/** * Copyright 2020 Huawei Technologies Co., Ltd * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef MINDSPORE_INCLUDE_API_SERIALIZATION_H #define MINDSPORE_INCLUDE_API_SERIALIZATION_H #include #include #include #include #include "include/api/status.h" #include "include/api/types.h" #include "include/api/model.h" #include "include/api/graph.h" #include "include/api/dual_abi_helper.h" namespace mindspore { /// \brief The Serialization class is used to summarize methods for reading and writing model files. class MS_API Serialization { public: /// \brief Loads a model file from memory buffer. /// /// \param[in] model_data A buffer filled by model file. /// \param[in] data_size The size of the buffer. /// \param[in] model_type The Type of model file, options are ModelType::kMindIR, ModelType::kOM. /// \param[out] graph The output parameter, an object saves graph data. /// \param[in] dec_key The decryption key, key length is 16, 24, or 32. Not supported on MindSpore Lite. /// \param[in] dec_mode The decryption mode, optional options are AES-GCM, AES-CBC. Not supported on MindSpore Lite. /// /// \return Status. inline static Status Load(const void *model_data, size_t data_size, ModelType model_type, Graph *graph, const Key &dec_key = {}, const std::string &dec_mode = kDecModeAesGcm); /// \brief Loads a model file from path. /// /// \param[in] file The path of model file. /// \param[in] model_type The Type of model file, options are ModelType::kMindIR, ModelType::kOM. /// \param[out] graph The output parameter, an object saves graph data. /// \param[in] dec_key The decryption key, key length is 16, 24, or 32. Not supported on MindSpore Lite. /// \param[in] dec_mode The decryption mode, optional options are AES-GCM, AES-CBC. Not supported on MindSpore Lite. /// /// \return Status. inline static Status Load(const std::string &file, ModelType model_type, Graph *graph, const Key &dec_key = {}, const std::string &dec_mode = kDecModeAesGcm); /// \brief Load multiple models from multiple files, MindSpore Lite does not provide this feature. /// /// \param[in] files The path of model files. /// \param[in] model_type The Type of model file, options are ModelType::kMindIR, ModelType::kOM. /// \param[out] graphs The output parameter, an object saves graph data. /// \param[in] dec_key The decryption key, key length is 16, 24, or 32. /// \param[in] dec_mode The decryption mode, optional options are AES-GCM, AES-CBC. /// /// \return Status. inline static Status Load(const std::vector &files, ModelType model_type, std::vector *graphs, const Key &dec_key = {}, const std::string &dec_mode = kDecModeAesGcm); /// \brief Configure model parameters, MindSpore Lite does not provide this feature. /// /// \param[in] parameters The parameters. /// \param[in] model The model. /// /// \return Status. inline static Status SetParameters(const std::map ¶meters, Model *model); /// \brief Export training model from memory buffer, MindSpore Lite does not provide this feature. /// /// \param[in] model The model data. /// \param[in] model_type The model file type. /// \param[out] model_data The model buffer. /// \param[in] quantization_type The quantification type. /// \param[in] export_inference_only Whether to export a reasoning only model. /// \param[in] output_tensor_name The set the name of the output tensor of the exported reasoning model, default as /// empty, and export the complete reasoning model. /// /// \return Status. inline static Status ExportModel(const Model &model, ModelType model_type, Buffer *model_data, QuantizationType quantization_type = kNoQuant, bool export_inference_only = true, const std::vector &output_tensor_name = {}); /// \brief Export training model from file. /// /// \param[in] model The model data. /// \param[in] model_type The model file type. /// \param[in] model_file The path of exported model file. /// \param[in] quantization_type The quantification type. /// \param[in] export_inference_only Whether to export a reasoning only model. /// \param[in] output_tensor_name The set the name of the output tensor of the exported reasoning model, default as /// empty, and export the complete reasoning model. /// /// \return Status. inline static Status ExportModel(const Model &model, ModelType model_type, const std::string &model_file, QuantizationType quantization_type = kNoQuant, bool export_inference_only = true, std::vector output_tensor_name = {}); /// \brief Experimental feature. Export model's weights, which can be used in micro only. /// /// \param[in] model The model data. /// \param[in] model_type The model file type. /// \param[in] weight_file The path of exported weight file. /// \param[in] is_inference Whether to export weights from a reasoning model. Currently, only support this is `true`. /// \param[in] enable_fp16 Float-weight is whether to be saved in float16 format. /// \param[in] changeable_weights_name The set the name of these weight tensors, whose shape is changeable. /// /// \return Status. inline static Status ExportWeightsCollaborateWithMicro(const Model &model, ModelType model_type, const std::string &weight_file, bool is_inference = true, bool enable_fp16 = false, const std::vector &changeable_weights_name = {}); private: static Status Load(const void *model_data, size_t data_size, ModelType model_type, Graph *graph, const Key &dec_key, const std::vector &dec_mode); static Status Load(const std::vector &file, ModelType model_type, Graph *graph); static Status Load(const std::vector &file, ModelType model_type, Graph *graph, const Key &dec_key, const std::vector &dec_mode); static Status Load(const std::vector> &files, ModelType model_type, std::vector *graphs, const Key &dec_key, const std::vector &dec_mode); static Status SetParameters(const std::map, Buffer> ¶meters, Model *model); static Status ExportModel(const Model &model, ModelType model_type, const std::vector &model_file, QuantizationType quantization_type, bool export_inference_only, const std::vector> &output_tensor_name); static Status ExportModel(const Model &model, ModelType model_type, Buffer *model_data, QuantizationType quantization_type, bool export_inference_only, const std::vector> &output_tensor_name); static Status ExportWeightsCollaborateWithMicro(const Model &model, ModelType model_type, const std::vector &weight_file, bool is_inference, bool enable_fp16, const std::vector> &changeable_weights_name); }; Status Serialization::Load(const void *model_data, size_t data_size, ModelType model_type, Graph *graph, const Key &dec_key, const std::string &dec_mode) { return Load(model_data, data_size, model_type, graph, dec_key, StringToChar(dec_mode)); } Status Serialization::Load(const std::string &file, ModelType model_type, Graph *graph, const Key &dec_key, const std::string &dec_mode) { return Load(StringToChar(file), model_type, graph, dec_key, StringToChar(dec_mode)); } Status Serialization::Load(const std::vector &files, ModelType model_type, std::vector *graphs, const Key &dec_key, const std::string &dec_mode) { return Load(VectorStringToChar(files), model_type, graphs, dec_key, StringToChar(dec_mode)); } Status Serialization::SetParameters(const std::map ¶meters, Model *model) { return SetParameters(MapStringToChar(parameters), model); } Status Serialization::ExportModel(const Model &model, ModelType model_type, const std::string &model_file, QuantizationType quantization_type, bool export_inference_only, std::vector output_tensor_name) { return ExportModel(model, model_type, StringToChar(model_file), quantization_type, export_inference_only, VectorStringToChar(output_tensor_name)); } Status Serialization::ExportModel(const Model &model, ModelType model_type, Buffer *model_data, QuantizationType quantization_type, bool export_inference_only, const std::vector &output_tensor_name) { return ExportModel(model, model_type, model_data, quantization_type, export_inference_only, VectorStringToChar(output_tensor_name)); } Status Serialization::ExportWeightsCollaborateWithMicro(const Model &model, ModelType model_type, const std::string &weight_file, bool is_inference, bool enable_fp16, const std::vector &changeable_weights_name) { return ExportWeightsCollaborateWithMicro(model, model_type, StringToChar(weight_file), is_inference, enable_fp16, VectorStringToChar(changeable_weights_name)); } } // namespace mindspore #endif // MINDSPORE_INCLUDE_API_SERIALIZATION_H