# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context from .optimizer_utils import FakeNet, build_network, default_fc1_weight_rprop, default_fc1_bias_rprop, \ no_default_fc1_weight_rprop, no_default_fc1_bias_rprop, default_group_fc1_weight_rprop, default_group_fc1_bias_rprop @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_default_rprop(mode): """ Feature: Test Rprop optimizer Description: Test Rprop with default parameter Expectation: Loss values and parameters conform to preset values. """ context.set_context(mode=mode) config = {'name': 'Rprop', 'lr': 0.01, 'etas': (0.5, 1.2), 'step_sizes': (1e-6, 50.), 'weight_decay': 0.0} _, cells = build_network(config, net=FakeNet()) assert np.allclose(cells.prev[0].asnumpy(), default_fc1_weight_rprop, atol=1.e-2) assert np.allclose(cells.prev[1].asnumpy(), default_fc1_bias_rprop, atol=1.e-2) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_no_default_rprop(mode): """ Feature: Test Rprop optimizer Description: Test Rprop with another set of parameter Expectation: Loss values and parameters conform to preset values. """ context.set_context(mode=mode) config = {'name': 'Rprop', 'lr': 0.01, 'etas': (0.6, 1.9), 'step_sizes': (1e-3, 20.), 'weight_decay': 0.0} _, cells = build_network(config, net=FakeNet()) assert np.allclose(cells.prev[0].asnumpy(), no_default_fc1_weight_rprop, atol=1.e-2) assert np.allclose(cells.prev[1].asnumpy(), no_default_fc1_bias_rprop, atol=1.e-2) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.platform_arm_cpu @pytest.mark.platform_x86_gpu_training @pytest.mark.platform_arm_ascend_training @pytest.mark.platform_x86_ascend_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_default_rprop_group(mode): """ Feature: Test Rprop optimizer Description: Test Rprop with parameter grouping Expectation: Loss values and parameters conform to preset values. """ context.set_context(mode=mode) config = {'name': 'Rprop', 'lr': 0.1, 'etas': (0.6, 1.9), 'step_sizes': (1e-2, 10.), 'weight_decay': 0.0} _, cells = build_network(config, net=FakeNet(), is_group=True) assert np.allclose(cells.prev[0].asnumpy(), default_group_fc1_weight_rprop, atol=1.e-2) assert np.allclose(cells.prev[1].asnumpy(), default_group_fc1_bias_rprop, atol=1.e-2)