• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2022 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/litert/delegate/nnapi/nnapi_utils.h"
18 #include <algorithm>
19 #include <vector>
20 #include <utility>
21 #include <unordered_map>
22 #include "include/errorcode.h"
23 #include "src/common/log_adapter.h"
24 #include "nnacl/op_base.h"
25 
26 namespace mindspore {
27 namespace lite {
28 static std::unordered_map<DataType, std::pair<OperandCode, OperandCode>> nnapi_data_type = {
29   {DataType::kNumberTypeBool, {ANEURALNETWORKS_BOOL, ANEURALNETWORKS_TENSOR_BOOL8}},
30   {DataType::kNumberTypeInt8, {ANEURALNETWORKS_BOOL, ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL}},
31   {DataType::kNumberTypeUInt8, {ANEURALNETWORKS_BOOL, ANEURALNETWORKS_TENSOR_QUANT8_ASYMM}},
32   {DataType::kNumberTypeInt32, {ANEURALNETWORKS_INT32, ANEURALNETWORKS_TENSOR_INT32}},
33   {DataType::kNumberTypeFloat16, {ANEURALNETWORKS_FLOAT16, ANEURALNETWORKS_TENSOR_FLOAT16}},
34   {DataType::kNumberTypeFloat32, {ANEURALNETWORKS_FLOAT32, ANEURALNETWORKS_TENSOR_FLOAT32}}};
35 
ConverTensorQuantSymmToASymm(MSTensor * ms_tensor)36 void ConverTensorQuantSymmToASymm(MSTensor *ms_tensor) {
37   MS_ASSERT(ms_tensor != nullptr);
38   MS_CHECK_TRUE_RET_VOID(ms_tensor->DataType() == DataType::kNumberTypeInt8);
39   MS_CHECK_TRUE_RET_VOID(ms_tensor->QuantParams().size() == 1);
40   ms_tensor->SetDataType(DataType::kNumberTypeUInt8);
41   auto quant_param = ms_tensor->QuantParams().front();
42   quant_param.zero_point += 128;
43   ms_tensor->SetQuantParams({quant_param});
44   if (ms_tensor->IsConst()) {
45     auto data = ms_tensor->MutableData();
46     for (int idx = 0; idx < ms_tensor->ElementNum(); idx++) {
47       *(reinterpret_cast<uint8_t *>(data) + idx) = *(reinterpret_cast<int8_t *>(data) + idx) + 128;
48     }
49   }
50 }
51 
AddNNAPIOperand(ANeuralNetworksModel * nnapi_model,MSTensor ms_tensor,int idx,int quant_channel_dim,bool is_scalar)52 int AddNNAPIOperand(ANeuralNetworksModel *nnapi_model, MSTensor ms_tensor, int idx, int quant_channel_dim,
53                     bool is_scalar) {
54   MS_ASSERT(nnapi_model != nullptr);
55   ANeuralNetworksOperandType nnapi_tensor;
56   auto ms_data_type = ms_tensor.DataType();
57   if (nnapi_data_type.find(ms_data_type) == nnapi_data_type.end()) {
58     MS_LOG(ERROR) << "Unsupported data type: " << static_cast<int>(ms_data_type);
59     return RET_ERROR;
60   }
61   nnapi_tensor.type = is_scalar ? nnapi_data_type.at(ms_data_type).first : nnapi_data_type.at(ms_data_type).second;
62   nnapi_tensor.scale = 0.f;    // These fields are used for quantized tensors
63   nnapi_tensor.zeroPoint = 0;  // These fields are used for quantized tensors
64 
65   ANeuralNetworksSymmPerChannelQuantParams quant_params;
66   std::vector<float> scales;
67   if (ms_tensor.QuantParams().size() == 1) {
68     nnapi_tensor.scale = ms_tensor.QuantParams().front().scale;
69     nnapi_tensor.zeroPoint = ms_tensor.QuantParams().front().zero_point;
70   } else {
71     quant_params.channelDim = quant_channel_dim;
72     quant_params.scaleCount = ms_tensor.QuantParams().size();
73     std::transform(ms_tensor.QuantParams().begin(), ms_tensor.QuantParams().end(), std::back_inserter(scales),
74                    [](QuantParam param) { return static_cast<float>(param.scale); });
75     quant_params.scales = scales.data();
76   }
77 
78   auto shape = ms_tensor.Shape();
79   if (shape.empty() && !is_scalar) {
80     shape.push_back(1);
81   }
82   nnapi_tensor.dimensionCount = static_cast<uint32_t>(shape.size());
83   std::vector<uint32_t> dims;
84   std::transform(shape.begin(), shape.end(), std::back_inserter(dims),
85                  [](int64_t dim) { return static_cast<uint32_t>(dim); });
86   nnapi_tensor.dimensions = dims.empty() ? nullptr : dims.data();
87 
88   if (nnapi_->ANeuralNetworksModel_addOperand(nnapi_model, &nnapi_tensor) != ANEURALNETWORKS_NO_ERROR) {
89     MS_LOG(ERROR) << "Add operand to NNAPI model failed: " << ms_tensor.Name();
90     return RET_ERROR;
91   }
92   if (nnapi_tensor.type == ANEURALNETWORKS_TENSOR_QUANT8_SYMM_PER_CHANNEL) {
93     nnapi_->ANeuralNetworksModel_setOperandSymmPerChannelQuantParams(nnapi_model, idx, &quant_params);
94   }
95   if (ms_tensor.IsConst() &&
96       nnapi_->ANeuralNetworksModel_setOperandValue(nnapi_model, idx, ms_tensor.MutableData(), ms_tensor.DataSize()) !=
97         ANEURALNETWORKS_NO_ERROR) {
98     MS_LOG(ERROR) << "Set operand value for NNAPI model failed: " << ms_tensor.Name();
99     return RET_ERROR;
100   }
101   return RET_OK;
102 }
103 }  // namespace lite
104 }  // namespace mindspore
105