/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ /** @file * * Implements a pass that validates various invariants of the IR. The current * pass only validates that GRF's uses are sane. More can be added later. */ #include "brw_fs.h" #include "brw_cfg.h" #include "brw_eu.h" #define fsv_assert(assertion) \ { \ if (!(assertion)) { \ fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \ _mesa_shader_stage_to_abbrev(s.stage)); \ brw_print_instruction(s, inst, stderr); \ fprintf(stderr, "%s:%d: '%s' failed\n", __FILE__, __LINE__, #assertion); \ abort(); \ } \ } #define fsv_assert_eq(A, B) \ { \ unsigned a = (A); \ unsigned b = (B); \ if (a != b) { \ fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \ _mesa_shader_stage_to_abbrev(s.stage)); \ brw_print_instruction(s, inst, stderr); \ fprintf(stderr, "%s:%d: A == B failed\n", __FILE__, __LINE__); \ fprintf(stderr, " A = %s = %u\n", #A, a); \ fprintf(stderr, " B = %s = %u\n", #B, b); \ abort(); \ } \ } #define fsv_assert_ne(A, B) \ { \ unsigned a = (A); \ unsigned b = (B); \ if (a == b) { \ fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \ _mesa_shader_stage_to_abbrev(s.stage)); \ brw_print_instruction(s, inst, stderr); \ fprintf(stderr, "%s:%d: A != B failed\n", __FILE__, __LINE__); \ fprintf(stderr, " A = %s = %u\n", #A, a); \ fprintf(stderr, " B = %s = %u\n", #B, b); \ abort(); \ } \ } #define fsv_assert_lte(A, B) \ { \ unsigned a = (A); \ unsigned b = (B); \ if (a > b) { \ fprintf(stderr, "ASSERT: Scalar %s validation failed!\n", \ _mesa_shader_stage_to_abbrev(s.stage)); \ brw_print_instruction(s, inst, stderr); \ fprintf(stderr, "%s:%d: A <= B failed\n", __FILE__, __LINE__); \ fprintf(stderr, " A = %s = %u\n", #A, a); \ fprintf(stderr, " B = %s = %u\n", #B, b); \ abort(); \ } \ } #ifndef NDEBUG static inline bool is_ud_imm(const brw_reg ®) { return reg.file == IMM && reg.type == BRW_TYPE_UD; } static void validate_memory_logical(const fs_visitor &s, const fs_inst *inst) { const intel_device_info *devinfo = s.devinfo; fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_OPCODE])); fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_MODE])); fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_BINDING_TYPE])); fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_COORD_COMPONENTS])); fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_ALIGNMENT])); fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_DATA_SIZE])); fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_COMPONENTS])); fsv_assert(is_ud_imm(inst->src[MEMORY_LOGICAL_FLAGS])); enum lsc_opcode op = (enum lsc_opcode) inst->src[MEMORY_LOGICAL_OPCODE].ud; enum memory_flags flags = (memory_flags)inst->src[MEMORY_LOGICAL_FLAGS].ud; bool transpose = flags & MEMORY_FLAG_TRANSPOSE; bool include_helpers = flags & MEMORY_FLAG_INCLUDE_HELPERS; enum memory_logical_mode mode = (memory_logical_mode)inst->src[MEMORY_LOGICAL_MODE].ud; enum lsc_data_size data_size = (enum lsc_data_size) inst->src[MEMORY_LOGICAL_DATA_SIZE].ud; unsigned data_size_B = lsc_data_size_bytes(data_size); if (!devinfo->has_lsc) { fsv_assert(data_size == LSC_DATA_SIZE_D8U32 || data_size == LSC_DATA_SIZE_D16U32 || data_size == LSC_DATA_SIZE_D32 || data_size == LSC_DATA_SIZE_D64); if (transpose) { const unsigned min_alignment = mode == MEMORY_MODE_SHARED_LOCAL ? 16 : 4; fsv_assert(inst->src[MEMORY_LOGICAL_ALIGNMENT].ud >= min_alignment); } } fsv_assert(!transpose || !include_helpers); fsv_assert(!transpose || lsc_opcode_has_transpose(op)); if (inst->src[MEMORY_LOGICAL_BINDING_TYPE].ud == LSC_ADDR_SURFTYPE_FLAT) fsv_assert(inst->src[MEMORY_LOGICAL_BINDING].file == BAD_FILE); if (inst->src[MEMORY_LOGICAL_DATA1].file != BAD_FILE) { fsv_assert(inst->src[MEMORY_LOGICAL_COMPONENTS].ud == inst->components_read(MEMORY_LOGICAL_DATA1)); fsv_assert(inst->src[MEMORY_LOGICAL_DATA0].type == inst->src[MEMORY_LOGICAL_DATA1].type); } if (inst->src[MEMORY_LOGICAL_DATA0].file != BAD_FILE) { fsv_assert(inst->src[MEMORY_LOGICAL_COMPONENTS].ud == inst->components_read(MEMORY_LOGICAL_DATA0)); fsv_assert(brw_type_size_bytes(inst->src[MEMORY_LOGICAL_DATA0].type) == data_size_B); } if (inst->dst.file != BAD_FILE) fsv_assert(brw_type_size_bytes(inst->dst.type) == data_size_B); switch (inst->opcode) { case SHADER_OPCODE_MEMORY_LOAD_LOGICAL: fsv_assert(op == LSC_OP_LOAD || op == LSC_OP_LOAD_CMASK); fsv_assert(inst->src[MEMORY_LOGICAL_DATA0].file == BAD_FILE); fsv_assert(inst->src[MEMORY_LOGICAL_DATA1].file == BAD_FILE); break; case SHADER_OPCODE_MEMORY_STORE_LOGICAL: fsv_assert(lsc_opcode_is_store(op)); fsv_assert(inst->src[MEMORY_LOGICAL_DATA0].file != BAD_FILE); fsv_assert(inst->src[MEMORY_LOGICAL_DATA1].file == BAD_FILE); break; case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL: fsv_assert(lsc_opcode_is_atomic(op)); fsv_assert((inst->src[MEMORY_LOGICAL_DATA0].file == BAD_FILE) == (lsc_op_num_data_values(op) < 1)); fsv_assert((inst->src[MEMORY_LOGICAL_DATA1].file == BAD_FILE) == (lsc_op_num_data_values(op) < 2)); fsv_assert(inst->src[MEMORY_LOGICAL_COMPONENTS].ud == 1); fsv_assert(!include_helpers); break; default: unreachable("invalid opcode"); } } static const char * brw_shader_phase_to_string(enum brw_shader_phase phase) { switch (phase) { case BRW_SHADER_PHASE_INITIAL: return "INITIAL"; case BRW_SHADER_PHASE_AFTER_NIR: return "AFTER_NIR"; case BRW_SHADER_PHASE_AFTER_OPT_LOOP: return "AFTER_OPT_LOOP"; case BRW_SHADER_PHASE_AFTER_EARLY_LOWERING: return "AFTER_EARLY_LOWERING"; case BRW_SHADER_PHASE_AFTER_MIDDLE_LOWERING: return "AFTER_MIDDLE_LOWERING"; case BRW_SHADER_PHASE_AFTER_LATE_LOWERING: return "AFTER_LATE_LOWERING"; case BRW_SHADER_PHASE_AFTER_REGALLOC: return "AFTER_REGALLOC"; case BRW_SHADER_PHASE_INVALID: break; } unreachable("invalid_phase"); return NULL; } static void brw_validate_instruction_phase(const fs_visitor &s, fs_inst *inst) { enum brw_shader_phase invalid_from = BRW_SHADER_PHASE_INVALID; switch (inst->opcode) { case FS_OPCODE_FB_WRITE_LOGICAL: case FS_OPCODE_FB_READ_LOGICAL: case SHADER_OPCODE_TEX_LOGICAL: case SHADER_OPCODE_TXD_LOGICAL: case SHADER_OPCODE_TXF_LOGICAL: case SHADER_OPCODE_TXL_LOGICAL: case SHADER_OPCODE_TXS_LOGICAL: case SHADER_OPCODE_IMAGE_SIZE_LOGICAL: case FS_OPCODE_TXB_LOGICAL: case SHADER_OPCODE_TXF_CMS_W_LOGICAL: case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL: case SHADER_OPCODE_TXF_MCS_LOGICAL: case SHADER_OPCODE_LOD_LOGICAL: case SHADER_OPCODE_TG4_LOGICAL: case SHADER_OPCODE_TG4_BIAS_LOGICAL: case SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL: case SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL: case SHADER_OPCODE_TG4_OFFSET_LOGICAL: case SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL: case SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL: case SHADER_OPCODE_SAMPLEINFO_LOGICAL: case SHADER_OPCODE_GET_BUFFER_SIZE: case SHADER_OPCODE_MEMORY_LOAD_LOGICAL: case SHADER_OPCODE_MEMORY_STORE_LOGICAL: case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL: case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL: case FS_OPCODE_INTERPOLATE_AT_SAMPLE: case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET: case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET: case SHADER_OPCODE_BTD_SPAWN_LOGICAL: case SHADER_OPCODE_BTD_RETIRE_LOGICAL: case RT_OPCODE_TRACE_RAY_LOGICAL: case SHADER_OPCODE_URB_READ_LOGICAL: case SHADER_OPCODE_URB_WRITE_LOGICAL: case SHADER_OPCODE_REDUCE: case SHADER_OPCODE_INCLUSIVE_SCAN: case SHADER_OPCODE_EXCLUSIVE_SCAN: case SHADER_OPCODE_VOTE_ANY: case SHADER_OPCODE_VOTE_ALL: case SHADER_OPCODE_VOTE_EQUAL: case SHADER_OPCODE_BALLOT: case SHADER_OPCODE_QUAD_SWAP: case SHADER_OPCODE_READ_FROM_LIVE_CHANNEL: case SHADER_OPCODE_READ_FROM_CHANNEL: invalid_from = BRW_SHADER_PHASE_AFTER_EARLY_LOWERING; break; case SHADER_OPCODE_LOAD_PAYLOAD: invalid_from = BRW_SHADER_PHASE_AFTER_MIDDLE_LOWERING; break; default: /* Nothing to do. */ break; } assert(s.phase < BRW_SHADER_PHASE_INVALID); if (s.phase >= invalid_from) { fprintf(stderr, "INVALID INSTRUCTION IN PHASE: %s\n", brw_shader_phase_to_string(s.phase)); brw_print_instruction(s, inst, stderr); abort(); } } void brw_validate(const fs_visitor &s) { const intel_device_info *devinfo = s.devinfo; if (s.phase <= BRW_SHADER_PHASE_AFTER_NIR) return; s.cfg->validate(_mesa_shader_stage_to_abbrev(s.stage)); foreach_block(block, s.cfg) { /* Track the last used address register. Usage of the address register * in the IR should be limited to within a block, otherwise we would * unable to schedule some instructions without spilling the address * register to a VGRF. * * Another pattern we stick to when using the address register in the IR * is that we write and read the register in pairs of instruction. */ uint32_t last_used_address_register[16] = {}; foreach_inst_in_block (fs_inst, inst, block) { brw_validate_instruction_phase(s, inst); switch (inst->opcode) { case SHADER_OPCODE_SEND: fsv_assert(is_uniform(inst->src[0]) && is_uniform(inst->src[1])); break; case SHADER_OPCODE_SEND_GATHER: fsv_assert(is_uniform(inst->src[0]) && is_uniform(inst->src[1])); fsv_assert(devinfo->ver >= 30); break; case BRW_OPCODE_MOV: fsv_assert(inst->sources == 1); break; case SHADER_OPCODE_MEMORY_LOAD_LOGICAL: case SHADER_OPCODE_MEMORY_STORE_LOGICAL: case SHADER_OPCODE_MEMORY_ATOMIC_LOGICAL: validate_memory_logical(s, inst); break; default: break; } /* On Xe2, the "write the accumulator in addition to the explicit * destination" bit no longer exists. Try to catch uses of this * feature earlier in the process. */ if (devinfo->ver >= 20 && inst->writes_accumulator) { fsv_assert(inst->dst.is_accumulator() || inst->opcode == BRW_OPCODE_ADDC || inst->opcode == BRW_OPCODE_MACH || inst->opcode == BRW_OPCODE_SUBB); } if (inst->is_3src(s.compiler)) { const unsigned integer_sources = brw_type_is_int(inst->src[0].type) + brw_type_is_int(inst->src[1].type) + brw_type_is_int(inst->src[2].type); const unsigned float_sources = brw_type_is_float(inst->src[0].type) + brw_type_is_float(inst->src[1].type) + brw_type_is_float(inst->src[2].type); fsv_assert((integer_sources == 3 && float_sources == 0) || (integer_sources == 0 && float_sources == 3)); if (devinfo->ver >= 10) { for (unsigned i = 0; i < 3; i++) { if (inst->src[i].file == IMM) continue; switch (inst->src[i].vstride) { case BRW_VERTICAL_STRIDE_0: case BRW_VERTICAL_STRIDE_4: case BRW_VERTICAL_STRIDE_8: case BRW_VERTICAL_STRIDE_16: break; case BRW_VERTICAL_STRIDE_1: fsv_assert_lte(12, devinfo->ver); break; case BRW_VERTICAL_STRIDE_2: fsv_assert_lte(devinfo->ver, 11); break; default: fsv_assert(!"invalid vstride"); break; } } } else if (s.grf_used != 0) { /* Only perform the pre-Gfx10 checks after register allocation * has occured. * * Many passes (e.g., constant copy propagation) will * genenerate invalid 3-source instructions with the * expectation that later passes (e.g., combine constants) will * fix them. */ for (unsigned i = 0; i < 3; i++) { fsv_assert_ne(inst->src[i].file, IMM); /* A stride of 1 (the usual case) or 0, with a special * "repctrl" bit, is allowed. The repctrl bit doesn't work * for 64-bit datatypes, so if the source type is 64-bit * then only a stride of 1 is allowed. From the Broadwell * PRM, Volume 7 "3D Media GPGPU", page 944: * * This is applicable to 32b datatypes and 16b datatype. * 64b datatypes cannot use the replicate control. */ const unsigned stride_in_bytes = byte_stride(inst->src[i]); const unsigned size_in_bytes = brw_type_size_bytes(inst->src[i].type); if (stride_in_bytes == 0) { /* If the source is_scalar, then the stride will be * converted to <4;4,1> in brw_lower_scalar_fp64_MAD * after SIMD splitting. */ if (!inst->src[i].is_scalar) fsv_assert_lte(size_in_bytes, 4); } else { fsv_assert_eq(stride_in_bytes, size_in_bytes); } } } } if (inst->dst.file == VGRF) { fsv_assert_lte(inst->dst.offset / REG_SIZE + regs_written(inst), s.alloc.sizes[inst->dst.nr]); if (inst->exec_size > 1) fsv_assert_ne(inst->dst.stride, 0); } else if (inst->dst.is_address()) { fsv_assert(inst->dst.nr != 0); } bool read_address_reg = false; for (unsigned i = 0; i < inst->sources; i++) { if (inst->src[i].file == VGRF) { fsv_assert_lte(inst->src[i].offset / REG_SIZE + regs_read(devinfo, inst, i), s.alloc.sizes[inst->src[i].nr]); } else if (inst->src[i].is_address()) { fsv_assert(inst->src[i].nr != 0); for (unsigned hw = 0; hw < inst->size_read(devinfo, i); hw += 2) { fsv_assert_eq(inst->src[i].nr, last_used_address_register[inst->src[i].address_slot(hw)]); } read_address_reg = true; } } /* Accumulator Registers, bspec 47251: * * "When destination is accumulator with offset 0, destination * horizontal stride must be 1." */ if (intel_needs_workaround(devinfo, 14014617373) && inst->dst.is_accumulator() && phys_subnr(devinfo, inst->dst) == 0) { fsv_assert_eq(inst->dst.hstride, 1); } if (inst->is_math() && intel_needs_workaround(devinfo, 22016140776)) { /* Wa_22016140776: * * Scalar broadcast on HF math (packed or unpacked) must not be * used. Compiler must use a mov instruction to expand the * scalar value to a vector before using in a HF (packed or * unpacked) math operation. * * Since copy propagation knows about this restriction, nothing * should be able to generate these invalid source strides. Detect * potential problems sooner rather than later. */ if (devinfo->ver >= 20 && inst->writes_accumulator) { fsv_assert(inst->dst.is_accumulator() || inst->opcode == BRW_OPCODE_ADDC || inst->opcode == BRW_OPCODE_MACH || inst->opcode == BRW_OPCODE_SUBB); } if (inst->is_3src(s.compiler)) { const unsigned integer_sources = brw_type_is_int(inst->src[0].type) + brw_type_is_int(inst->src[1].type) + brw_type_is_int(inst->src[2].type); const unsigned float_sources = brw_type_is_float(inst->src[0].type) + brw_type_is_float(inst->src[1].type) + brw_type_is_float(inst->src[2].type); fsv_assert((integer_sources == 3 && float_sources == 0) || (integer_sources == 0 && float_sources == 3)); if (devinfo->ver >= 10) { for (unsigned i = 0; i < 3; i++) { if (inst->src[i].file == IMM) continue; switch (inst->src[i].vstride) { case BRW_VERTICAL_STRIDE_0: case BRW_VERTICAL_STRIDE_4: case BRW_VERTICAL_STRIDE_8: case BRW_VERTICAL_STRIDE_16: break; case BRW_VERTICAL_STRIDE_1: fsv_assert_lte(12, devinfo->ver); break; case BRW_VERTICAL_STRIDE_2: fsv_assert_lte(devinfo->ver, 11); break; default: fsv_assert(!"invalid vstride"); break; } } } else if (s.grf_used != 0) { /* Only perform the pre-Gfx10 checks after register * allocation has occured. * * Many passes (e.g., constant copy propagation) will * genenerate invalid 3-source instructions with the * expectation that later passes (e.g., combine constants) * will fix them. */ for (unsigned i = 0; i < 3; i++) { fsv_assert_ne(inst->src[i].file, IMM); /* A stride of 1 (the usual case) or 0, with a special * "repctrl" bit, is allowed. The repctrl bit doesn't * work for 64-bit datatypes, so if the source type is * 64-bit then only a stride of 1 is allowed. From the * Broadwell PRM, Volume 7 "3D Media GPGPU", page 944: * * This is applicable to 32b datatypes and 16b * datatype. 64b datatypes cannot use the replicate * control. */ const unsigned stride_in_bytes = byte_stride(inst->src[i]); const unsigned size_in_bytes = brw_type_size_bytes(inst->src[i].type); if (stride_in_bytes == 0) { fsv_assert_lte(size_in_bytes, 4); } else { fsv_assert_eq(stride_in_bytes, size_in_bytes); } } } } if (inst->dst.file == VGRF) { fsv_assert_lte(inst->dst.offset / REG_SIZE + regs_written(inst), s.alloc.sizes[inst->dst.nr]); } for (unsigned i = 0; i < inst->sources; i++) { fsv_assert(inst->src[i].is_scalar || !is_uniform(inst->src[i]) || inst->src[i].type != BRW_TYPE_HF); } } /* Update the last used address register. */ if (read_address_reg) { /* When an instruction only reads the address register, we assume * the read parts are never going to be used again. */ for (unsigned i = 0; i < inst->sources; i++) { if (!inst->src[i].is_address()) continue; for (unsigned hw = 0; hw < inst->size_read(devinfo, i); hw += 2) last_used_address_register[inst->src[i].address_slot(hw)] = 0; } } if (inst->dst.is_address()) { /* For the written part of the address register */ for (unsigned hw = 0; hw < inst->size_written; hw += 2) last_used_address_register[inst->dst.address_slot(hw)] = inst->dst.nr; } else if (inst->uses_address_register_implicitly()) { /* If the instruction is making use of the address register, * discard the entire thing. */ memset(last_used_address_register, 0, sizeof(last_used_address_register)); } } } } #endif