1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 //
4 // Use of this source code is governed by a BSD-style
5 // license that can be found in the LICENSE file or at
6 // https://developers.google.com/open-source/licenses/bsd
7
8 // Author: kenton@google.com (Kenton Varda)
9 // Based on original Protocol Buffers design by
10 // Sanjay Ghemawat, Jeff Dean, and others.
11 //
12 // This header is logically internal, but is made public because it is used
13 // from protocol-compiler-generated code, which may reside in other components.
14
15 #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
16 #define GOOGLE_PROTOBUF_EXTENSION_SET_H__
17
18 #include <algorithm>
19 #include <atomic>
20 #include <cassert>
21 #include <cstddef>
22 #include <cstdint>
23 #include <initializer_list>
24 #include <string>
25 #include <type_traits>
26 #include <utility>
27 #include <vector>
28
29 #include "google/protobuf/stubs/common.h"
30 #include "absl/base/call_once.h"
31 #include "absl/base/casts.h"
32 #include "absl/base/prefetch.h"
33 #include "absl/container/btree_map.h"
34 #include "absl/log/absl_check.h"
35 #include "google/protobuf/internal_visibility.h"
36 #include "google/protobuf/port.h"
37 #include "google/protobuf/io/coded_stream.h"
38 #include "google/protobuf/message_lite.h"
39 #include "google/protobuf/parse_context.h"
40 #include "google/protobuf/repeated_field.h"
41 #include "google/protobuf/repeated_ptr_field.h"
42 #include "google/protobuf/wire_format_lite.h"
43
44 // clang-format off
45 #include "google/protobuf/port_def.inc" // Must be last
46 // clang-format on
47
48 #ifdef SWIG
49 #error "You cannot SWIG proto headers"
50 #endif
51
52
53 namespace google {
54 namespace protobuf {
55 class Arena;
56 class Descriptor; // descriptor.h
57 class FieldDescriptor; // descriptor.h
58 class DescriptorPool; // descriptor.h
59 class MessageLite; // message_lite.h
60 class Message; // message.h
61 class MessageFactory; // message.h
62 class Reflection; // message.h
63 class UnknownFieldSet; // unknown_field_set.h
64 class FeatureSet;
65 namespace internal {
66 struct DescriptorTable;
67 class FieldSkipper; // wire_format_lite.h
68 class ReflectionVisit; // message_reflection_util.h
69 class WireFormat;
70 struct DynamicExtensionInfoHelper;
71 void InitializeLazyExtensionSet();
72 } // namespace internal
73 } // namespace protobuf
74 } // namespace google
75 namespace pb {
76 class CppFeatures;
77 } // namespace pb
78
79 namespace google {
80 namespace protobuf {
81 namespace internal {
82
83 class InternalMetadata;
84
85 // Used to store values of type WireFormatLite::FieldType without having to
86 // #include wire_format_lite.h. Also, ensures that we use only one byte to
87 // store these values, which is important to keep the layout of
88 // ExtensionSet::Extension small.
89 typedef uint8_t FieldType;
90
91 // A function which, given an integer value, returns true if the number
92 // matches one of the defined values for the corresponding enum type. This
93 // is used with RegisterEnumExtension, below.
94 typedef bool EnumValidityFunc(int number);
95
96 // Version of the above which takes an argument. This is needed to deal with
97 // extensions that are not compiled in.
98 typedef bool EnumValidityFuncWithArg(const void* arg, int number);
99
100 enum class LazyAnnotation : int8_t {
101 kUndefined = 0,
102 kLazy = 1,
103 kEager = 2,
104 };
105
106 // Information about a registered extension.
107 struct ExtensionInfo {
ExtensionInfoExtensionInfo108 constexpr ExtensionInfo() : enum_validity_check() {}
ExtensionInfoExtensionInfo109 constexpr ExtensionInfo(const MessageLite* extendee, int param_number,
110 FieldType type_param, bool isrepeated, bool ispacked)
111 : message(extendee),
112 number(param_number),
113 type(type_param),
114 is_repeated(isrepeated),
115 is_packed(ispacked),
116 enum_validity_check() {}
117 constexpr ExtensionInfo(const MessageLite* extendee, int param_number,
118 FieldType type_param, bool isrepeated, bool ispacked,
119 LazyEagerVerifyFnType verify_func,
120 LazyAnnotation islazy = LazyAnnotation::kUndefined)
messageExtensionInfo121 : message(extendee),
122 number(param_number),
123 type(type_param),
124 is_repeated(isrepeated),
125 is_packed(ispacked),
126 is_lazy(islazy),
127 enum_validity_check(),
128 lazy_eager_verify_func(verify_func) {}
129
130 const MessageLite* message = nullptr;
131 int number = 0;
132
133 FieldType type = 0;
134 bool is_repeated = false;
135 bool is_packed = false;
136 LazyAnnotation is_lazy = LazyAnnotation::kUndefined;
137
138 struct EnumValidityCheck {
139 EnumValidityFuncWithArg* func;
140 const void* arg;
141 };
142
143 struct MessageInfo {
144 const MessageLite* prototype;
145 // The TcParse table used for this object.
146 // Never null. (except in platforms that don't constant initialize default
147 // instances)
148 const internal::TcParseTableBase* tc_table;
149 };
150
151 union {
152 EnumValidityCheck enum_validity_check;
153 MessageInfo message_info;
154 };
155
156 // The descriptor for this extension, if one exists and is known. May be
157 // nullptr. Must not be nullptr if the descriptor for the extension does not
158 // live in the same pool as the descriptor for the containing type.
159 const FieldDescriptor* descriptor = nullptr;
160
161 // If this field is potentially lazy this function can be used as a cheap
162 // verification of the raw bytes.
163 // If nullptr then no verification is performed.
164 LazyEagerVerifyFnType lazy_eager_verify_func = nullptr;
165 };
166
167
168 // An ExtensionFinder is an object which looks up extension definitions. It
169 // must implement this method:
170 //
171 // bool Find(int number, ExtensionInfo* output);
172
173 // GeneratedExtensionFinder is an ExtensionFinder which finds extensions
174 // defined in .proto files which have been compiled into the binary.
175 class PROTOBUF_EXPORT GeneratedExtensionFinder {
176 public:
GeneratedExtensionFinder(const MessageLite * extendee)177 explicit GeneratedExtensionFinder(const MessageLite* extendee)
178 : extendee_(extendee) {}
179
180 // Returns true and fills in *output if found, otherwise returns false.
181 bool Find(int number, ExtensionInfo* output);
182
183 private:
184 const MessageLite* extendee_;
185 };
186
187 // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
188 // finding extensions from a DescriptorPool.
189
190 // This is an internal helper class intended for use within the protocol buffer
191 // library and generated classes. Clients should not use it directly. Instead,
192 // use the generated accessors such as GetExtension() of the class being
193 // extended.
194 //
195 // This class manages extensions for a protocol message object. The
196 // message's HasExtension(), GetExtension(), MutableExtension(), and
197 // ClearExtension() methods are just thin wrappers around the embedded
198 // ExtensionSet. When parsing, if a tag number is encountered which is
199 // inside one of the message type's extension ranges, the tag is passed
200 // off to the ExtensionSet for parsing. Etc.
201 class PROTOBUF_EXPORT ExtensionSet {
202 public:
ExtensionSet()203 constexpr ExtensionSet() : ExtensionSet(nullptr) {}
204 ExtensionSet(const ExtensionSet& rhs) = delete;
205
206 // Arena enabled constructors: for internal use only.
ExtensionSet(internal::InternalVisibility,Arena * arena)207 ExtensionSet(internal::InternalVisibility, Arena* arena)
208 : ExtensionSet(arena) {}
209
210 // TODO: make constructor private, and migrate `ArenaInitialized`
211 // to `InternalVisibility` overloaded constructor(s).
212 explicit constexpr ExtensionSet(Arena* arena);
ExtensionSet(ArenaInitialized,Arena * arena)213 ExtensionSet(ArenaInitialized, Arena* arena) : ExtensionSet(arena) {}
214
215 ExtensionSet& operator=(const ExtensionSet&) = delete;
216 ~ExtensionSet();
217
218 // These are called at startup by protocol-compiler-generated code to
219 // register known extensions. The registrations are used by ParseField()
220 // to look up extensions for parsed field numbers. Note that dynamic parsing
221 // does not use ParseField(); only protocol-compiler-generated parsing
222 // methods do.
223 static void RegisterExtension(const MessageLite* extendee, int number,
224 FieldType type, bool is_repeated,
225 bool is_packed);
226 static void RegisterEnumExtension(const MessageLite* extendee, int number,
227 FieldType type, bool is_repeated,
228 bool is_packed, EnumValidityFunc* is_valid);
229 static void RegisterMessageExtension(const MessageLite* extendee, int number,
230 FieldType type, bool is_repeated,
231 bool is_packed,
232 const MessageLite* prototype,
233 LazyEagerVerifyFnType verify_func,
234 LazyAnnotation is_lazy);
235
236 // In weak descriptor mode we register extensions in two phases.
237 // This function determines if it is the right time to register a particular
238 // extension.
239 // During "preregistration" we only register extensions that have all their
240 // types linked in.
241 struct WeakPrototypeRef {
242 const internal::DescriptorTable* table;
243 int index;
244 };
245 static bool ShouldRegisterAtThisTime(
246 std::initializer_list<WeakPrototypeRef> messages,
247 bool is_preregistration);
248
249 // =================================================================
250
251 // Add all fields which are currently present to the given vector. This
252 // is useful to implement Reflection::ListFields(). Descriptors are appended
253 // in increasing tag order.
254 void AppendToList(const Descriptor* extendee, const DescriptorPool* pool,
255 std::vector<const FieldDescriptor*>* output) const;
256
257 // =================================================================
258 // Accessors
259 //
260 // Generated message classes include type-safe templated wrappers around
261 // these methods. Generally you should use those rather than call these
262 // directly, unless you are doing low-level memory management.
263 //
264 // When calling any of these accessors, the extension number requested
265 // MUST exist in the DescriptorPool provided to the constructor. Otherwise,
266 // the method will fail an assert. Normally, though, you would not call
267 // these directly; you would either call the generated accessors of your
268 // message class (e.g. GetExtension()) or you would call the accessors
269 // of the reflection interface. In both cases, it is impossible to
270 // trigger this assert failure: the generated accessors only accept
271 // linked-in extension types as parameters, while the Reflection interface
272 // requires you to provide the FieldDescriptor describing the extension.
273 //
274 // When calling any of these accessors, a protocol-compiler-generated
275 // implementation of the extension corresponding to the number MUST
276 // be linked in, and the FieldDescriptor used to refer to it MUST be
277 // the one generated by that linked-in code. Otherwise, the method will
278 // die on an assert failure. The message objects returned by the message
279 // accessors are guaranteed to be of the correct linked-in type.
280 //
281 // These methods pretty much match Reflection except that:
282 // - They're not virtual.
283 // - They identify fields by number rather than FieldDescriptors.
284 // - They identify enum values using integers rather than descriptors.
285 // - Strings provide Mutable() in addition to Set() accessors.
286
287 bool Has(int number) const;
288 int ExtensionSize(int number) const; // Size of a repeated extension.
289 int NumExtensions() const; // The number of extensions
290 FieldType ExtensionType(int number) const;
291 void ClearExtension(int number);
292
293 // singular fields -------------------------------------------------
294
295 int32_t GetInt32(int number, int32_t default_value) const;
296 int64_t GetInt64(int number, int64_t default_value) const;
297 uint32_t GetUInt32(int number, uint32_t default_value) const;
298 uint64_t GetUInt64(int number, uint64_t default_value) const;
299 float GetFloat(int number, float default_value) const;
300 double GetDouble(int number, double default_value) const;
301 bool GetBool(int number, bool default_value) const;
302 int GetEnum(int number, int default_value) const;
303 const std::string& GetString(int number,
304 const std::string& default_value) const;
305 const MessageLite& GetMessage(int number,
306 const MessageLite& default_value) const;
307 const MessageLite& GetMessage(int number, const Descriptor* message_type,
308 MessageFactory* factory) const;
309
310 // |descriptor| may be nullptr so long as it is known that the descriptor for
311 // the extension lives in the same pool as the descriptor for the containing
312 // type.
313 #define desc const FieldDescriptor* descriptor // avoid line wrapping
314 void SetInt32(int number, FieldType type, int32_t value, desc);
315 void SetInt64(int number, FieldType type, int64_t value, desc);
316 void SetUInt32(int number, FieldType type, uint32_t value, desc);
317 void SetUInt64(int number, FieldType type, uint64_t value, desc);
318 void SetFloat(int number, FieldType type, float value, desc);
319 void SetDouble(int number, FieldType type, double value, desc);
320 void SetBool(int number, FieldType type, bool value, desc);
321 void SetEnum(int number, FieldType type, int value, desc);
322 void SetString(int number, FieldType type, std::string value, desc);
323 std::string* MutableString(int number, FieldType type, desc);
324 MessageLite* MutableMessage(int number, FieldType type,
325 const MessageLite& prototype, desc);
326 MessageLite* MutableMessage(const FieldDescriptor* descriptor,
327 MessageFactory* factory);
328 // Adds the given message to the ExtensionSet, taking ownership of the
329 // message object. Existing message with the same number will be deleted.
330 // If "message" is nullptr, this is equivalent to "ClearExtension(number)".
331 void SetAllocatedMessage(int number, FieldType type,
332 const FieldDescriptor* descriptor,
333 MessageLite* message);
334 void UnsafeArenaSetAllocatedMessage(int number, FieldType type,
335 const FieldDescriptor* descriptor,
336 MessageLite* message);
337 PROTOBUF_NODISCARD MessageLite* ReleaseMessage(int number,
338 const MessageLite& prototype);
339 MessageLite* UnsafeArenaReleaseMessage(int number,
340 const MessageLite& prototype);
341
342 PROTOBUF_NODISCARD MessageLite* ReleaseMessage(
343 const FieldDescriptor* descriptor, MessageFactory* factory);
344 MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor,
345 MessageFactory* factory);
346 #undef desc
GetArena()347 Arena* GetArena() const { return arena_; }
348
349 // repeated fields -------------------------------------------------
350
351 // Fetches a RepeatedField extension by number; returns |default_value|
352 // if no such extension exists. User should not touch this directly; it is
353 // used by the GetRepeatedExtension() method.
354 const void* GetRawRepeatedField(int number, const void* default_value) const;
355 // Fetches a mutable version of a RepeatedField extension by number,
356 // instantiating one if none exists. Similar to above, user should not use
357 // this directly; it underlies MutableRepeatedExtension().
358 void* MutableRawRepeatedField(int number, FieldType field_type, bool packed,
359 const FieldDescriptor* desc);
360
361 // This is an overload of MutableRawRepeatedField to maintain compatibility
362 // with old code using a previous API. This version of
363 // MutableRawRepeatedField() will ABSL_CHECK-fail on a missing extension.
364 // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
365 void* MutableRawRepeatedField(int number);
366
367 int32_t GetRepeatedInt32(int number, int index) const;
368 int64_t GetRepeatedInt64(int number, int index) const;
369 uint32_t GetRepeatedUInt32(int number, int index) const;
370 uint64_t GetRepeatedUInt64(int number, int index) const;
371 float GetRepeatedFloat(int number, int index) const;
372 double GetRepeatedDouble(int number, int index) const;
373 bool GetRepeatedBool(int number, int index) const;
374 int GetRepeatedEnum(int number, int index) const;
375 const std::string& GetRepeatedString(int number, int index) const;
376 const MessageLite& GetRepeatedMessage(int number, int index) const;
377
378 void SetRepeatedInt32(int number, int index, int32_t value);
379 void SetRepeatedInt64(int number, int index, int64_t value);
380 void SetRepeatedUInt32(int number, int index, uint32_t value);
381 void SetRepeatedUInt64(int number, int index, uint64_t value);
382 void SetRepeatedFloat(int number, int index, float value);
383 void SetRepeatedDouble(int number, int index, double value);
384 void SetRepeatedBool(int number, int index, bool value);
385 void SetRepeatedEnum(int number, int index, int value);
386 void SetRepeatedString(int number, int index, std::string value);
387 std::string* MutableRepeatedString(int number, int index);
388 MessageLite* MutableRepeatedMessage(int number, int index);
389
390 #define desc const FieldDescriptor* descriptor // avoid line wrapping
391 void AddInt32(int number, FieldType type, bool packed, int32_t value, desc);
392 void AddInt64(int number, FieldType type, bool packed, int64_t value, desc);
393 void AddUInt32(int number, FieldType type, bool packed, uint32_t value, desc);
394 void AddUInt64(int number, FieldType type, bool packed, uint64_t value, desc);
395 void AddFloat(int number, FieldType type, bool packed, float value, desc);
396 void AddDouble(int number, FieldType type, bool packed, double value, desc);
397 void AddBool(int number, FieldType type, bool packed, bool value, desc);
398 void AddEnum(int number, FieldType type, bool packed, int value, desc);
399 void AddString(int number, FieldType type, std::string value, desc);
400 std::string* AddString(int number, FieldType type, desc);
401 MessageLite* AddMessage(int number, FieldType type,
402 const MessageLite& prototype, desc);
403 MessageLite* AddMessage(const FieldDescriptor* descriptor,
404 MessageFactory* factory);
405 void AddAllocatedMessage(const FieldDescriptor* descriptor,
406 MessageLite* new_entry);
407 void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor,
408 MessageLite* new_entry);
409 #undef desc
410
411 void RemoveLast(int number);
412 PROTOBUF_NODISCARD MessageLite* ReleaseLast(int number);
413 MessageLite* UnsafeArenaReleaseLast(int number);
414 void SwapElements(int number, int index1, int index2);
415
416 // =================================================================
417 // convenience methods for implementing methods of Message
418 //
419 // These could all be implemented in terms of the other methods of this
420 // class, but providing them here helps keep the generated code size down.
421
422 void Clear();
423 void MergeFrom(const MessageLite* extendee, const ExtensionSet& other);
424 void Swap(const MessageLite* extendee, ExtensionSet* other);
425 void InternalSwap(ExtensionSet* other);
426 void SwapExtension(const MessageLite* extendee, ExtensionSet* other,
427 int number);
428 void UnsafeShallowSwapExtension(ExtensionSet* other, int number);
429 bool IsInitialized(const MessageLite* extendee) const;
430
431 // Lite parser
432 const char* ParseField(uint64_t tag, const char* ptr,
433 const MessageLite* extendee,
434 internal::InternalMetadata* metadata,
435 internal::ParseContext* ctx);
436 // Full parser
437 const char* ParseField(uint64_t tag, const char* ptr, const Message* extendee,
438 internal::InternalMetadata* metadata,
439 internal::ParseContext* ctx);
440 template <typename Msg>
ParseMessageSet(const char * ptr,const Msg * extendee,InternalMetadata * metadata,internal::ParseContext * ctx)441 const char* ParseMessageSet(const char* ptr, const Msg* extendee,
442 InternalMetadata* metadata,
443 internal::ParseContext* ctx) {
444 while (!ctx->Done(&ptr)) {
445 uint32_t tag;
446 ptr = ReadTag(ptr, &tag);
447 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
448 if (tag == WireFormatLite::kMessageSetItemStartTag) {
449 ptr = ctx->ParseGroupInlined(ptr, tag, [&](const char* ptr) {
450 return ParseMessageSetItem(ptr, extendee, metadata, ctx);
451 });
452 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
453 } else {
454 if (tag == 0 || (tag & 7) == 4) {
455 ctx->SetLastTag(tag);
456 return ptr;
457 }
458 ptr = ParseField(tag, ptr, extendee, metadata, ctx);
459 GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
460 }
461 }
462 return ptr;
463 }
464
465 // Write all extension fields with field numbers in the range
466 // [start_field_number, end_field_number)
467 // to the output stream, using the cached sizes computed when ByteSize() was
468 // last called. Note that the range bounds are inclusive-exclusive.
SerializeWithCachedSizes(const MessageLite * extendee,int start_field_number,int end_field_number,io::CodedOutputStream * output)469 void SerializeWithCachedSizes(const MessageLite* extendee,
470 int start_field_number, int end_field_number,
471 io::CodedOutputStream* output) const {
472 output->SetCur(_InternalSerialize(extendee, start_field_number,
473 end_field_number, output->Cur(),
474 output->EpsCopy()));
475 }
476
477 // Same as SerializeWithCachedSizes, but without any bounds checking.
478 // The caller must ensure that target has sufficient capacity for the
479 // serialized extensions.
480 //
481 // Returns a pointer past the last written byte.
482
_InternalSerialize(const MessageLite * extendee,int start_field_number,int end_field_number,uint8_t * target,io::EpsCopyOutputStream * stream)483 uint8_t* _InternalSerialize(const MessageLite* extendee,
484 int start_field_number, int end_field_number,
485 uint8_t* target,
486 io::EpsCopyOutputStream* stream) const {
487 if (flat_size_ == 0) {
488 assert(!is_large());
489 return target;
490 }
491 return _InternalSerializeImpl(extendee, start_field_number,
492 end_field_number, target, stream);
493 }
494
495 // Like above but serializes in MessageSet format.
SerializeMessageSetWithCachedSizes(const MessageLite * extendee,io::CodedOutputStream * output)496 void SerializeMessageSetWithCachedSizes(const MessageLite* extendee,
497 io::CodedOutputStream* output) const {
498 output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray(
499 extendee, output->Cur(), output->EpsCopy()));
500 }
501 uint8_t* InternalSerializeMessageSetWithCachedSizesToArray(
502 const MessageLite* extendee, uint8_t* target,
503 io::EpsCopyOutputStream* stream) const;
504
505 // For backward-compatibility, versions of two of the above methods that
506 // serialize deterministically iff SetDefaultSerializationDeterministic()
507 // has been called.
508 uint8_t* SerializeWithCachedSizesToArray(int start_field_number,
509 int end_field_number,
510 uint8_t* target) const;
511 uint8_t* SerializeMessageSetWithCachedSizesToArray(
512 const MessageLite* extendee, uint8_t* target) const;
513
514 // Returns the total serialized size of all the extensions.
515 size_t ByteSize() const;
516
517 // Like ByteSize() but uses MessageSet format.
518 size_t MessageSetByteSize() const;
519
520 // Returns (an estimate of) the total number of bytes used for storing the
521 // extensions in memory, excluding sizeof(*this). If the ExtensionSet is
522 // for a lite message (and thus possibly contains lite messages), the results
523 // are undefined (might work, might crash, might corrupt data, might not even
524 // be linked in). It's up to the protocol compiler to avoid calling this on
525 // such ExtensionSets (easy enough since lite messages don't implement
526 // SpaceUsed()).
527 size_t SpaceUsedExcludingSelfLong() const;
528
529 // This method just calls SpaceUsedExcludingSelfLong() but it can not be
530 // inlined because the definition of SpaceUsedExcludingSelfLong() is not
531 // included in lite runtime and when an inline method refers to it MSVC
532 // will complain about unresolved symbols when building the lite runtime
533 // as .dll.
534 int SpaceUsedExcludingSelf() const;
535
InternalGetArenaOffset(internal::InternalVisibility)536 static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) {
537 return PROTOBUF_FIELD_OFFSET(ExtensionSet, arena_);
538 }
539
540 private:
541 template <typename Type>
542 friend class PrimitiveTypeTraits;
543
544 template <typename Type>
545 friend class RepeatedPrimitiveTypeTraits;
546
547 template <typename Type, bool IsValid(int)>
548 friend class EnumTypeTraits;
549
550 template <typename Type, bool IsValid(int)>
551 friend class RepeatedEnumTypeTraits;
552
553 friend class google::protobuf::Reflection;
554 friend class google::protobuf::internal::ReflectionVisit;
555 friend struct google::protobuf::internal::DynamicExtensionInfoHelper;
556 friend class google::protobuf::internal::WireFormat;
557
558 friend void internal::InitializeLazyExtensionSet();
559
560 static bool FieldTypeIsPointer(FieldType type);
561
562 const int32_t& GetRefInt32(int number, const int32_t& default_value) const;
563 const int64_t& GetRefInt64(int number, const int64_t& default_value) const;
564 const uint32_t& GetRefUInt32(int number, const uint32_t& default_value) const;
565 const uint64_t& GetRefUInt64(int number, const uint64_t& default_value) const;
566 const float& GetRefFloat(int number, const float& default_value) const;
567 const double& GetRefDouble(int number, const double& default_value) const;
568 const bool& GetRefBool(int number, const bool& default_value) const;
569 const int& GetRefEnum(int number, const int& default_value) const;
570 const int32_t& GetRefRepeatedInt32(int number, int index) const;
571 const int64_t& GetRefRepeatedInt64(int number, int index) const;
572 const uint32_t& GetRefRepeatedUInt32(int number, int index) const;
573 const uint64_t& GetRefRepeatedUInt64(int number, int index) const;
574 const float& GetRefRepeatedFloat(int number, int index) const;
575 const double& GetRefRepeatedDouble(int number, int index) const;
576 const bool& GetRefRepeatedBool(int number, int index) const;
577 const int& GetRefRepeatedEnum(int number, int index) const;
578
579 size_t GetMessageByteSizeLong(int number) const;
580 uint8_t* InternalSerializeMessage(int number, const MessageLite* prototype,
581 uint8_t* target,
582 io::EpsCopyOutputStream* stream) const;
583
584 // Implementation of _InternalSerialize for non-empty map_.
585 uint8_t* _InternalSerializeImpl(const MessageLite* extendee,
586 int start_field_number, int end_field_number,
587 uint8_t* target,
588 io::EpsCopyOutputStream* stream) const;
589 // Interface of a lazily parsed singular message extension.
590 class PROTOBUF_EXPORT LazyMessageExtension {
591 public:
592 LazyMessageExtension() = default;
593 LazyMessageExtension(const LazyMessageExtension&) = delete;
594 LazyMessageExtension& operator=(const LazyMessageExtension&) = delete;
595 virtual ~LazyMessageExtension() = default;
596
597 virtual LazyMessageExtension* New(Arena* arena) const = 0;
598 virtual const MessageLite& GetMessage(const MessageLite& prototype,
599 Arena* arena) const = 0;
600 virtual const MessageLite& GetMessageIgnoreUnparsed(
601 const MessageLite& prototype, Arena* arena) const = 0;
602 virtual MessageLite* MutableMessage(const MessageLite& prototype,
603 Arena* arena) = 0;
604 virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0;
605 virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message,
606 Arena* arena) = 0;
607 PROTOBUF_NODISCARD virtual MessageLite* ReleaseMessage(
608 const MessageLite& prototype, Arena* arena) = 0;
609 virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype,
610 Arena* arena) = 0;
611
612 virtual bool IsInitialized(const MessageLite* prototype,
613 Arena* arena) const = 0;
614 virtual bool IsEagerSerializeSafe(const MessageLite* prototype,
615 Arena* arena) const = 0;
616
ByteSize()617 [[deprecated("Please use ByteSizeLong() instead")]] virtual int ByteSize()
618 const {
619 return internal::ToIntSize(ByteSizeLong());
620 }
621 virtual size_t ByteSizeLong() const = 0;
622 virtual size_t SpaceUsedLong() const = 0;
623
624 virtual void MergeFrom(const MessageLite* prototype,
625 const LazyMessageExtension& other, Arena* arena,
626 Arena* other_arena) = 0;
627 virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0;
628 virtual void Clear() = 0;
629
630 virtual const char* _InternalParse(const MessageLite& prototype,
631 Arena* arena, const char* ptr,
632 ParseContext* ctx) = 0;
633 virtual uint8_t* WriteMessageToArray(
634 const MessageLite* prototype, int number, uint8_t* target,
635 io::EpsCopyOutputStream* stream) const = 0;
636
637 private:
638 virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable.
639 };
640 // Give access to function defined below to see LazyMessageExtension.
641 static LazyMessageExtension* MaybeCreateLazyExtensionImpl(Arena* arena);
MaybeCreateLazyExtension(Arena * arena)642 static LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena) {
643 auto* f = maybe_create_lazy_extension_.load(std::memory_order_relaxed);
644 return f != nullptr ? f(arena) : nullptr;
645 }
646 static std::atomic<LazyMessageExtension* (*)(Arena* arena)>
647 maybe_create_lazy_extension_;
648
649 // We can't directly use std::atomic for Extension::cached_size because
650 // Extension needs to be trivially copyable.
651 class TrivialAtomicInt {
652 public:
operator()653 int operator()() const {
654 return reinterpret_cast<const AtomicT*>(int_)->load(
655 std::memory_order_relaxed);
656 }
set(int v)657 void set(int v) {
658 reinterpret_cast<AtomicT*>(int_)->store(v, std::memory_order_relaxed);
659 }
660
661 private:
662 using AtomicT = std::atomic<int>;
663 alignas(AtomicT) char int_[sizeof(AtomicT)];
664 };
665
666 struct Extension {
667 // Some helper methods for operations on a single Extension.
668 uint8_t* InternalSerializeFieldWithCachedSizesToArray(
669 const MessageLite* extendee, const ExtensionSet* extension_set,
670 int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
671 uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray(
672 const MessageLite* extendee, const ExtensionSet* extension_set,
673 int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
674 size_t ByteSize(int number) const;
675 size_t MessageSetItemByteSize(int number) const;
676 void Clear();
677 int GetSize() const;
678 void Free();
679 size_t SpaceUsedExcludingSelfLong() const;
680 bool IsInitialized(const ExtensionSet* ext_set, const MessageLite* extendee,
681 int number, Arena* arena) const;
PrefetchPtrExtension682 const void* PrefetchPtr() const {
683 ABSL_DCHECK_EQ(is_pointer, is_repeated || FieldTypeIsPointer(type));
684 // We don't want to prefetch invalid/null pointers so if there isn't a
685 // pointer to prefetch, then return `this`.
686 return is_pointer ? absl::bit_cast<const void*>(ptr) : this;
687 }
688
689 // The order of these fields packs Extension into 24 bytes when using 8
690 // byte alignment. Consider this when adding or removing fields here.
691
692 // We need a separate named union for pointer values to allow for
693 // prefetching the pointer without undefined behavior.
694 union Pointer {
695 std::string* string_value;
696 MessageLite* message_value;
697 LazyMessageExtension* lazymessage_value;
698
699 RepeatedField<int32_t>* repeated_int32_t_value;
700 RepeatedField<int64_t>* repeated_int64_t_value;
701 RepeatedField<uint32_t>* repeated_uint32_t_value;
702 RepeatedField<uint64_t>* repeated_uint64_t_value;
703 RepeatedField<float>* repeated_float_value;
704 RepeatedField<double>* repeated_double_value;
705 RepeatedField<bool>* repeated_bool_value;
706 RepeatedField<int>* repeated_enum_value;
707 RepeatedPtrField<std::string>* repeated_string_value;
708 RepeatedPtrField<MessageLite>* repeated_message_value;
709 };
710
711 union {
712 int32_t int32_t_value;
713 int64_t int64_t_value;
714 uint32_t uint32_t_value;
715 uint64_t uint64_t_value;
716 float float_value;
717 double double_value;
718 bool bool_value;
719 int enum_value;
720 Pointer ptr;
721 };
722
723 FieldType type;
724 bool is_repeated;
725
726 // Whether the extension is a pointer. This is used for prefetching.
727 bool is_pointer : 1;
728
729 // For singular types, indicates if the extension is "cleared". This
730 // happens when an extension is set and then later cleared by the caller.
731 // We want to keep the Extension object around for reuse, so instead of
732 // removing it from the map, we just set is_cleared = true. This has no
733 // meaning for repeated types; for those, the size of the RepeatedField
734 // simply becomes zero when cleared.
735 bool is_cleared : 1;
736
737 // For singular message types, indicates whether lazy parsing is enabled
738 // for this extension. This field is only valid when type == TYPE_MESSAGE
739 // and !is_repeated because we only support lazy parsing for singular
740 // message types currently. If is_lazy = true, the extension is stored in
741 // lazymessage_value. Otherwise, the extension will be message_value.
742 bool is_lazy : 1;
743
744 // For repeated types, this indicates if the [packed=true] option is set.
745 bool is_packed;
746
747 // For packed fields, the size of the packed data is recorded here when
748 // ByteSize() is called then used during serialization.
749 mutable TrivialAtomicInt cached_size;
750
751 // The descriptor for this extension, if one exists and is known. May be
752 // nullptr. Must not be nullptr if the descriptor for the extension does
753 // not live in the same pool as the descriptor for the containing type.
754 const FieldDescriptor* descriptor;
755 };
756
757 // The Extension struct is small enough to be passed by value so we use it
758 // directly as the value type in mappings rather than use pointers. We use
759 // sorted maps rather than hash-maps because we expect most ExtensionSets will
760 // only contain a small number of extensions, and we want AppendToList and
761 // deterministic serialization to order fields by field number. In flat mode,
762 // the number of elements is small enough that linear search is faster than
763 // binary search.
764
765 struct KeyValue {
766 int first;
767 Extension second;
768 };
769
770 using LargeMap = absl::btree_map<int, Extension>;
771
772 // Wrapper API that switches between flat-map and LargeMap.
773
774 // Finds a key (if present) in the ExtensionSet.
775 const Extension* FindOrNull(int key) const;
776 Extension* FindOrNull(int key);
777
778 // Helper-functions that only inspect the LargeMap.
779 const Extension* FindOrNullInLargeMap(int key) const;
780 Extension* FindOrNullInLargeMap(int key);
781
782 // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or
783 // finds the already-existing Extension for that key (returns false).
784 // The Extension* will point to the new-or-found Extension.
785 std::pair<Extension*, bool> Insert(int key);
786
787 // Grows the flat_capacity_.
788 // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap.
789 void GrowCapacity(size_t minimum_new_capacity);
790 static constexpr uint16_t kMaximumFlatCapacity = 256;
is_large()791 bool is_large() const { return static_cast<int16_t>(flat_size_) < 0; }
792
793 // Removes a key from the ExtensionSet.
794 void Erase(int key);
795
Size()796 size_t Size() const {
797 return PROTOBUF_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_;
798 }
799
800 // For use as `PrefetchFunctor`s in `ForEach`.
801 struct Prefetch {
operatorPrefetch802 void operator()(const void* ptr) const { absl::PrefetchToLocalCache(ptr); }
803 };
804 struct PrefetchNta {
operatorPrefetchNta805 void operator()(const void* ptr) const {
806 absl::PrefetchToLocalCacheNta(ptr);
807 }
808 };
809
810 template <typename Iterator, typename KeyValueFunctor,
811 typename PrefetchFunctor>
ForEachPrefetchImpl(Iterator it,Iterator end,KeyValueFunctor func,PrefetchFunctor prefetch_func)812 static void ForEachPrefetchImpl(Iterator it, Iterator end,
813 KeyValueFunctor func,
814 PrefetchFunctor prefetch_func) {
815 // Note: based on arena's ChunkList::Cleanup().
816 // Prefetch distance 16 performs better than 8 in load tests.
817 constexpr int kPrefetchDistance = 16;
818 Iterator prefetch = it;
819 // Prefetch the first kPrefetchDistance extensions.
820 for (int i = 0; prefetch != end && i < kPrefetchDistance; ++prefetch, ++i) {
821 prefetch_func(prefetch->second.PrefetchPtr());
822 }
823 // For the middle extensions, call func and then prefetch the extension
824 // kPrefetchDistance after the current one.
825 for (; prefetch != end; ++it, ++prefetch) {
826 func(it->first, it->second);
827 prefetch_func(prefetch->second.PrefetchPtr());
828 }
829 // Call func on the rest without prefetching.
830 for (; it != end; ++it) func(it->first, it->second);
831 }
832
833 // Similar to std::for_each, but returning void.
834 // Each Iterator is decomposed into ->first and ->second fields, so
835 // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair.
836 // Applies a functor to the <int, Extension&> pairs in sorted order and
837 // prefetches ahead.
838 template <typename KeyValueFunctor, typename PrefetchFunctor>
ForEach(KeyValueFunctor func,PrefetchFunctor prefetch_func)839 void ForEach(KeyValueFunctor func, PrefetchFunctor prefetch_func) {
840 if (PROTOBUF_PREDICT_FALSE(is_large())) {
841 ForEachPrefetchImpl(map_.large->begin(), map_.large->end(),
842 std::move(func), std::move(prefetch_func));
843 return;
844 }
845 ForEachPrefetchImpl(flat_begin(), flat_end(), std::move(func),
846 std::move(prefetch_func));
847 }
848 // As above, but const.
849 template <typename KeyValueFunctor, typename PrefetchFunctor>
ForEach(KeyValueFunctor func,PrefetchFunctor prefetch_func)850 void ForEach(KeyValueFunctor func, PrefetchFunctor prefetch_func) const {
851 if (PROTOBUF_PREDICT_FALSE(is_large())) {
852 ForEachPrefetchImpl(map_.large->begin(), map_.large->end(),
853 std::move(func), std::move(prefetch_func));
854 return;
855 }
856 ForEachPrefetchImpl(flat_begin(), flat_end(), std::move(func),
857 std::move(prefetch_func));
858 }
859
860 // As above, but without prefetching. This is for use in cases where we never
861 // use the pointed-to extension values in `func`.
862 template <typename Iterator, typename KeyValueFunctor>
ForEachNoPrefetch(Iterator begin,Iterator end,KeyValueFunctor func)863 static void ForEachNoPrefetch(Iterator begin, Iterator end,
864 KeyValueFunctor func) {
865 for (Iterator it = begin; it != end; ++it) func(it->first, it->second);
866 }
867
868 // Applies a functor to the <int, Extension&> pairs in sorted order.
869 template <typename KeyValueFunctor>
ForEachNoPrefetch(KeyValueFunctor func)870 void ForEachNoPrefetch(KeyValueFunctor func) {
871 if (PROTOBUF_PREDICT_FALSE(is_large())) {
872 ForEachNoPrefetch(map_.large->begin(), map_.large->end(),
873 std::move(func));
874 return;
875 }
876 ForEachNoPrefetch(flat_begin(), flat_end(), std::move(func));
877 }
878
879 // As above, but const.
880 template <typename KeyValueFunctor>
ForEachNoPrefetch(KeyValueFunctor func)881 void ForEachNoPrefetch(KeyValueFunctor func) const {
882 if (PROTOBUF_PREDICT_FALSE(is_large())) {
883 ForEachNoPrefetch(map_.large->begin(), map_.large->end(),
884 std::move(func));
885 return;
886 }
887 ForEachNoPrefetch(flat_begin(), flat_end(), std::move(func));
888 }
889
890 // Merges existing Extension from other_extension
891 void InternalExtensionMergeFrom(const MessageLite* extendee, int number,
892 const Extension& other_extension,
893 Arena* other_arena);
894
is_packable(WireFormatLite::WireType type)895 inline static bool is_packable(WireFormatLite::WireType type) {
896 switch (type) {
897 case WireFormatLite::WIRETYPE_VARINT:
898 case WireFormatLite::WIRETYPE_FIXED64:
899 case WireFormatLite::WIRETYPE_FIXED32:
900 return true;
901 case WireFormatLite::WIRETYPE_LENGTH_DELIMITED:
902 case WireFormatLite::WIRETYPE_START_GROUP:
903 case WireFormatLite::WIRETYPE_END_GROUP:
904 return false;
905
906 // Do not add a default statement. Let the compiler complain when
907 // someone
908 // adds a new wire type.
909 }
910 Unreachable(); // switch handles all possible enum values
911 return false;
912 }
913
914 // Returns true and fills field_number and extension if extension is found.
915 // Note to support packed repeated field compatibility, it also fills whether
916 // the tag on wire is packed, which can be different from
917 // extension->is_packed (whether packed=true is specified).
918 template <typename ExtensionFinder>
FindExtensionInfoFromTag(uint32_t tag,ExtensionFinder * extension_finder,int * field_number,ExtensionInfo * extension,bool * was_packed_on_wire)919 bool FindExtensionInfoFromTag(uint32_t tag, ExtensionFinder* extension_finder,
920 int* field_number, ExtensionInfo* extension,
921 bool* was_packed_on_wire) {
922 *field_number = WireFormatLite::GetTagFieldNumber(tag);
923 WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag);
924 return FindExtensionInfoFromFieldNumber(wire_type, *field_number,
925 extension_finder, extension,
926 was_packed_on_wire);
927 }
928
929 // Returns true and fills extension if extension is found.
930 // Note to support packed repeated field compatibility, it also fills whether
931 // the tag on wire is packed, which can be different from
932 // extension->is_packed (whether packed=true is specified).
933 template <typename ExtensionFinder>
FindExtensionInfoFromFieldNumber(int wire_type,int field_number,ExtensionFinder * extension_finder,ExtensionInfo * extension,bool * was_packed_on_wire)934 bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
935 ExtensionFinder* extension_finder,
936 ExtensionInfo* extension,
937 bool* was_packed_on_wire) const {
938 if (!extension_finder->Find(field_number, extension)) {
939 return false;
940 }
941
942 ABSL_DCHECK(extension->type > 0 &&
943 extension->type <= WireFormatLite::MAX_FIELD_TYPE);
944 auto real_type = static_cast<WireFormatLite::FieldType>(extension->type);
945
946 WireFormatLite::WireType expected_wire_type =
947 WireFormatLite::WireTypeForFieldType(real_type);
948
949 // Check if this is a packed field.
950 *was_packed_on_wire = false;
951 if (extension->is_repeated &&
952 wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED &&
953 is_packable(expected_wire_type)) {
954 *was_packed_on_wire = true;
955 return true;
956 }
957 // Otherwise the wire type must match.
958 return expected_wire_type == wire_type;
959 }
960
961 // Find the prototype for a LazyMessage from the extension registry. Returns
962 // null if the extension is not found.
963 const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee,
964 int number) const;
965
966 // Returns true if extension is present and lazy.
967 bool HasLazy(int number) const;
968
969 // Gets the extension with the given number, creating it if it does not
970 // already exist. Returns true if the extension did not already exist.
971 bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
972 Extension** result);
973
974 // Gets the repeated extension for the given descriptor, creating it if
975 // it does not exist.
976 Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor);
977
FindExtension(int wire_type,uint32_t field,const MessageLite * extendee,const internal::ParseContext *,ExtensionInfo * extension,bool * was_packed_on_wire)978 bool FindExtension(int wire_type, uint32_t field, const MessageLite* extendee,
979 const internal::ParseContext* /*ctx*/,
980 ExtensionInfo* extension, bool* was_packed_on_wire) {
981 GeneratedExtensionFinder finder(extendee);
982 return FindExtensionInfoFromFieldNumber(wire_type, field, &finder,
983 extension, was_packed_on_wire);
984 }
985 inline bool FindExtension(int wire_type, uint32_t field,
986 const Message* extendee,
987 const internal::ParseContext* ctx,
988 ExtensionInfo* extension, bool* was_packed_on_wire);
989 // Used for MessageSet only
ParseFieldMaybeLazily(uint64_t tag,const char * ptr,const MessageLite * extendee,internal::InternalMetadata * metadata,internal::ParseContext * ctx)990 const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr,
991 const MessageLite* extendee,
992 internal::InternalMetadata* metadata,
993 internal::ParseContext* ctx) {
994 // Lite MessageSet doesn't implement lazy.
995 return ParseField(tag, ptr, extendee, metadata, ctx);
996 }
997 const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr,
998 const Message* extendee,
999 internal::InternalMetadata* metadata,
1000 internal::ParseContext* ctx);
1001 const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee,
1002 internal::InternalMetadata* metadata,
1003 internal::ParseContext* ctx);
1004 const char* ParseMessageSetItem(const char* ptr, const Message* extendee,
1005 internal::InternalMetadata* metadata,
1006 internal::ParseContext* ctx);
1007
1008 // Implemented in extension_set_inl.h to keep code out of the header file.
1009 template <typename T>
1010 const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire,
1011 const ExtensionInfo& info,
1012 internal::InternalMetadata* metadata,
1013 const char* ptr,
1014 internal::ParseContext* ctx);
1015 template <typename Msg, typename T>
1016 const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee,
1017 internal::InternalMetadata* metadata,
1018 internal::ParseContext* ctx);
1019
1020 // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
1021 // friendship should automatically extend to ExtensionSet::Extension, but
1022 // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
1023 // correctly. So, we must provide helpers for calling methods of that
1024 // class.
1025
1026 // Defined in extension_set_heavy.cc.
1027 static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong(
1028 RepeatedPtrFieldBase* field);
1029
flat_begin()1030 KeyValue* flat_begin() {
1031 assert(!is_large());
1032 return map_.flat;
1033 }
flat_begin()1034 const KeyValue* flat_begin() const {
1035 assert(!is_large());
1036 return map_.flat;
1037 }
flat_end()1038 KeyValue* flat_end() {
1039 assert(!is_large());
1040 return map_.flat + flat_size_;
1041 }
flat_end()1042 const KeyValue* flat_end() const {
1043 assert(!is_large());
1044 return map_.flat + flat_size_;
1045 }
1046
1047 Arena* arena_;
1048
1049 // Manual memory-management:
1050 // map_.flat is an allocated array of flat_capacity_ elements.
1051 // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix.
1052 uint16_t flat_capacity_;
1053 uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large()
1054 union AllocatedData {
1055 KeyValue* flat;
1056
1057 // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap,
1058 // which guarantees O(n lg n) CPU but larger constant factors.
1059 LargeMap* large;
1060 } map_;
1061
1062 static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity);
1063 };
1064
ExtensionSet(Arena * arena)1065 constexpr ExtensionSet::ExtensionSet(Arena* arena)
1066 : arena_(arena), flat_capacity_(0), flat_size_(0), map_{nullptr} {}
1067
1068 // These are just for convenience...
SetString(int number,FieldType type,std::string value,const FieldDescriptor * descriptor)1069 inline void ExtensionSet::SetString(int number, FieldType type,
1070 std::string value,
1071 const FieldDescriptor* descriptor) {
1072 MutableString(number, type, descriptor)->assign(std::move(value));
1073 }
SetRepeatedString(int number,int index,std::string value)1074 inline void ExtensionSet::SetRepeatedString(int number, int index,
1075 std::string value) {
1076 MutableRepeatedString(number, index)->assign(std::move(value));
1077 }
AddString(int number,FieldType type,std::string value,const FieldDescriptor * descriptor)1078 inline void ExtensionSet::AddString(int number, FieldType type,
1079 std::string value,
1080 const FieldDescriptor* descriptor) {
1081 AddString(number, type, descriptor)->assign(std::move(value));
1082 }
1083 // ===================================================================
1084 // Glue for generated extension accessors
1085
1086 // -------------------------------------------------------------------
1087 // Template magic
1088
1089 // First we have a set of classes representing "type traits" for different
1090 // field types. A type traits class knows how to implement basic accessors
1091 // for extensions of a particular type given an ExtensionSet. The signature
1092 // for a type traits class looks like this:
1093 //
1094 // class TypeTraits {
1095 // public:
1096 // typedef ? ConstType;
1097 // typedef ? MutableType;
1098 // // TypeTraits for singular fields and repeated fields will define the
1099 // // symbol "Singular" or "Repeated" respectively. These two symbols will
1100 // // be used in extension accessors to distinguish between singular
1101 // // extensions and repeated extensions. If the TypeTraits for the passed
1102 // // in extension doesn't have the expected symbol defined, it means the
1103 // // user is passing a repeated extension to a singular accessor, or the
1104 // // opposite. In that case the C++ compiler will generate an error
1105 // // message "no matching member function" to inform the user.
1106 // typedef ? Singular
1107 // typedef ? Repeated
1108 //
1109 // static inline ConstType Get(int number, const ExtensionSet& set);
1110 // static inline void Set(int number, ConstType value, ExtensionSet* set);
1111 // static inline MutableType Mutable(int number, ExtensionSet* set);
1112 //
1113 // // Variants for repeated fields.
1114 // static inline ConstType Get(int number, const ExtensionSet& set,
1115 // int index);
1116 // static inline void Set(int number, int index,
1117 // ConstType value, ExtensionSet* set);
1118 // static inline MutableType Mutable(int number, int index,
1119 // ExtensionSet* set);
1120 // static inline void Add(int number, ConstType value, ExtensionSet* set);
1121 // static inline MutableType Add(int number, ExtensionSet* set);
1122 // This is used by the ExtensionIdentifier constructor to register
1123 // the extension at dynamic initialization.
1124 // };
1125 //
1126 // Not all of these methods make sense for all field types. For example, the
1127 // "Mutable" methods only make sense for strings and messages, and the
1128 // repeated methods only make sense for repeated types. So, each type
1129 // traits class implements only the set of methods from this signature that it
1130 // actually supports. This will cause a compiler error if the user tries to
1131 // access an extension using a method that doesn't make sense for its type.
1132 // For example, if "foo" is an extension of type "optional int32", then if you
1133 // try to write code like:
1134 // my_message.MutableExtension(foo)
1135 // you will get a compile error because PrimitiveTypeTraits<int32_t> does not
1136 // have a "Mutable()" method.
1137
1138 // -------------------------------------------------------------------
1139 // PrimitiveTypeTraits
1140
1141 // Since the ExtensionSet has different methods for each primitive type,
1142 // we must explicitly define the methods of the type traits class for each
1143 // known type.
1144 template <typename Type>
1145 class PrimitiveTypeTraits {
1146 public:
1147 typedef Type ConstType;
1148 typedef Type MutableType;
1149 using InitType = ConstType;
FromInitType(const InitType & v)1150 static const ConstType& FromInitType(const InitType& v) { return v; }
1151 typedef PrimitiveTypeTraits<Type> Singular;
1152 static constexpr bool kLifetimeBound = false;
1153
1154 static inline ConstType Get(int number, const ExtensionSet& set,
1155 ConstType default_value);
1156
1157 static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
1158 const ConstType& default_value);
1159 static inline void Set(int number, FieldType field_type, ConstType value,
1160 ExtensionSet* set);
1161 };
1162
1163 template <typename Type>
1164 class RepeatedPrimitiveTypeTraits {
1165 public:
1166 typedef Type ConstType;
1167 typedef Type MutableType;
1168 using InitType = ConstType;
FromInitType(const InitType & v)1169 static const ConstType& FromInitType(const InitType& v) { return v; }
1170 typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
1171 static constexpr bool kLifetimeBound = false;
1172
1173 typedef RepeatedField<Type> RepeatedFieldType;
1174
1175 static inline Type Get(int number, const ExtensionSet& set, int index);
1176 static inline const Type* GetPtr(int number, const ExtensionSet& set,
1177 int index);
1178 static inline const RepeatedField<ConstType>* GetRepeatedPtr(
1179 int number, const ExtensionSet& set);
1180 static inline void Set(int number, int index, Type value, ExtensionSet* set);
1181 static inline void Add(int number, FieldType field_type, bool is_packed,
1182 Type value, ExtensionSet* set);
1183
1184 static inline const RepeatedField<ConstType>& GetRepeated(
1185 int number, const ExtensionSet& set);
1186 static inline RepeatedField<Type>* MutableRepeated(int number,
1187 FieldType field_type,
1188 bool is_packed,
1189 ExtensionSet* set);
1190
1191 static const RepeatedFieldType* GetDefaultRepeatedField();
1192 };
1193
1194 class PROTOBUF_EXPORT RepeatedPrimitiveDefaults {
1195 private:
1196 template <typename Type>
1197 friend class RepeatedPrimitiveTypeTraits;
1198 static const RepeatedPrimitiveDefaults* default_instance();
1199 RepeatedField<int32_t> default_repeated_field_int32_t_;
1200 RepeatedField<int64_t> default_repeated_field_int64_t_;
1201 RepeatedField<uint32_t> default_repeated_field_uint32_t_;
1202 RepeatedField<uint64_t> default_repeated_field_uint64_t_;
1203 RepeatedField<double> default_repeated_field_double_;
1204 RepeatedField<float> default_repeated_field_float_;
1205 RepeatedField<bool> default_repeated_field_bool_;
1206 };
1207
1208 #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
1209 template <> \
1210 inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
1211 int number, const ExtensionSet& set, TYPE default_value) { \
1212 return set.Get##METHOD(number, default_value); \
1213 } \
1214 template <> \
1215 inline const TYPE* PrimitiveTypeTraits<TYPE>::GetPtr( \
1216 int number, const ExtensionSet& set, const TYPE& default_value) { \
1217 return &set.GetRef##METHOD(number, default_value); \
1218 } \
1219 template <> \
1220 inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \
1221 TYPE value, ExtensionSet* set) { \
1222 set->Set##METHOD(number, field_type, value, nullptr); \
1223 } \
1224 \
1225 template <> \
1226 inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
1227 int number, const ExtensionSet& set, int index) { \
1228 return set.GetRepeated##METHOD(number, index); \
1229 } \
1230 template <> \
1231 inline const TYPE* RepeatedPrimitiveTypeTraits<TYPE>::GetPtr( \
1232 int number, const ExtensionSet& set, int index) { \
1233 return &set.GetRefRepeated##METHOD(number, index); \
1234 } \
1235 template <> \
1236 inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
1237 int number, int index, TYPE value, ExtensionSet* set) { \
1238 set->SetRepeated##METHOD(number, index, value); \
1239 } \
1240 template <> \
1241 inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
1242 int number, FieldType field_type, bool is_packed, TYPE value, \
1243 ExtensionSet* set) { \
1244 set->Add##METHOD(number, field_type, is_packed, value, nullptr); \
1245 } \
1246 template <> \
1247 inline const RepeatedField<TYPE>* \
1248 RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
1249 return &RepeatedPrimitiveDefaults::default_instance() \
1250 ->default_repeated_field_##TYPE##_; \
1251 } \
1252 template <> \
1253 inline const RepeatedField<TYPE>& \
1254 RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
1255 const ExtensionSet& set) { \
1256 return *reinterpret_cast<const RepeatedField<TYPE>*>( \
1257 set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \
1258 } \
1259 template <> \
1260 inline const RepeatedField<TYPE>* \
1261 RepeatedPrimitiveTypeTraits<TYPE>::GetRepeatedPtr(int number, \
1262 const ExtensionSet& set) { \
1263 return &GetRepeated(number, set); \
1264 } \
1265 template <> \
1266 inline RepeatedField<TYPE>* \
1267 RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \
1268 int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \
1269 return reinterpret_cast<RepeatedField<TYPE>*>( \
1270 set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \
1271 }
1272
PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t,Int32)1273 PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t, Int32)
1274 PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64_t, Int64)
1275 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32_t, UInt32)
1276 PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64_t, UInt64)
1277 PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float)
1278 PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
1279 PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool)
1280
1281 #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
1282
1283 // -------------------------------------------------------------------
1284 // StringTypeTraits
1285
1286 // Strings support both Set() and Mutable().
1287 class PROTOBUF_EXPORT StringTypeTraits {
1288 public:
1289 typedef const std::string& ConstType;
1290 typedef std::string* MutableType;
1291 using InitType = ConstType;
1292 static ConstType FromInitType(InitType v) { return v; }
1293 typedef StringTypeTraits Singular;
1294 static constexpr bool kLifetimeBound = true;
1295
1296 static inline const std::string& Get(int number, const ExtensionSet& set,
1297 ConstType default_value) {
1298 return set.GetString(number, default_value);
1299 }
1300 static inline const std::string* GetPtr(int number, const ExtensionSet& set,
1301 ConstType default_value) {
1302 return &Get(number, set, default_value);
1303 }
1304 static inline void Set(int number, FieldType field_type,
1305 const std::string& value, ExtensionSet* set) {
1306 set->SetString(number, field_type, value, nullptr);
1307 }
1308 static inline std::string* Mutable(int number, FieldType field_type,
1309 ExtensionSet* set) {
1310 return set->MutableString(number, field_type, nullptr);
1311 }
1312 };
1313
1314 class PROTOBUF_EXPORT RepeatedStringTypeTraits {
1315 public:
1316 typedef const std::string& ConstType;
1317 typedef std::string* MutableType;
1318 using InitType = ConstType;
FromInitType(InitType v)1319 static ConstType FromInitType(InitType v) { return v; }
1320 typedef RepeatedStringTypeTraits Repeated;
1321 static constexpr bool kLifetimeBound = true;
1322
1323 typedef RepeatedPtrField<std::string> RepeatedFieldType;
1324
Get(int number,const ExtensionSet & set,int index)1325 static inline const std::string& Get(int number, const ExtensionSet& set,
1326 int index) {
1327 return set.GetRepeatedString(number, index);
1328 }
GetPtr(int number,const ExtensionSet & set,int index)1329 static inline const std::string* GetPtr(int number, const ExtensionSet& set,
1330 int index) {
1331 return &Get(number, set, index);
1332 }
GetRepeatedPtr(int number,const ExtensionSet & set)1333 static inline const RepeatedPtrField<std::string>* GetRepeatedPtr(
1334 int number, const ExtensionSet& set) {
1335 return &GetRepeated(number, set);
1336 }
Set(int number,int index,const std::string & value,ExtensionSet * set)1337 static inline void Set(int number, int index, const std::string& value,
1338 ExtensionSet* set) {
1339 set->SetRepeatedString(number, index, value);
1340 }
Mutable(int number,int index,ExtensionSet * set)1341 static inline std::string* Mutable(int number, int index, ExtensionSet* set) {
1342 return set->MutableRepeatedString(number, index);
1343 }
Add(int number,FieldType field_type,bool,const std::string & value,ExtensionSet * set)1344 static inline void Add(int number, FieldType field_type, bool /*is_packed*/,
1345 const std::string& value, ExtensionSet* set) {
1346 set->AddString(number, field_type, value, nullptr);
1347 }
Add(int number,FieldType field_type,ExtensionSet * set)1348 static inline std::string* Add(int number, FieldType field_type,
1349 ExtensionSet* set) {
1350 return set->AddString(number, field_type, nullptr);
1351 }
GetRepeated(int number,const ExtensionSet & set)1352 static inline const RepeatedPtrField<std::string>& GetRepeated(
1353 int number, const ExtensionSet& set) {
1354 return *reinterpret_cast<const RepeatedPtrField<std::string>*>(
1355 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1356 }
1357
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1358 static inline RepeatedPtrField<std::string>* MutableRepeated(
1359 int number, FieldType field_type, bool is_packed, ExtensionSet* set) {
1360 return reinterpret_cast<RepeatedPtrField<std::string>*>(
1361 set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
1362 }
1363
1364 static const RepeatedFieldType* GetDefaultRepeatedField();
1365
1366 private:
1367 static void InitializeDefaultRepeatedFields();
1368 static void DestroyDefaultRepeatedFields();
1369 };
1370
1371 // -------------------------------------------------------------------
1372 // EnumTypeTraits
1373
1374 // ExtensionSet represents enums using integers internally, so we have to
1375 // static_cast around.
1376 template <typename Type, bool IsValid(int)>
1377 class EnumTypeTraits {
1378 public:
1379 typedef Type ConstType;
1380 typedef Type MutableType;
1381 using InitType = ConstType;
FromInitType(const InitType & v)1382 static const ConstType& FromInitType(const InitType& v) { return v; }
1383 typedef EnumTypeTraits<Type, IsValid> Singular;
1384 static constexpr bool kLifetimeBound = false;
1385
Get(int number,const ExtensionSet & set,ConstType default_value)1386 static inline ConstType Get(int number, const ExtensionSet& set,
1387 ConstType default_value) {
1388 return static_cast<Type>(set.GetEnum(number, default_value));
1389 }
GetPtr(int number,const ExtensionSet & set,const ConstType & default_value)1390 static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
1391 const ConstType& default_value) {
1392 return reinterpret_cast<const Type*>(
1393 &set.GetRefEnum(number, default_value));
1394 }
Set(int number,FieldType field_type,ConstType value,ExtensionSet * set)1395 static inline void Set(int number, FieldType field_type, ConstType value,
1396 ExtensionSet* set) {
1397 ABSL_DCHECK(IsValid(value));
1398 set->SetEnum(number, field_type, value, nullptr);
1399 }
1400 };
1401
1402 template <typename Type, bool IsValid(int)>
1403 class RepeatedEnumTypeTraits {
1404 public:
1405 typedef Type ConstType;
1406 typedef Type MutableType;
1407 using InitType = ConstType;
FromInitType(const InitType & v)1408 static const ConstType& FromInitType(const InitType& v) { return v; }
1409 typedef RepeatedEnumTypeTraits<Type, IsValid> Repeated;
1410 static constexpr bool kLifetimeBound = false;
1411
1412 typedef RepeatedField<Type> RepeatedFieldType;
1413
Get(int number,const ExtensionSet & set,int index)1414 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1415 return static_cast<Type>(set.GetRepeatedEnum(number, index));
1416 }
GetPtr(int number,const ExtensionSet & set,int index)1417 static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
1418 int index) {
1419 return reinterpret_cast<const Type*>(
1420 &set.GetRefRepeatedEnum(number, index));
1421 }
Set(int number,int index,ConstType value,ExtensionSet * set)1422 static inline void Set(int number, int index, ConstType value,
1423 ExtensionSet* set) {
1424 ABSL_DCHECK(IsValid(value));
1425 set->SetRepeatedEnum(number, index, value);
1426 }
Add(int number,FieldType field_type,bool is_packed,ConstType value,ExtensionSet * set)1427 static inline void Add(int number, FieldType field_type, bool is_packed,
1428 ConstType value, ExtensionSet* set) {
1429 ABSL_DCHECK(IsValid(value));
1430 set->AddEnum(number, field_type, is_packed, value, nullptr);
1431 }
GetRepeated(int number,const ExtensionSet & set)1432 static inline const RepeatedField<Type>& GetRepeated(
1433 int number, const ExtensionSet& set) {
1434 // Hack: the `Extension` struct stores a RepeatedField<int> for enums.
1435 // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
1436 // so we need to do some casting magic. See message.h for similar
1437 // contortions for non-extension fields.
1438 return *reinterpret_cast<const RepeatedField<Type>*>(
1439 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1440 }
GetRepeatedPtr(int number,const ExtensionSet & set)1441 static inline const RepeatedField<Type>* GetRepeatedPtr(
1442 int number, const ExtensionSet& set) {
1443 return &GetRepeated(number, set);
1444 }
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1445 static inline RepeatedField<Type>* MutableRepeated(int number,
1446 FieldType field_type,
1447 bool is_packed,
1448 ExtensionSet* set) {
1449 return reinterpret_cast<RepeatedField<Type>*>(
1450 set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
1451 }
1452
GetDefaultRepeatedField()1453 static const RepeatedFieldType* GetDefaultRepeatedField() {
1454 // Hack: as noted above, repeated enum fields are internally stored as a
1455 // RepeatedField<int>. We need to be able to instantiate global static
1456 // objects to return as default (empty) repeated fields on non-existent
1457 // extensions. We would not be able to know a-priori all of the enum types
1458 // (values of |Type|) to instantiate all of these, so we just re-use
1459 // int32_t's default repeated field object.
1460 return reinterpret_cast<const RepeatedField<Type>*>(
1461 RepeatedPrimitiveTypeTraits<int32_t>::GetDefaultRepeatedField());
1462 }
1463 };
1464
1465 // -------------------------------------------------------------------
1466 // MessageTypeTraits
1467
1468 // ExtensionSet guarantees that when manipulating extensions with message
1469 // types, the implementation used will be the compiled-in class representing
1470 // that type. So, we can static_cast down to the exact type we expect.
1471 template <typename Type>
1472 class MessageTypeTraits {
1473 public:
1474 typedef const Type& ConstType;
1475 typedef Type* MutableType;
1476 using InitType = const void*;
FromInitType(InitType v)1477 static ConstType FromInitType(InitType v) {
1478 return *static_cast<const Type*>(v);
1479 }
1480 typedef MessageTypeTraits<Type> Singular;
1481 static constexpr bool kLifetimeBound = true;
1482
Get(int number,const ExtensionSet & set,ConstType default_value)1483 static inline ConstType Get(int number, const ExtensionSet& set,
1484 ConstType default_value) {
1485 return static_cast<const Type&>(set.GetMessage(number, default_value));
1486 }
GetPtr(int,const ExtensionSet &,ConstType)1487 static inline std::nullptr_t GetPtr(int /* number */,
1488 const ExtensionSet& /* set */,
1489 ConstType /* default_value */) {
1490 // Cannot be implemented because of forward declared messages?
1491 return nullptr;
1492 }
Mutable(int number,FieldType field_type,ExtensionSet * set)1493 static inline MutableType Mutable(int number, FieldType field_type,
1494 ExtensionSet* set) {
1495 return static_cast<Type*>(set->MutableMessage(
1496 number, field_type, Type::default_instance(), nullptr));
1497 }
SetAllocated(int number,FieldType field_type,MutableType message,ExtensionSet * set)1498 static inline void SetAllocated(int number, FieldType field_type,
1499 MutableType message, ExtensionSet* set) {
1500 set->SetAllocatedMessage(number, field_type, nullptr, message);
1501 }
UnsafeArenaSetAllocated(int number,FieldType field_type,MutableType message,ExtensionSet * set)1502 static inline void UnsafeArenaSetAllocated(int number, FieldType field_type,
1503 MutableType message,
1504 ExtensionSet* set) {
1505 set->UnsafeArenaSetAllocatedMessage(number, field_type, nullptr, message);
1506 }
Release(int number,FieldType,ExtensionSet * set)1507 PROTOBUF_NODISCARD static inline MutableType Release(
1508 int number, FieldType /* field_type */, ExtensionSet* set) {
1509 return static_cast<Type*>(
1510 set->ReleaseMessage(number, Type::default_instance()));
1511 }
UnsafeArenaRelease(int number,FieldType,ExtensionSet * set)1512 static inline MutableType UnsafeArenaRelease(int number,
1513 FieldType /* field_type */,
1514 ExtensionSet* set) {
1515 return static_cast<Type*>(
1516 set->UnsafeArenaReleaseMessage(number, Type::default_instance()));
1517 }
1518 };
1519
1520 // Used by WireFormatVerify to extract the verify function from the registry.
1521 LazyEagerVerifyFnType FindExtensionLazyEagerVerifyFn(
1522 const MessageLite* extendee, int number);
1523
1524 // forward declaration.
1525 class RepeatedMessageGenericTypeTraits;
1526
1527 template <typename Type>
1528 class RepeatedMessageTypeTraits {
1529 public:
1530 typedef const Type& ConstType;
1531 typedef Type* MutableType;
1532 using InitType = const void*;
FromInitType(InitType v)1533 static ConstType FromInitType(InitType v) {
1534 return *static_cast<const Type*>(v);
1535 }
1536 typedef RepeatedMessageTypeTraits<Type> Repeated;
1537 static constexpr bool kLifetimeBound = true;
1538
1539 typedef RepeatedPtrField<Type> RepeatedFieldType;
1540
Get(int number,const ExtensionSet & set,int index)1541 static inline ConstType Get(int number, const ExtensionSet& set, int index) {
1542 return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
1543 }
GetPtr(int,const ExtensionSet &,int)1544 static inline std::nullptr_t GetPtr(int /* number */,
1545 const ExtensionSet& /* set */,
1546 int /* index */) {
1547 // Cannot be implemented because of forward declared messages?
1548 return nullptr;
1549 }
GetRepeatedPtr(int,const ExtensionSet &)1550 static inline std::nullptr_t GetRepeatedPtr(int /* number */,
1551 const ExtensionSet& /* set */) {
1552 // Cannot be implemented because of forward declared messages?
1553 return nullptr;
1554 }
Mutable(int number,int index,ExtensionSet * set)1555 static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
1556 return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
1557 }
Add(int number,FieldType field_type,ExtensionSet * set)1558 static inline MutableType Add(int number, FieldType field_type,
1559 ExtensionSet* set) {
1560 return static_cast<Type*>(
1561 set->AddMessage(number, field_type, Type::default_instance(), nullptr));
1562 }
GetRepeated(int number,const ExtensionSet & set)1563 static inline const RepeatedPtrField<Type>& GetRepeated(
1564 int number, const ExtensionSet& set) {
1565 // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
1566 // casting hack applies here, because a RepeatedPtrField<MessageLite>
1567 // cannot naturally become a RepeatedPtrType<Type> even though Type is
1568 // presumably a message. google::protobuf::Message goes through similar contortions
1569 // with a reinterpret_cast<>.
1570 return *reinterpret_cast<const RepeatedPtrField<Type>*>(
1571 set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
1572 }
MutableRepeated(int number,FieldType field_type,bool is_packed,ExtensionSet * set)1573 static inline RepeatedPtrField<Type>* MutableRepeated(int number,
1574 FieldType field_type,
1575 bool is_packed,
1576 ExtensionSet* set) {
1577 return reinterpret_cast<RepeatedPtrField<Type>*>(
1578 set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
1579 }
1580
1581 static const RepeatedFieldType* GetDefaultRepeatedField();
1582 };
1583
1584 template <typename Type>
1585 inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
GetDefaultRepeatedField()1586 RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
1587 static auto instance = OnShutdownDelete(new RepeatedFieldType);
1588 return instance;
1589 }
1590
1591 // -------------------------------------------------------------------
1592 // ExtensionIdentifier
1593
1594 // This is the type of actual extension objects. E.g. if you have:
1595 // extend Foo {
1596 // optional int32 bar = 1234;
1597 // }
1598 // then "bar" will be defined in C++ as:
1599 // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32_t>, 5, false> bar(1234);
1600 //
1601 // Note that we could, in theory, supply the field number as a template
1602 // parameter, and thus make an instance of ExtensionIdentifier have no
1603 // actual contents. However, if we did that, then using an extension
1604 // identifier would not necessarily cause the compiler to output any sort
1605 // of reference to any symbol defined in the extension's .pb.o file. Some
1606 // linkers will actually drop object files that are not explicitly referenced,
1607 // but that would be bad because it would cause this extension to not be
1608 // registered at static initialization, and therefore using it would crash.
1609
1610 template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type,
1611 bool is_packed>
1612 class ExtensionIdentifier {
1613 public:
1614 typedef TypeTraitsType TypeTraits;
1615 typedef ExtendeeType Extendee;
1616
ExtensionIdentifier(int number,typename TypeTraits::InitType default_value)1617 constexpr ExtensionIdentifier(int number,
1618 typename TypeTraits::InitType default_value)
1619 : number_(number), default_value_(default_value) {}
1620
number()1621 inline int number() const { return number_; }
default_value()1622 typename TypeTraits::ConstType default_value() const {
1623 return TypeTraits::FromInitType(default_value_);
1624 }
1625
default_value_ref()1626 typename TypeTraits::ConstType const& default_value_ref() const {
1627 return TypeTraits::FromInitType(default_value_);
1628 }
1629
1630 private:
1631 const int number_;
1632 typename TypeTraits::InitType default_value_;
1633 };
1634
1635 // -------------------------------------------------------------------
1636 // Generated accessors
1637
1638
1639 } // namespace internal
1640
1641 // Call this function to ensure that this extensions's reflection is linked into
1642 // the binary:
1643 //
1644 // google::protobuf::LinkExtensionReflection(Foo::my_extension);
1645 //
1646 // This will ensure that the following lookup will succeed:
1647 //
1648 // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension");
1649 //
1650 // This is often relevant for parsing extensions in text mode.
1651 //
1652 // As a side-effect, it will also guarantee that anything else from the same
1653 // .proto file will also be available for lookup in the generated pool.
1654 //
1655 // This function does not actually register the extension, so it does not need
1656 // to be called before the lookup. However it does need to occur in a function
1657 // that cannot be stripped from the binary (ie. it must be reachable from main).
1658 //
1659 // Best practice is to call this function as close as possible to where the
1660 // reflection is actually needed. This function is very cheap to call, so you
1661 // should not need to worry about its runtime overhead except in tight loops (on
1662 // x86-64 it compiles into two "mov" instructions).
1663 template <typename ExtendeeType, typename TypeTraitsType,
1664 internal::FieldType field_type, bool is_packed>
LinkExtensionReflection(const google::protobuf::internal::ExtensionIdentifier<ExtendeeType,TypeTraitsType,field_type,is_packed> & extension)1665 void LinkExtensionReflection(
1666 const google::protobuf::internal::ExtensionIdentifier<
1667 ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
1668 internal::StrongReference(extension);
1669 }
1670
1671 // Returns the field descriptor for a generated extension identifier. This is
1672 // useful when doing reflection over generated extensions.
1673 template <typename ExtendeeType, typename TypeTraitsType,
1674 internal::FieldType field_type, bool is_packed,
1675 typename PoolType = DescriptorPool>
GetExtensionReflection(const google::protobuf::internal::ExtensionIdentifier<ExtendeeType,TypeTraitsType,field_type,is_packed> & extension)1676 const FieldDescriptor* GetExtensionReflection(
1677 const google::protobuf::internal::ExtensionIdentifier<
1678 ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
1679 return PoolType::generated_pool()->FindExtensionByNumber(
1680 google::protobuf::internal::ExtensionIdentifier<ExtendeeType, TypeTraitsType,
1681 field_type,
1682 is_packed>::Extendee::descriptor(),
1683 extension.number());
1684 }
1685
1686 } // namespace protobuf
1687 } // namespace google
1688
1689 #include "google/protobuf/port_undef.inc"
1690
1691 #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__
1692