# Copyright 2023 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms import mindspore.nn as nn from mindspore import Tensor, ops from tests.st.utils import test_utils class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.conv3d = nn.Conv3d(in_channels=3, out_channels=32, kernel_size=(4, 3, 3), dtype=ms.float16) def construct(self, x): out = self.conv3d(x) return out @pytest.mark.level1 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE]) def test_conv3d_para_customed_dtype(mode): """ Feature: Conv3d Description: Verify the result of Conv3d specifying customed para dtype. Expectation: success """ ms.set_context(mode=mode) net = Net() x = Tensor(np.ones([16, 3, 10, 32, 32]), ms.float16) output = net(x) expect_output_shape = (16, 32, 10, 32, 32) assert np.allclose(expect_output_shape, output.shape) @pytest.mark.level0 @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.platform_arm_ascend910b_training @pytest.mark.env_onecard @test_utils.run_test_with_On def test_conv3d_input_5d(): """ Feature: Conv3d 5d input Description: Verify the result of Conv3d 5d input. Expectation: success """ ms.set_context(mode=ms.GRAPH_MODE, ascend_config={"precision_mode": "force_fp16"}) class Network(nn.Cell): def __init__(self): super().__init__() self.relu = ops.ReLU() self.conv1 = nn.Conv3d(1, 1, kernel_size=5, pad_mode="same", padding=0, has_bias=False, weight_init="One") self.reducemin = ops.ReduceMin(keep_dims=True) self.reducesum = ops.ReduceSum(keep_dims=True) self.add = ops.Add() self.square = ops.Square() self.abs = ops.Abs() self.concat = ops.Concat() self.batchnorm = nn.BatchNorm3d(5) def construct(self, data1, data2): batchnorm3d_01 = self.batchnorm(data1) batchnorm3d_02 = self.batchnorm(data1) reducesum_01 = self.reducesum(batchnorm3d_02, 1) add_01 = self.add(reducesum_01, data2) reducemin_01 = self.reducemin(add_01, 1) relu_01 = self.relu(batchnorm3d_01) abs_01 = self.abs(relu_01) square_01 = self.square(abs_01) reducemin_02 = self.reducemin(square_01, 1) concat_01 = self.concat((reducemin_02, reducemin_01)) conv_01 = self.conv1(concat_01) relu_03 = self.relu(conv_01) output = relu_03 return output data1 = Tensor(np.ones([1, 5, 5, 5, 4]).astype(np.float32)) data2 = Tensor(np.ones([1, 5, 5, 4]).astype(np.float32)) ms.set_context(device_target="CPU") cpu_mode = Network() cpu_out = cpu_mode(data1, data2).asnumpy() ms.set_context(device_target="Ascend") npu_mode = Network() npu_out = npu_mode(data1, data2).asnumpy() assert np.allclose(cpu_out, npu_out, 0.001, 0.001)