node_interference(g, first_vgrf_node + inst->dst.nr, grf127_send_hack_node); } /* From the Skylake PRM Vol. 2a docs for sends: * * "It is required that the second block of GRFs does not overlap with * the first block." * * Normally, this is taken care of by fixup_sends_duplicate_payload() but * in the case where one of the registers is an undefined value, the * register allocator may decide that they don't interfere even though * they're used as sources in the same instruction. We also need to add * interference here. */ if (inst->opcode == SHADER_OPCODE_SEND && inst->ex_mlen > 0 && inst->src[2].file == VGRF && inst->src[3].file == VGRF && inst->src[2].nr != inst->src[3].nr) ra_add_node_interference(g, first_vgrf_node + inst->src[2].nr, first_vgrf_node + inst->src[3].nr); /* When we do send-from-GRF for FB writes, we need to ensure that the last * write instruction sends from a high register. This is because the * vertex fetcher wants to start filling the low payload registers while * the pixel data port is still working on writing out the memory. If we * don't do this, we get rendering artifacts. * * We could just do "something high". Instead, we just pick the highest * register that works. */ if (inst->eot && devinfo->ver < 30) { const int vgrf = inst->opcode == SHADER_OPCODE_SEND ? inst->src[2].nr : inst->src[0].nr; const int size = DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo)); int reg = BRW_MAX_GRF - size; if (grf127_send_hack_node >= 0) { /* Avoid r127 which might be unusable if the node was previously * written by a SIMD8 SEND message with source/destination overlap. */ reg--; } assert(reg >= 112); ra_set_node_reg(g, first_vgrf_node + vgrf, reg); if (inst->ex_mlen > 0) { const int vgrf = inst->src[3].nr; reg -= DIV_ROUND_UP(fs->alloc.sizes[vgrf], reg_unit(devinfo)); assert(reg >= 112); ra_set_node_reg(g, first_vgrf_node + vgrf, reg); } } } void brw_reg_alloc::build_interference_graph(bool allow_spilling) { /* Compute the RA node layout */ node_count = 0; first_payload_node = node_count; node_count += payload_node_count; grf127_send_hack_node = node_count; node_count++; first_vgrf_node = node_count; node_count += fs->alloc.count; last_vgrf_node = node_count - 1; first_spill_node = node_count; fs->calculate_payload_ranges(allow_spilling, payload_node_count, payload_last_use_ip); assert(g == NULL); g = ra_alloc_interference_graph(compiler->reg_set.regs, node_count); ralloc_steal(mem_ctx, g); /* Set up the payload nodes */ for (int i = 0; i < payload_node_count; i++) ra_set_node_reg(g, first_payload_node + i, i); if (grf127_send_hack_node >= 0) ra_set_node_reg(g, grf127_send_hack_node, 127); /* Specify the classes of each virtual register. */ for (unsigned i = 0; i < fs->alloc.count; i++) { unsigned size = DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo)); assert(size <= ARRAY_SIZE(compiler->reg_set.classes) && "Register allocation relies on split_virtual_grfs()"); ra_set_node_class(g, first_vgrf_node + i, compiler->reg_set.classes[size - 1]); } /* Add interference based on the live range of the register */ for (unsigned i = 0; i < fs->alloc.count; i++) { setup_live_interference(first_vgrf_node + i, live.vgrf_start[i], live.vgrf_end[i]); } /* Add interference based on the instructions in which a register is used. */ foreach_block_and_inst(block, fs_inst, inst, fs->cfg) setup_inst_interference(inst); } brw_reg brw_reg_alloc::build_single_offset(const brw_builder &bld, uint32_t spill_offset, int ip) { brw_reg offset = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD); fs_inst *inst = bld.MOV(offset, brw_imm_ud(spill_offset)); _mesa_set_add(spill_insts, inst); return offset; } brw_reg brw_reg_alloc::build_ex_desc(const brw_builder &bld, unsigned reg_size, bool unspill) { /* Use a different area of the address register than what is used in * brw_lower_logical_sends.c (brw_address_reg(2)) so we don't have * interactions between the spill/fill instructions and the other send * messages. */ brw_reg ex_desc = bld.vaddr(BRW_TYPE_UD, BRW_ADDRESS_SUBREG_INDIRECT_SPILL_DESC); fs_inst *inst = bld.exec_all().group(1, 0).AND( ex_desc, retype(brw_vec1_grf(0, 5), BRW_TYPE_UD), brw_imm_ud(INTEL_MASK(31, 10))); _mesa_set_add(spill_insts, inst); const intel_device_info *devinfo = bld.shader->devinfo; if (devinfo->verx10 >= 200) { inst = bld.exec_all().group(1, 0).SHR( ex_desc, ex_desc, brw_imm_ud(4)); _mesa_set_add(spill_insts, inst); } else { if (unspill) { inst = bld.exec_all().group(1, 0).OR( ex_desc, ex_desc, brw_imm_ud(GFX12_SFID_UGM)); _mesa_set_add(spill_insts, inst); } else { inst = bld.exec_all().group(1, 0).OR( ex_desc, ex_desc, brw_imm_ud(brw_message_ex_desc(devinfo, reg_size) | GFX12_SFID_UGM)); _mesa_set_add(spill_insts, inst); } } return ex_desc; } brw_reg brw_reg_alloc::build_lane_offsets(const brw_builder &bld, uint32_t spill_offset, int ip) { assert(bld.dispatch_width() <= 16 * reg_unit(bld.shader->devinfo)); const brw_builder ubld = bld.exec_all(); const unsigned reg_count = ubld.dispatch_width() / 8; brw_reg offset = retype(alloc_spill_reg(reg_count, ip), BRW_TYPE_UD); fs_inst *inst; /* Build an offset per lane in SIMD8 */ inst = ubld.group(8, 0).MOV(retype(offset, BRW_TYPE_UW), brw_imm_uv(0x76543210)); _mesa_set_add(spill_insts, inst); inst = ubld.group(8, 0).MOV(offset, retype(offset, BRW_TYPE_UW)); _mesa_set_add(spill_insts, inst); /* Build offsets in the upper 8 lanes of SIMD16 */ if (ubld.dispatch_width() > 8) { inst = ubld.group(8, 0).ADD( byte_offset(offset, REG_SIZE), byte_offset(offset, 0), brw_imm_ud(8)); _mesa_set_add(spill_insts, inst); } /* Make the offset a dword */ inst = ubld.SHL(offset, offset, brw_imm_ud(2)); _mesa_set_add(spill_insts, inst); /* Build offsets in the upper 16 lanes of SIMD32 */ if (ubld.dispatch_width() > 16) { inst = ubld.group(16, 0).ADD( byte_offset(offset, 2 * REG_SIZE), byte_offset(offset, 0), brw_imm_ud(16 << 2)); _mesa_set_add(spill_insts, inst); } /* Add the base offset */ if (spill_offset) { inst = ubld.ADD(offset, offset, brw_imm_ud(spill_offset)); _mesa_set_add(spill_insts, inst); } return offset; } /** * Generate a scratch header for pre-LSC platforms. */ brw_reg brw_reg_alloc::build_legacy_scratch_header(const brw_builder &bld, uint32_t spill_offset, int ip) { const brw_builder ubld8 = bld.exec_all().group(8, 0); const brw_builder ubld1 = bld.exec_all().group(1, 0); /* Allocate a spill header and make it interfere with g0 */ brw_reg header = retype(alloc_spill_reg(1, ip), BRW_TYPE_UD); ra_add_node_interference(g, first_vgrf_node + header.nr, first_payload_node); fs_inst *inst = ubld8.emit(SHADER_OPCODE_SCRATCH_HEADER, header, brw_ud8_grf(0, 0)); _mesa_set_add(spill_insts, inst); /* Write the scratch offset */ assert(spill_offset % 16 == 0); inst = ubld1.MOV(component(header, 2), brw_imm_ud(spill_offset / 16)); _mesa_set_add(spill_insts, inst); return header; } void brw_reg_alloc::emit_unspill(const brw_builder &bld, struct brw_shader_stats *stats, brw_reg dst, uint32_t spill_offset, unsigned count, int ip) { const intel_device_info *devinfo = bld.shader->devinfo; const unsigned reg_size = dst.component_size(bld.dispatch_width()) / REG_SIZE; for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) { ++stats->fill_count; fs_inst *unspill_inst; if (devinfo->verx10 >= 125) { /* LSC is limited to SIMD16 (SIMD32 on Xe2) load/store but we can * load more using transpose messages. */ const bool use_transpose = bld.dispatch_width() > 16 * reg_unit(devinfo) || bld.has_writemask_all(); const brw_builder ubld = use_transpose ? bld.exec_all().group(1, 0) : bld; brw_reg offset; if (use_transpose) { offset = build_single_offset(ubld, spill_offset, ip); } else { offset = build_lane_offsets(ubld, spill_offset, ip); } brw_reg srcs[] = { brw_imm_ud(0), /* desc */ build_ex_desc(bld, reg_size, true), offset, /* payload */ brw_reg(), /* payload2 */ }; uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_LOAD, LSC_ADDR_SURFTYPE_SS, LSC_ADDR_SIZE_A32, LSC_DATA_SIZE_D32, use_transpose ? reg_size * 8 : 1 /* num_channels */, use_transpose, LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS)); unspill_inst = ubld.emit(SHADER_OPCODE_SEND, dst, srcs, ARRAY_SIZE(srcs)); unspill_inst->sfid = GFX12_SFID_UGM; unspill_inst->header_size = 0; unspill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32, unspill_inst->exec_size); unspill_inst->ex_mlen = 0; unspill_inst->size_written = lsc_msg_dest_len(devinfo, LSC_DATA_SIZE_D32, bld.dispatch_width()) * REG_SIZE; unspill_inst->send_has_side_effects = false; unspill_inst->send_is_volatile = true; unspill_inst->src[0] = brw_imm_ud( desc | brw_message_desc(devinfo, unspill_inst->mlen, unspill_inst->size_written / REG_SIZE, unspill_inst->header_size)); } else { brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip); const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT; brw_reg srcs[] = { brw_imm_ud(0), /* desc */ brw_imm_ud(0), /* ex_desc */ header }; unspill_inst = bld.emit(SHADER_OPCODE_SEND, dst, srcs, ARRAY_SIZE(srcs)); unspill_inst->mlen = 1; unspill_inst->header_size = 1; unspill_inst->size_written = reg_size * REG_SIZE; unspill_inst->send_has_side_effects = false; unspill_inst->send_is_volatile = true; unspill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; unspill_inst->src[0] = brw_imm_ud( brw_dp_desc(devinfo, bti, BRW_DATAPORT_READ_MESSAGE_OWORD_BLOCK_READ, BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) | brw_message_desc(devinfo, unspill_inst->mlen, unspill_inst->size_written / REG_SIZE, unspill_inst->header_size)); } _mesa_set_add(spill_insts, unspill_inst); assert(unspill_inst->force_writemask_all || count % reg_size == 0); dst.offset += reg_size * REG_SIZE; spill_offset += reg_size * REG_SIZE; } } void brw_reg_alloc::emit_spill(const brw_builder &bld, struct brw_shader_stats *stats, brw_reg src, uint32_t spill_offset, unsigned count, int ip) { const intel_device_info *devinfo = bld.shader->devinfo; const unsigned reg_size = src.component_size(bld.dispatch_width()) / REG_SIZE; for (unsigned i = 0; i < DIV_ROUND_UP(count, reg_size); i++) { ++stats->spill_count; fs_inst *spill_inst; if (devinfo->verx10 >= 125) { brw_reg offset = build_lane_offsets(bld, spill_offset, ip); brw_reg srcs[] = { brw_imm_ud(0), /* desc */ build_ex_desc(bld, reg_size, false), offset, /* payload */ src, /* payload2 */ }; spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(), srcs, ARRAY_SIZE(srcs)); spill_inst->sfid = GFX12_SFID_UGM; uint32_t desc = lsc_msg_desc(devinfo, LSC_OP_STORE, LSC_ADDR_SURFTYPE_SS, LSC_ADDR_SIZE_A32, LSC_DATA_SIZE_D32, 1 /* num_channels */, false /* transpose */, LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS)); spill_inst->header_size = 0; spill_inst->mlen = lsc_msg_addr_len(devinfo, LSC_ADDR_SIZE_A32, bld.dispatch_width()); spill_inst->ex_mlen = reg_size; spill_inst->size_written = 0; spill_inst->send_has_side_effects = true; spill_inst->send_is_volatile = false; spill_inst->src[0] = brw_imm_ud( desc | brw_message_desc(devinfo, spill_inst->mlen, spill_inst->size_written / REG_SIZE, spill_inst->header_size)); } else { brw_reg header = build_legacy_scratch_header(bld, spill_offset, ip); const unsigned bti = GFX8_BTI_STATELESS_NON_COHERENT; brw_reg srcs[] = { brw_imm_ud(0), /* desc */ brw_imm_ud(0), /* ex_desc */ header, src }; spill_inst = bld.emit(SHADER_OPCODE_SEND, bld.null_reg_f(), srcs, ARRAY_SIZE(srcs)); spill_inst->mlen = 1; spill_inst->ex_mlen = reg_size; spill_inst->size_written = 0; spill_inst->header_size = 1; spill_inst->send_has_side_effects = true; spill_inst->send_is_volatile = false; spill_inst->sfid = GFX7_SFID_DATAPORT_DATA_CACHE; spill_inst->src[0] = brw_imm_ud( brw_dp_desc(devinfo, bti, GFX6_DATAPORT_WRITE_MESSAGE_OWORD_BLOCK_WRITE, BRW_DATAPORT_OWORD_BLOCK_DWORDS(reg_size * 8)) | brw_message_desc(devinfo, spill_inst->mlen, spill_inst->size_written / REG_SIZE, spill_inst->header_size)); spill_inst->src[1] = brw_imm_ud( brw_message_ex_desc(devinfo, spill_inst->ex_mlen)); } _mesa_set_add(spill_insts, spill_inst); assert(spill_inst->force_writemask_all || count % reg_size == 0); src.offset += reg_size * REG_SIZE; spill_offset += reg_size * REG_SIZE; } } void brw_reg_alloc::set_spill_costs() { float block_scale = 1.0; float *spill_costs = rzalloc_array(NULL, float, fs->alloc.count); /* Calculate costs for spilling nodes. Call it a cost of 1 per * spill/unspill we'll have to do, and guess that the insides of * loops run 10 times. */ foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { for (unsigned int i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) spill_costs[inst->src[i].nr] += regs_read(devinfo, inst, i) * block_scale; } if (inst->dst.file == VGRF) spill_costs[inst->dst.nr] += regs_written(inst) * block_scale; /* Don't spill anything we generated while spilling */ if (_mesa_set_search(spill_insts, inst)) { for (unsigned int i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) spill_costs[inst->src[i].nr] = INFINITY; } if (inst->dst.file == VGRF) spill_costs[inst->dst.nr] = INFINITY; } switch (inst->opcode) { case BRW_OPCODE_DO: block_scale *= 10; break; case BRW_OPCODE_WHILE: block_scale /= 10; break; case BRW_OPCODE_IF: block_scale *= 0.5; break; case BRW_OPCODE_ENDIF: block_scale /= 0.5; break; default: break; } } for (unsigned i = 0; i < fs->alloc.count; i++) { /* Do the no_spill check first. Registers that are used as spill * temporaries may have been allocated after we calculated liveness so * we shouldn't look their liveness up. Fortunately, they're always * used in SCRATCH_READ/WRITE instructions so they'll always be flagged * no_spill. */ if (isinf(spill_costs[i])) continue; int live_length = live.vgrf_end[i] - live.vgrf_start[i]; if (live_length <= 0) continue; /* Divide the cost (in number of spills/fills) by the log of the length * of the live range of the register. This will encourage spill logic * to spill long-living things before spilling short-lived things where * spilling is less likely to actually do us any good. We use the log * of the length because it will fall off very quickly and not cause us * to spill medium length registers with more uses. */ float adjusted_cost = spill_costs[i] / logf(live_length); ra_set_node_spill_cost(g, first_vgrf_node + i, adjusted_cost); } have_spill_costs = true; ralloc_free(spill_costs); } int brw_reg_alloc::choose_spill_reg() { if (!have_spill_costs) set_spill_costs(); int node = ra_get_best_spill_node(g); if (node < 0) return -1; assert(node >= first_vgrf_node); return node - first_vgrf_node; } brw_reg brw_reg_alloc::alloc_spill_reg(unsigned size, int ip) { int vgrf = fs->alloc.allocate(ALIGN(size, reg_unit(devinfo))); int class_idx = DIV_ROUND_UP(size, reg_unit(devinfo)) - 1; int n = ra_add_node(g, compiler->reg_set.classes[class_idx]); assert(n == first_vgrf_node + vgrf); assert(n == first_spill_node + spill_node_count); setup_live_interference(n, ip - 1, ip + 1); /* Add interference between this spill node and any other spill nodes for * the same instruction. */ for (int s = 0; s < spill_node_count; s++) { if (spill_vgrf_ip[s] == ip) ra_add_node_interference(g, n, first_spill_node + s); } /* Add this spill node to the list for next time */ if (spill_node_count >= spill_vgrf_ip_alloc) { if (spill_vgrf_ip_alloc == 0) spill_vgrf_ip_alloc = 16; else spill_vgrf_ip_alloc *= 2; spill_vgrf_ip = reralloc(mem_ctx, spill_vgrf_ip, int, spill_vgrf_ip_alloc); } spill_vgrf_ip[spill_node_count++] = ip; return brw_vgrf(vgrf, BRW_TYPE_F); } void brw_reg_alloc::spill_reg(unsigned spill_reg) { int size = fs->alloc.sizes[spill_reg]; unsigned int spill_offset = fs->last_scratch; assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */ fs->spilled_any_registers = true; fs->last_scratch += align(size * REG_SIZE, REG_SIZE * reg_unit(devinfo)); /* We're about to replace all uses of this register. It no longer * conflicts with anything so we can get rid of its interference. */ ra_set_node_spill_cost(g, first_vgrf_node + spill_reg, 0); ra_reset_node_interference(g, first_vgrf_node + spill_reg); /* Generate spill/unspill instructions for the objects being * spilled. Right now, we spill or unspill the whole thing to a * virtual grf of the same size. For most instructions, though, we * could just spill/unspill the GRF being accessed. */ int ip = 0; foreach_block_and_inst (block, fs_inst, inst, fs->cfg) { const brw_builder ibld = brw_builder(fs, block, inst); exec_node *before = inst->prev; exec_node *after = inst->next; for (unsigned int i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg) { /* Count registers needed in units of physical registers */ int count = align(regs_read(devinfo, inst, i), reg_unit(devinfo)); /* Align the spilling offset the physical register size */ int subset_spill_offset = spill_offset + ROUND_DOWN_TO(inst->src[i].offset, REG_SIZE * reg_unit(devinfo)); brw_reg unspill_dst = alloc_spill_reg(count, ip); inst->src[i].nr = unspill_dst.nr; /* The unspilled register is aligned to physical register, so * adjust the offset to the remaining within the physical register * size. */ inst->src[i].offset %= REG_SIZE * reg_unit(devinfo); /* We read the largest power-of-two divisor of the register count * (because only POT scratch read blocks are allowed by the * hardware) up to the maximum supported block size. */ const unsigned width = MIN2(32, 1u << (ffs(MAX2(1, count) * 8) - 1)); /* Set exec_all() on unspill messages under the (rather * pessimistic) assumption that there is no one-to-one * correspondence between channels of the spilled variable in * scratch space and the scratch read message, which operates on * 32 bit channels. It shouldn't hurt in any case because the * unspill destination is a block-local temporary. */ emit_unspill(ibld.exec_all().group(width, 0), &fs->shader_stats, unspill_dst, subset_spill_offset, count, ip); } } if (inst->dst.file == VGRF && inst->dst.nr == spill_reg && inst->opcode != SHADER_OPCODE_UNDEF) { /* Count registers needed in units of physical registers */ int count = align(regs_written(inst), reg_unit(devinfo)); /* Align the spilling offset the physical register size */ int subset_spill_offset = spill_offset + ROUND_DOWN_TO(inst->dst.offset, reg_unit(devinfo) * REG_SIZE); brw_reg spill_src = alloc_spill_reg(count, ip); inst->dst.nr = spill_src.nr; /* The spilled register is aligned to physical register, so adjust * the offset to the remaining within the physical register size. */ inst->dst.offset %= REG_SIZE * reg_unit(devinfo); /* If we're immediately spilling the register, we should not use * destination dependency hints. Doing so will cause the GPU do * try to read and write the register at the same time and may * hang the GPU. */ inst->no_dd_clear = false; inst->no_dd_check = false; /* Calculate the execution width of the scratch messages (which work * in terms of 32 bit components so we have a fixed number of eight * channels per spilled register). We attempt to write one * exec_size-wide component of the variable at a time without * exceeding the maximum number of (fake) MRF registers reserved for * spills. */ const unsigned width = 8 * reg_unit(devinfo) * DIV_ROUND_UP(MIN2(inst->dst.component_size(inst->exec_size), spill_max_size(fs) * REG_SIZE), reg_unit(devinfo) * REG_SIZE); /* Spills should only write data initialized by the instruction for * whichever channels are enabled in the execution mask. If that's * not possible we'll have to emit a matching unspill before the * instruction and set force_writemask_all on the spill. */ const bool per_channel = inst->dst.is_contiguous() && brw_type_size_bytes(inst->dst.type) == 4 && inst->exec_size == width; /* Builder used to emit the scratch messages. */ const brw_builder ubld = ibld.exec_all(!per_channel).group(width, 0); /* If our write is going to affect just part of the * regs_written(inst), then we need to unspill the destination since * we write back out all of the regs_written(). If the original * instruction had force_writemask_all set and is not a partial * write, there should be no need for the unspill since the * instruction will be overwriting the whole destination in any case. */ if (inst->is_partial_write() || (!inst->force_writemask_all && !per_channel)) emit_unspill(ubld, &fs->shader_stats, spill_src, subset_spill_offset, regs_written(inst), ip); emit_spill(ubld.at(block, inst->next), &fs->shader_stats, spill_src, subset_spill_offset, regs_written(inst), ip); } for (fs_inst *inst = (fs_inst *)before->next; inst != after; inst = (fs_inst *)inst->next) setup_inst_interference(inst); /* We don't advance the ip for scratch read/write instructions * because we consider them to have the same ip as instruction we're * spilling around for the purposes of interference. Also, we're * inserting spill instructions without re-running liveness analysis * and we don't want to mess up our IPs. */ if (!_mesa_set_search(spill_insts, inst)) ip++; } assert(ip == live_instr_count); } bool brw_reg_alloc::assign_regs(bool allow_spilling, bool spill_all) { build_interference_graph(allow_spilling); unsigned spilled = 0; while (1) { /* Debug of register spilling: Go spill everything. */ if (unlikely(spill_all)) { int reg = choose_spill_reg(); if (reg != -1) { spill_reg(reg); continue; } } if (ra_allocate(g)) break; if (!allow_spilling) return false; /* Failed to allocate registers. Spill some regs, and the caller will * loop back into here to try again. */ unsigned nr_spills = 1; if (compiler->spilling_rate) nr_spills = MAX2(1, spilled / compiler->spilling_rate); for (unsigned j = 0; j < nr_spills; j++) { int reg = choose_spill_reg(); if (reg == -1) { if (j == 0) return false; /* Nothing to spill */ break; } spill_reg(reg); spilled++; } } if (spilled) fs->invalidate_analysis(DEPENDENCY_INSTRUCTIONS | DEPENDENCY_VARIABLES); /* Get the chosen virtual registers for each node, and map virtual * regs in the register classes back down to real hardware reg * numbers. */ unsigned *hw_reg_mapping = ralloc_array(NULL, unsigned, fs->alloc.count); fs->grf_used = fs->first_non_payload_grf; for (unsigned i = 0; i < fs->alloc.count; i++) { int reg = ra_get_node_reg(g, first_vgrf_node + i); hw_reg_mapping[i] = reg; fs->grf_used = MAX2(fs->grf_used, hw_reg_mapping[i] + DIV_ROUND_UP(fs->alloc.sizes[i], reg_unit(devinfo))); } foreach_block_and_inst(block, fs_inst, inst, fs->cfg) { assign_reg(devinfo, hw_reg_mapping, &inst->dst); for (int i = 0; i < inst->sources; i++) { assign_reg(devinfo, hw_reg_mapping, &inst->src[i]); } } fs->alloc.count = fs->grf_used; ralloc_free(hw_reg_mapping); return true; } bool brw_assign_regs(fs_visitor &s, bool allow_spilling, bool spill_all) { brw_reg_alloc alloc(&s); bool success = alloc.assign_regs(allow_spilling, spill_all); if (!success && allow_spilling) { s.fail("no register to spill:\n"); brw_print_instructions(s); } return success; }