• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020-2023 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "minddata/dataset/kernels/image/decode_op.h"
18 
19 #ifndef ENABLE_ANDROID
20 #include "minddata/dataset/kernels/image/image_utils.h"
21 #else
22 #include "minddata/dataset/kernels/image/lite_image_utils.h"
23 #endif
24 #include "minddata/dataset/util/status.h"
25 
26 namespace mindspore {
27 namespace dataset {
28 const bool DecodeOp::kDefRgbFormat = true;
29 
DecodeOp(bool rgb)30 DecodeOp::DecodeOp(bool rgb) : is_rgb_format_(rgb) {
31   if (is_rgb_format_) {  // RGB color mode
32     MS_LOG(DEBUG) << "Decode color mode is RGB.";
33   } else {
34     MS_LOG(DEBUG) << "Decode color mode is BGR.";
35   }
36 }
37 
Compute(const std::shared_ptr<Tensor> & input,std::shared_ptr<Tensor> * output)38 Status DecodeOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
39   IO_CHECK(input, output);
40   // check the input tensor shape
41   if (input->Rank() != 1) {
42     RETURN_STATUS_UNEXPECTED("Decode: invalid input shape, only support 1D input, got rank: " +
43                              std::to_string(input->Rank()));
44   }
45   if (is_rgb_format_) {  // RGB color mode
46     return Decode(input, output);
47   } else {  // BGR color mode
48     RETURN_STATUS_UNEXPECTED(
49       "Decode: only support Decoded into RGB image, check input parameter 'rgb' first, its value should be 'True'.");
50   }
51 }
52 
OutputShape(const std::vector<TensorShape> & inputs,std::vector<TensorShape> & outputs)53 Status DecodeOp::OutputShape(const std::vector<TensorShape> &inputs, std::vector<TensorShape> &outputs) {
54   RETURN_IF_NOT_OK(TensorOp::OutputShape(inputs, outputs));
55   outputs.clear();
56   TensorShape out({-1, -1, 3});  // we don't know what is output image size, but we know it should be 3 channels
57   if (inputs[0].Rank() == 1) {
58     (void)outputs.emplace_back(out);
59   }
60   CHECK_FAIL_RETURN_UNEXPECTED(
61     !outputs.empty(),
62     "Decode: invalid input shape, expected 1D input, but got input dimension is:" + std::to_string(inputs[0].Rank()));
63   return Status::OK();
64 }
65 
OutputType(const std::vector<DataType> & inputs,std::vector<DataType> & outputs)66 Status DecodeOp::OutputType(const std::vector<DataType> &inputs, std::vector<DataType> &outputs) {
67   CHECK_FAIL_RETURN_UNEXPECTED(!inputs.empty(), "Decode: inputs cannot be empty.");
68   RETURN_IF_NOT_OK(TensorOp::OutputType(inputs, outputs));
69   outputs[0] = DataType(DataType::DE_UINT8);
70   return Status::OK();
71 }
72 }  // namespace dataset
73 }  // namespace mindspore
74