from mindspore import nn from mindspore.common.tensor import Tensor from mindspore.ops import operations as P import mindspore.hypercomplex.dual as ops class DeepConvNet(nn.Cell): def __init__(self): super(DeepConvNet, self).__init__() self.conv1 = ops.Conv1d(1, 16, kernel_size=6, stride=2, padding=2, pad_mode='pad') self.bn1 = ops.BatchNorm1d(16) self.avg_pool1 = ops.AvgPool1d(kernel_size=2, stride=2) self.pad1 = nn.Pad(paddings=((0, 0), (0, 0), (0, 0), (0, 2)), mode='CONSTANT') self.conv2 = ops.Conv1d(16, 32, kernel_size=3, stride=2, padding=0) self.bn2 = ops.BatchNorm1d(32) self.avg_pool2 = ops.AvgPool1d(kernel_size=2, stride=2) self.conv3 = ops.Conv1d(32, 64, kernel_size=3, stride=1, padding=1, pad_mode='pad') self.bn3 = ops.BatchNorm1d(64) self.avg_pool3 = ops.AvgPool1d(kernel_size=2, stride=2) self.conv4 = ops.Conv1d(64, 64, kernel_size=3, stride=1, padding=1, pad_mode='pad') self.bn4 = ops.BatchNorm1d(64) self.avg_pool4 = ops.AvgPool1d(kernel_size=2, stride=2) self.conv5 = ops.Conv1d(64, 128, kernel_size=3, stride=1, padding=1, pad_mode='pad') self.conv6 = ops.Conv1d(128, 128, kernel_size=3, stride=1, padding=1, pad_mode='pad') self.bn6 = ops.BatchNorm1d(128) self.avg_pool6 = ops.AvgPool1d(kernel_size=2, stride=2) self.shape_op = P.Shape() self.reshape = P.Reshape() self.permute = P.Transpose() self.flatten = P.Flatten() self.fc1 = ops.Dense(4096, 1024) self.fc2 = nn.Dense(2048, 84) self.relu = ops.ReLU() self.sigmoid = nn.Sigmoid() def construct(self, u: Tensor) -> Tensor: u = self.conv1(u) u = self.bn1(u) u = self.relu(u) u = self.avg_pool1(u) u = self.pad1(u) u = self.conv2(u) u = self.bn2(u) u = self.relu(u) u = self.avg_pool2(u) u = self.conv3(u) u = self.bn3(u) u = self.relu(u) u = self.avg_pool3(u) u = self.conv4(u) u = self.bn4(u) u = self.relu(u) u = self.avg_pool4(u) u = self.conv5(u) u = self.relu(u) u = self.conv6(u) u = self.bn6(u) u = self.relu(u) u = self.avg_pool6(u) u_shape = self.shape_op(u) u = self.reshape(u, (u_shape[0], u_shape[1], -1)) u = self.fc1(u) u = self.relu(u) u = self.permute(u, (1, 0, 2)) x = self.flatten(u) x = self.fc2(x) x = self.sigmoid(x) return x