1 //! Miscellaneous type-system utilities that are too small to deserve their own modules.
2
3 use crate::middle::codegen_fn_attrs::CodegenFnAttrFlags;
4 use crate::query::Providers;
5 use crate::ty::layout::IntegerExt;
6 use crate::ty::{
7 self, FallibleTypeFolder, ToPredicate, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperFoldable,
8 TypeVisitableExt,
9 };
10 use crate::ty::{GenericArgKind, SubstsRef};
11 use rustc_apfloat::Float as _;
12 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
13 use rustc_data_structures::stable_hasher::{Hash128, HashStable, StableHasher};
14 use rustc_errors::ErrorGuaranteed;
15 use rustc_hir as hir;
16 use rustc_hir::def::{CtorOf, DefKind, Res};
17 use rustc_hir::def_id::{CrateNum, DefId, LocalDefId};
18 use rustc_index::bit_set::GrowableBitSet;
19 use rustc_macros::HashStable;
20 use rustc_session::Limit;
21 use rustc_span::sym;
22 use rustc_target::abi::{Integer, IntegerType, Size, TargetDataLayout};
23 use rustc_target::spec::abi::Abi;
24 use smallvec::SmallVec;
25 use std::{fmt, iter};
26
27 #[derive(Copy, Clone, Debug)]
28 pub struct Discr<'tcx> {
29 /// Bit representation of the discriminant (e.g., `-128i8` is `0xFF_u128`).
30 pub val: u128,
31 pub ty: Ty<'tcx>,
32 }
33
34 /// Used as an input to [`TyCtxt::uses_unique_generic_params`].
35 #[derive(Copy, Clone, Debug, PartialEq, Eq)]
36 pub enum CheckRegions {
37 No,
38 /// Only permit early bound regions. This is useful for Adts which
39 /// can never have late bound regions.
40 OnlyEarlyBound,
41 /// Permit both late bound and early bound regions. Use this for functions,
42 /// which frequently have late bound regions.
43 Bound,
44 }
45
46 #[derive(Copy, Clone, Debug)]
47 pub enum NotUniqueParam<'tcx> {
48 DuplicateParam(ty::GenericArg<'tcx>),
49 NotParam(ty::GenericArg<'tcx>),
50 }
51
52 impl<'tcx> fmt::Display for Discr<'tcx> {
fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result53 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
54 match *self.ty.kind() {
55 ty::Int(ity) => {
56 let size = ty::tls::with(|tcx| Integer::from_int_ty(&tcx, ity).size());
57 let x = self.val;
58 // sign extend the raw representation to be an i128
59 let x = size.sign_extend(x) as i128;
60 write!(fmt, "{}", x)
61 }
62 _ => write!(fmt, "{}", self.val),
63 }
64 }
65 }
66
67 impl<'tcx> Discr<'tcx> {
68 /// Adds `1` to the value and wraps around if the maximum for the type is reached.
wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self69 pub fn wrap_incr(self, tcx: TyCtxt<'tcx>) -> Self {
70 self.checked_add(tcx, 1).0
71 }
checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool)72 pub fn checked_add(self, tcx: TyCtxt<'tcx>, n: u128) -> (Self, bool) {
73 let (size, signed) = self.ty.int_size_and_signed(tcx);
74 let (val, oflo) = if signed {
75 let min = size.signed_int_min();
76 let max = size.signed_int_max();
77 let val = size.sign_extend(self.val) as i128;
78 assert!(n < (i128::MAX as u128));
79 let n = n as i128;
80 let oflo = val > max - n;
81 let val = if oflo { min + (n - (max - val) - 1) } else { val + n };
82 // zero the upper bits
83 let val = val as u128;
84 let val = size.truncate(val);
85 (val, oflo)
86 } else {
87 let max = size.unsigned_int_max();
88 let val = self.val;
89 let oflo = val > max - n;
90 let val = if oflo { n - (max - val) - 1 } else { val + n };
91 (val, oflo)
92 };
93 (Self { val, ty: self.ty }, oflo)
94 }
95 }
96
97 pub trait IntTypeExt {
to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>98 fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>;
disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>99 fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>;
initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>100 fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>;
101 }
102
103 impl IntTypeExt for IntegerType {
to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx>104 fn to_ty<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Ty<'tcx> {
105 match self {
106 IntegerType::Pointer(true) => tcx.types.isize,
107 IntegerType::Pointer(false) => tcx.types.usize,
108 IntegerType::Fixed(i, s) => i.to_ty(tcx, *s),
109 }
110 }
111
initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx>112 fn initial_discriminant<'tcx>(&self, tcx: TyCtxt<'tcx>) -> Discr<'tcx> {
113 Discr { val: 0, ty: self.to_ty(tcx) }
114 }
115
disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>>116 fn disr_incr<'tcx>(&self, tcx: TyCtxt<'tcx>, val: Option<Discr<'tcx>>) -> Option<Discr<'tcx>> {
117 if let Some(val) = val {
118 assert_eq!(self.to_ty(tcx), val.ty);
119 let (new, oflo) = val.checked_add(tcx, 1);
120 if oflo { None } else { Some(new) }
121 } else {
122 Some(self.initial_discriminant(tcx))
123 }
124 }
125 }
126
127 impl<'tcx> TyCtxt<'tcx> {
128 /// Creates a hash of the type `Ty` which will be the same no matter what crate
129 /// context it's calculated within. This is used by the `type_id` intrinsic.
type_id_hash(self, ty: Ty<'tcx>) -> Hash128130 pub fn type_id_hash(self, ty: Ty<'tcx>) -> Hash128 {
131 // We want the type_id be independent of the types free regions, so we
132 // erase them. The erase_regions() call will also anonymize bound
133 // regions, which is desirable too.
134 let ty = self.erase_regions(ty);
135
136 self.with_stable_hashing_context(|mut hcx| {
137 let mut hasher = StableHasher::new();
138 hcx.while_hashing_spans(false, |hcx| ty.hash_stable(hcx, &mut hasher));
139 hasher.finish()
140 })
141 }
142
res_generics_def_id(self, res: Res) -> Option<DefId>143 pub fn res_generics_def_id(self, res: Res) -> Option<DefId> {
144 match res {
145 Res::Def(DefKind::Ctor(CtorOf::Variant, _), def_id) => {
146 Some(self.parent(self.parent(def_id)))
147 }
148 Res::Def(DefKind::Variant | DefKind::Ctor(CtorOf::Struct, _), def_id) => {
149 Some(self.parent(def_id))
150 }
151 // Other `DefKind`s don't have generics and would ICE when calling
152 // `generics_of`.
153 Res::Def(
154 DefKind::Struct
155 | DefKind::Union
156 | DefKind::Enum
157 | DefKind::Trait
158 | DefKind::OpaqueTy
159 | DefKind::TyAlias
160 | DefKind::ForeignTy
161 | DefKind::TraitAlias
162 | DefKind::AssocTy
163 | DefKind::Fn
164 | DefKind::AssocFn
165 | DefKind::AssocConst
166 | DefKind::Impl { .. },
167 def_id,
168 ) => Some(def_id),
169 Res::Err => None,
170 _ => None,
171 }
172 }
173
174 /// Attempts to returns the deeply last field of nested structures, but
175 /// does not apply any normalization in its search. Returns the same type
176 /// if input `ty` is not a structure at all.
struct_tail_without_normalization(self, ty: Ty<'tcx>) -> Ty<'tcx>177 pub fn struct_tail_without_normalization(self, ty: Ty<'tcx>) -> Ty<'tcx> {
178 let tcx = self;
179 tcx.struct_tail_with_normalize(ty, |ty| ty, || {})
180 }
181
182 /// Returns the deeply last field of nested structures, or the same type if
183 /// not a structure at all. Corresponds to the only possible unsized field,
184 /// and its type can be used to determine unsizing strategy.
185 ///
186 /// Should only be called if `ty` has no inference variables and does not
187 /// need its lifetimes preserved (e.g. as part of codegen); otherwise
188 /// normalization attempt may cause compiler bugs.
struct_tail_erasing_lifetimes( self, ty: Ty<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> Ty<'tcx>189 pub fn struct_tail_erasing_lifetimes(
190 self,
191 ty: Ty<'tcx>,
192 param_env: ty::ParamEnv<'tcx>,
193 ) -> Ty<'tcx> {
194 let tcx = self;
195 tcx.struct_tail_with_normalize(ty, |ty| tcx.normalize_erasing_regions(param_env, ty), || {})
196 }
197
198 /// Returns the deeply last field of nested structures, or the same type if
199 /// not a structure at all. Corresponds to the only possible unsized field,
200 /// and its type can be used to determine unsizing strategy.
201 ///
202 /// This is parameterized over the normalization strategy (i.e. how to
203 /// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity
204 /// function to indicate no normalization should take place.
205 ///
206 /// See also `struct_tail_erasing_lifetimes`, which is suitable for use
207 /// during codegen.
struct_tail_with_normalize( self, mut ty: Ty<'tcx>, mut normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>, mut f: impl FnMut() -> (), ) -> Ty<'tcx>208 pub fn struct_tail_with_normalize(
209 self,
210 mut ty: Ty<'tcx>,
211 mut normalize: impl FnMut(Ty<'tcx>) -> Ty<'tcx>,
212 // This is currently used to allow us to walk a ValTree
213 // in lockstep with the type in order to get the ValTree branch that
214 // corresponds to an unsized field.
215 mut f: impl FnMut() -> (),
216 ) -> Ty<'tcx> {
217 let recursion_limit = self.recursion_limit();
218 for iteration in 0.. {
219 if !recursion_limit.value_within_limit(iteration) {
220 let suggested_limit = match recursion_limit {
221 Limit(0) => Limit(2),
222 limit => limit * 2,
223 };
224 let reported =
225 self.sess.emit_err(crate::error::RecursionLimitReached { ty, suggested_limit });
226 return Ty::new_error(self, reported);
227 }
228 match *ty.kind() {
229 ty::Adt(def, substs) => {
230 if !def.is_struct() {
231 break;
232 }
233 match def.non_enum_variant().tail_opt() {
234 Some(field) => {
235 f();
236 ty = field.ty(self, substs);
237 }
238 None => break,
239 }
240 }
241
242 ty::Tuple(tys) if let Some((&last_ty, _)) = tys.split_last() => {
243 f();
244 ty = last_ty;
245 }
246
247 ty::Tuple(_) => break,
248
249 ty::Alias(..) => {
250 let normalized = normalize(ty);
251 if ty == normalized {
252 return ty;
253 } else {
254 ty = normalized;
255 }
256 }
257
258 _ => {
259 break;
260 }
261 }
262 }
263 ty
264 }
265
266 /// Same as applying `struct_tail` on `source` and `target`, but only
267 /// keeps going as long as the two types are instances of the same
268 /// structure definitions.
269 /// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
270 /// whereas struct_tail produces `T`, and `Trait`, respectively.
271 ///
272 /// Should only be called if the types have no inference variables and do
273 /// not need their lifetimes preserved (e.g., as part of codegen); otherwise,
274 /// normalization attempt may cause compiler bugs.
struct_lockstep_tails_erasing_lifetimes( self, source: Ty<'tcx>, target: Ty<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> (Ty<'tcx>, Ty<'tcx>)275 pub fn struct_lockstep_tails_erasing_lifetimes(
276 self,
277 source: Ty<'tcx>,
278 target: Ty<'tcx>,
279 param_env: ty::ParamEnv<'tcx>,
280 ) -> (Ty<'tcx>, Ty<'tcx>) {
281 let tcx = self;
282 tcx.struct_lockstep_tails_with_normalize(source, target, |ty| {
283 tcx.normalize_erasing_regions(param_env, ty)
284 })
285 }
286
287 /// Same as applying `struct_tail` on `source` and `target`, but only
288 /// keeps going as long as the two types are instances of the same
289 /// structure definitions.
290 /// For `(Foo<Foo<T>>, Foo<dyn Trait>)`, the result will be `(Foo<T>, Trait)`,
291 /// whereas struct_tail produces `T`, and `Trait`, respectively.
292 ///
293 /// See also `struct_lockstep_tails_erasing_lifetimes`, which is suitable for use
294 /// during codegen.
struct_lockstep_tails_with_normalize( self, source: Ty<'tcx>, target: Ty<'tcx>, normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>, ) -> (Ty<'tcx>, Ty<'tcx>)295 pub fn struct_lockstep_tails_with_normalize(
296 self,
297 source: Ty<'tcx>,
298 target: Ty<'tcx>,
299 normalize: impl Fn(Ty<'tcx>) -> Ty<'tcx>,
300 ) -> (Ty<'tcx>, Ty<'tcx>) {
301 let (mut a, mut b) = (source, target);
302 loop {
303 match (&a.kind(), &b.kind()) {
304 (&ty::Adt(a_def, a_substs), &ty::Adt(b_def, b_substs))
305 if a_def == b_def && a_def.is_struct() =>
306 {
307 if let Some(f) = a_def.non_enum_variant().tail_opt() {
308 a = f.ty(self, a_substs);
309 b = f.ty(self, b_substs);
310 } else {
311 break;
312 }
313 }
314 (&ty::Tuple(a_tys), &ty::Tuple(b_tys)) if a_tys.len() == b_tys.len() => {
315 if let Some(&a_last) = a_tys.last() {
316 a = a_last;
317 b = *b_tys.last().unwrap();
318 } else {
319 break;
320 }
321 }
322 (ty::Alias(..), _) | (_, ty::Alias(..)) => {
323 // If either side is a projection, attempt to
324 // progress via normalization. (Should be safe to
325 // apply to both sides as normalization is
326 // idempotent.)
327 let a_norm = normalize(a);
328 let b_norm = normalize(b);
329 if a == a_norm && b == b_norm {
330 break;
331 } else {
332 a = a_norm;
333 b = b_norm;
334 }
335 }
336
337 _ => break,
338 }
339 }
340 (a, b)
341 }
342
343 /// Calculate the destructor of a given type.
calculate_dtor( self, adt_did: DefId, validate: impl Fn(Self, DefId) -> Result<(), ErrorGuaranteed>, ) -> Option<ty::Destructor>344 pub fn calculate_dtor(
345 self,
346 adt_did: DefId,
347 validate: impl Fn(Self, DefId) -> Result<(), ErrorGuaranteed>,
348 ) -> Option<ty::Destructor> {
349 let drop_trait = self.lang_items().drop_trait()?;
350 self.ensure().coherent_trait(drop_trait);
351
352 let ty = self.type_of(adt_did).subst_identity();
353 let mut dtor_candidate = None;
354 self.for_each_relevant_impl(drop_trait, ty, |impl_did| {
355 if validate(self, impl_did).is_err() {
356 // Already `ErrorGuaranteed`, no need to delay a span bug here.
357 return;
358 }
359
360 let Some(item_id) = self.associated_item_def_ids(impl_did).first() else {
361 self.sess.delay_span_bug(self.def_span(impl_did), "Drop impl without drop function");
362 return;
363 };
364
365 if let Some((old_item_id, _)) = dtor_candidate {
366 self.sess
367 .struct_span_err(self.def_span(item_id), "multiple drop impls found")
368 .span_note(self.def_span(old_item_id), "other impl here")
369 .delay_as_bug();
370 }
371
372 dtor_candidate = Some((*item_id, self.constness(impl_did)));
373 });
374
375 let (did, constness) = dtor_candidate?;
376 Some(ty::Destructor { did, constness })
377 }
378
379 /// Returns the set of types that are required to be alive in
380 /// order to run the destructor of `def` (see RFCs 769 and
381 /// 1238).
382 ///
383 /// Note that this returns only the constraints for the
384 /// destructor of `def` itself. For the destructors of the
385 /// contents, you need `adt_dtorck_constraint`.
destructor_constraints(self, def: ty::AdtDef<'tcx>) -> Vec<ty::subst::GenericArg<'tcx>>386 pub fn destructor_constraints(self, def: ty::AdtDef<'tcx>) -> Vec<ty::subst::GenericArg<'tcx>> {
387 let dtor = match def.destructor(self) {
388 None => {
389 debug!("destructor_constraints({:?}) - no dtor", def.did());
390 return vec![];
391 }
392 Some(dtor) => dtor.did,
393 };
394
395 let impl_def_id = self.parent(dtor);
396 let impl_generics = self.generics_of(impl_def_id);
397
398 // We have a destructor - all the parameters that are not
399 // pure_wrt_drop (i.e, don't have a #[may_dangle] attribute)
400 // must be live.
401
402 // We need to return the list of parameters from the ADTs
403 // generics/substs that correspond to impure parameters on the
404 // impl's generics. This is a bit ugly, but conceptually simple:
405 //
406 // Suppose our ADT looks like the following
407 //
408 // struct S<X, Y, Z>(X, Y, Z);
409 //
410 // and the impl is
411 //
412 // impl<#[may_dangle] P0, P1, P2> Drop for S<P1, P2, P0>
413 //
414 // We want to return the parameters (X, Y). For that, we match
415 // up the item-substs <X, Y, Z> with the substs on the impl ADT,
416 // <P1, P2, P0>, and then look up which of the impl substs refer to
417 // parameters marked as pure.
418
419 let impl_substs = match *self.type_of(impl_def_id).subst_identity().kind() {
420 ty::Adt(def_, substs) if def_ == def => substs,
421 _ => bug!(),
422 };
423
424 let item_substs = match *self.type_of(def.did()).subst_identity().kind() {
425 ty::Adt(def_, substs) if def_ == def => substs,
426 _ => bug!(),
427 };
428
429 let result = iter::zip(item_substs, impl_substs)
430 .filter(|&(_, k)| {
431 match k.unpack() {
432 GenericArgKind::Lifetime(region) => match region.kind() {
433 ty::ReEarlyBound(ref ebr) => {
434 !impl_generics.region_param(ebr, self).pure_wrt_drop
435 }
436 // Error: not a region param
437 _ => false,
438 },
439 GenericArgKind::Type(ty) => match ty.kind() {
440 ty::Param(ref pt) => !impl_generics.type_param(pt, self).pure_wrt_drop,
441 // Error: not a type param
442 _ => false,
443 },
444 GenericArgKind::Const(ct) => match ct.kind() {
445 ty::ConstKind::Param(ref pc) => {
446 !impl_generics.const_param(pc, self).pure_wrt_drop
447 }
448 // Error: not a const param
449 _ => false,
450 },
451 }
452 })
453 .map(|(item_param, _)| item_param)
454 .collect();
455 debug!("destructor_constraint({:?}) = {:?}", def.did(), result);
456 result
457 }
458
459 /// Checks whether each generic argument is simply a unique generic parameter.
uses_unique_generic_params( self, substs: SubstsRef<'tcx>, ignore_regions: CheckRegions, ) -> Result<(), NotUniqueParam<'tcx>>460 pub fn uses_unique_generic_params(
461 self,
462 substs: SubstsRef<'tcx>,
463 ignore_regions: CheckRegions,
464 ) -> Result<(), NotUniqueParam<'tcx>> {
465 let mut seen = GrowableBitSet::default();
466 let mut seen_late = FxHashSet::default();
467 for arg in substs {
468 match arg.unpack() {
469 GenericArgKind::Lifetime(lt) => match (ignore_regions, lt.kind()) {
470 (CheckRegions::Bound, ty::ReLateBound(di, reg)) => {
471 if !seen_late.insert((di, reg)) {
472 return Err(NotUniqueParam::DuplicateParam(lt.into()));
473 }
474 }
475 (CheckRegions::OnlyEarlyBound | CheckRegions::Bound, ty::ReEarlyBound(p)) => {
476 if !seen.insert(p.index) {
477 return Err(NotUniqueParam::DuplicateParam(lt.into()));
478 }
479 }
480 (CheckRegions::OnlyEarlyBound | CheckRegions::Bound, _) => {
481 return Err(NotUniqueParam::NotParam(lt.into()));
482 }
483 (CheckRegions::No, _) => {}
484 },
485 GenericArgKind::Type(t) => match t.kind() {
486 ty::Param(p) => {
487 if !seen.insert(p.index) {
488 return Err(NotUniqueParam::DuplicateParam(t.into()));
489 }
490 }
491 _ => return Err(NotUniqueParam::NotParam(t.into())),
492 },
493 GenericArgKind::Const(c) => match c.kind() {
494 ty::ConstKind::Param(p) => {
495 if !seen.insert(p.index) {
496 return Err(NotUniqueParam::DuplicateParam(c.into()));
497 }
498 }
499 _ => return Err(NotUniqueParam::NotParam(c.into())),
500 },
501 }
502 }
503
504 Ok(())
505 }
506
507 /// Checks whether each generic argument is simply a unique generic placeholder.
508 ///
509 /// This is used in the new solver, which canonicalizes params to placeholders
510 /// for better caching.
uses_unique_placeholders_ignoring_regions( self, substs: SubstsRef<'tcx>, ) -> Result<(), NotUniqueParam<'tcx>>511 pub fn uses_unique_placeholders_ignoring_regions(
512 self,
513 substs: SubstsRef<'tcx>,
514 ) -> Result<(), NotUniqueParam<'tcx>> {
515 let mut seen = GrowableBitSet::default();
516 for arg in substs {
517 match arg.unpack() {
518 // Ignore regions, since we can't resolve those in a canonicalized
519 // query in the trait solver.
520 GenericArgKind::Lifetime(_) => {}
521 GenericArgKind::Type(t) => match t.kind() {
522 ty::Placeholder(p) => {
523 if !seen.insert(p.bound.var) {
524 return Err(NotUniqueParam::DuplicateParam(t.into()));
525 }
526 }
527 _ => return Err(NotUniqueParam::NotParam(t.into())),
528 },
529 GenericArgKind::Const(c) => match c.kind() {
530 ty::ConstKind::Placeholder(p) => {
531 if !seen.insert(p.bound) {
532 return Err(NotUniqueParam::DuplicateParam(c.into()));
533 }
534 }
535 _ => return Err(NotUniqueParam::NotParam(c.into())),
536 },
537 }
538 }
539
540 Ok(())
541 }
542
543 /// Returns `true` if `def_id` refers to a closure (e.g., `|x| x * 2`). Note
544 /// that closures have a `DefId`, but the closure *expression* also
545 /// has a `HirId` that is located within the context where the
546 /// closure appears (and, sadly, a corresponding `NodeId`, since
547 /// those are not yet phased out). The parent of the closure's
548 /// `DefId` will also be the context where it appears.
is_closure(self, def_id: DefId) -> bool549 pub fn is_closure(self, def_id: DefId) -> bool {
550 matches!(self.def_kind(def_id), DefKind::Closure | DefKind::Generator)
551 }
552
553 /// Returns `true` if `def_id` refers to a definition that does not have its own
554 /// type-checking context, i.e. closure, generator or inline const.
is_typeck_child(self, def_id: DefId) -> bool555 pub fn is_typeck_child(self, def_id: DefId) -> bool {
556 matches!(
557 self.def_kind(def_id),
558 DefKind::Closure | DefKind::Generator | DefKind::InlineConst
559 )
560 }
561
562 /// Returns `true` if `def_id` refers to a trait (i.e., `trait Foo { ... }`).
is_trait(self, def_id: DefId) -> bool563 pub fn is_trait(self, def_id: DefId) -> bool {
564 self.def_kind(def_id) == DefKind::Trait
565 }
566
567 /// Returns `true` if `def_id` refers to a trait alias (i.e., `trait Foo = ...;`),
568 /// and `false` otherwise.
is_trait_alias(self, def_id: DefId) -> bool569 pub fn is_trait_alias(self, def_id: DefId) -> bool {
570 self.def_kind(def_id) == DefKind::TraitAlias
571 }
572
573 /// Returns `true` if this `DefId` refers to the implicit constructor for
574 /// a tuple struct like `struct Foo(u32)`, and `false` otherwise.
is_constructor(self, def_id: DefId) -> bool575 pub fn is_constructor(self, def_id: DefId) -> bool {
576 matches!(self.def_kind(def_id), DefKind::Ctor(..))
577 }
578
579 /// Given the `DefId`, returns the `DefId` of the innermost item that
580 /// has its own type-checking context or "inference environment".
581 ///
582 /// For example, a closure has its own `DefId`, but it is type-checked
583 /// with the containing item. Similarly, an inline const block has its
584 /// own `DefId` but it is type-checked together with the containing item.
585 ///
586 /// Therefore, when we fetch the
587 /// `typeck` the closure, for example, we really wind up
588 /// fetching the `typeck` the enclosing fn item.
typeck_root_def_id(self, def_id: DefId) -> DefId589 pub fn typeck_root_def_id(self, def_id: DefId) -> DefId {
590 let mut def_id = def_id;
591 while self.is_typeck_child(def_id) {
592 def_id = self.parent(def_id);
593 }
594 def_id
595 }
596
597 /// Given the `DefId` and substs a closure, creates the type of
598 /// `self` argument that the closure expects. For example, for a
599 /// `Fn` closure, this would return a reference type `&T` where
600 /// `T = closure_ty`.
601 ///
602 /// Returns `None` if this closure's kind has not yet been inferred.
603 /// This should only be possible during type checking.
604 ///
605 /// Note that the return value is a late-bound region and hence
606 /// wrapped in a binder.
closure_env_ty( self, closure_def_id: DefId, closure_substs: SubstsRef<'tcx>, env_region: ty::Region<'tcx>, ) -> Option<Ty<'tcx>>607 pub fn closure_env_ty(
608 self,
609 closure_def_id: DefId,
610 closure_substs: SubstsRef<'tcx>,
611 env_region: ty::Region<'tcx>,
612 ) -> Option<Ty<'tcx>> {
613 let closure_ty = Ty::new_closure(self, closure_def_id, closure_substs);
614 let closure_kind_ty = closure_substs.as_closure().kind_ty();
615 let closure_kind = closure_kind_ty.to_opt_closure_kind()?;
616 let env_ty = match closure_kind {
617 ty::ClosureKind::Fn => Ty::new_imm_ref(self, env_region, closure_ty),
618 ty::ClosureKind::FnMut => Ty::new_mut_ref(self, env_region, closure_ty),
619 ty::ClosureKind::FnOnce => closure_ty,
620 };
621 Some(env_ty)
622 }
623
624 /// Returns `true` if the node pointed to by `def_id` is a `static` item.
625 #[inline]
is_static(self, def_id: DefId) -> bool626 pub fn is_static(self, def_id: DefId) -> bool {
627 matches!(self.def_kind(def_id), DefKind::Static(_))
628 }
629
630 #[inline]
static_mutability(self, def_id: DefId) -> Option<hir::Mutability>631 pub fn static_mutability(self, def_id: DefId) -> Option<hir::Mutability> {
632 if let DefKind::Static(mt) = self.def_kind(def_id) { Some(mt) } else { None }
633 }
634
635 /// Returns `true` if this is a `static` item with the `#[thread_local]` attribute.
is_thread_local_static(self, def_id: DefId) -> bool636 pub fn is_thread_local_static(self, def_id: DefId) -> bool {
637 self.codegen_fn_attrs(def_id).flags.contains(CodegenFnAttrFlags::THREAD_LOCAL)
638 }
639
640 /// Returns `true` if the node pointed to by `def_id` is a mutable `static` item.
641 #[inline]
is_mutable_static(self, def_id: DefId) -> bool642 pub fn is_mutable_static(self, def_id: DefId) -> bool {
643 self.static_mutability(def_id) == Some(hir::Mutability::Mut)
644 }
645
646 /// Returns `true` if the item pointed to by `def_id` is a thread local which needs a
647 /// thread local shim generated.
648 #[inline]
needs_thread_local_shim(self, def_id: DefId) -> bool649 pub fn needs_thread_local_shim(self, def_id: DefId) -> bool {
650 !self.sess.target.dll_tls_export
651 && self.is_thread_local_static(def_id)
652 && !self.is_foreign_item(def_id)
653 }
654
655 /// Returns the type a reference to the thread local takes in MIR.
thread_local_ptr_ty(self, def_id: DefId) -> Ty<'tcx>656 pub fn thread_local_ptr_ty(self, def_id: DefId) -> Ty<'tcx> {
657 let static_ty = self.type_of(def_id).subst_identity();
658 if self.is_mutable_static(def_id) {
659 Ty::new_mut_ptr(self, static_ty)
660 } else if self.is_foreign_item(def_id) {
661 Ty::new_imm_ptr(self, static_ty)
662 } else {
663 // FIXME: These things don't *really* have 'static lifetime.
664 Ty::new_imm_ref(self, self.lifetimes.re_static, static_ty)
665 }
666 }
667
668 /// Get the type of the pointer to the static that we use in MIR.
static_ptr_ty(self, def_id: DefId) -> Ty<'tcx>669 pub fn static_ptr_ty(self, def_id: DefId) -> Ty<'tcx> {
670 // Make sure that any constants in the static's type are evaluated.
671 let static_ty = self.normalize_erasing_regions(
672 ty::ParamEnv::empty(),
673 self.type_of(def_id).subst_identity(),
674 );
675
676 // Make sure that accesses to unsafe statics end up using raw pointers.
677 // For thread-locals, this needs to be kept in sync with `Rvalue::ty`.
678 if self.is_mutable_static(def_id) {
679 Ty::new_mut_ptr(self, static_ty)
680 } else if self.is_foreign_item(def_id) {
681 Ty::new_imm_ptr(self, static_ty)
682 } else {
683 Ty::new_imm_ref(self, self.lifetimes.re_erased, static_ty)
684 }
685 }
686
687 /// Return the set of types that should be taken into account when checking
688 /// trait bounds on a generator's internal state.
generator_hidden_types( self, def_id: DefId, ) -> impl Iterator<Item = ty::EarlyBinder<Ty<'tcx>>>689 pub fn generator_hidden_types(
690 self,
691 def_id: DefId,
692 ) -> impl Iterator<Item = ty::EarlyBinder<Ty<'tcx>>> {
693 let generator_layout = self.mir_generator_witnesses(def_id);
694 generator_layout
695 .as_ref()
696 .map_or_else(|| [].iter(), |l| l.field_tys.iter())
697 .filter(|decl| !decl.ignore_for_traits)
698 .map(|decl| ty::EarlyBinder::bind(decl.ty))
699 }
700
701 /// Normalizes all opaque types in the given value, replacing them
702 /// with their underlying types.
expand_opaque_types(self, val: Ty<'tcx>) -> Ty<'tcx>703 pub fn expand_opaque_types(self, val: Ty<'tcx>) -> Ty<'tcx> {
704 let mut visitor = OpaqueTypeExpander {
705 seen_opaque_tys: FxHashSet::default(),
706 expanded_cache: FxHashMap::default(),
707 primary_def_id: None,
708 found_recursion: false,
709 found_any_recursion: false,
710 check_recursion: false,
711 expand_generators: false,
712 tcx: self,
713 };
714 val.fold_with(&mut visitor)
715 }
716
717 /// Expands the given impl trait type, stopping if the type is recursive.
718 #[instrument(skip(self), level = "debug", ret)]
try_expand_impl_trait_type( self, def_id: DefId, substs: SubstsRef<'tcx>, ) -> Result<Ty<'tcx>, Ty<'tcx>>719 pub fn try_expand_impl_trait_type(
720 self,
721 def_id: DefId,
722 substs: SubstsRef<'tcx>,
723 ) -> Result<Ty<'tcx>, Ty<'tcx>> {
724 let mut visitor = OpaqueTypeExpander {
725 seen_opaque_tys: FxHashSet::default(),
726 expanded_cache: FxHashMap::default(),
727 primary_def_id: Some(def_id),
728 found_recursion: false,
729 found_any_recursion: false,
730 check_recursion: true,
731 expand_generators: true,
732 tcx: self,
733 };
734
735 let expanded_type = visitor.expand_opaque_ty(def_id, substs).unwrap();
736 if visitor.found_recursion { Err(expanded_type) } else { Ok(expanded_type) }
737 }
738
739 /// Query and get an English description for the item's kind.
def_descr(self, def_id: DefId) -> &'static str740 pub fn def_descr(self, def_id: DefId) -> &'static str {
741 self.def_kind_descr(self.def_kind(def_id), def_id)
742 }
743
744 /// Get an English description for the item's kind.
def_kind_descr(self, def_kind: DefKind, def_id: DefId) -> &'static str745 pub fn def_kind_descr(self, def_kind: DefKind, def_id: DefId) -> &'static str {
746 match def_kind {
747 DefKind::AssocFn if self.associated_item(def_id).fn_has_self_parameter => "method",
748 DefKind::Generator => match self.generator_kind(def_id).unwrap() {
749 rustc_hir::GeneratorKind::Async(..) => "async closure",
750 rustc_hir::GeneratorKind::Gen => "generator",
751 },
752 _ => def_kind.descr(def_id),
753 }
754 }
755
756 /// Gets an English article for the [`TyCtxt::def_descr`].
def_descr_article(self, def_id: DefId) -> &'static str757 pub fn def_descr_article(self, def_id: DefId) -> &'static str {
758 self.def_kind_descr_article(self.def_kind(def_id), def_id)
759 }
760
761 /// Gets an English article for the [`TyCtxt::def_kind_descr`].
def_kind_descr_article(self, def_kind: DefKind, def_id: DefId) -> &'static str762 pub fn def_kind_descr_article(self, def_kind: DefKind, def_id: DefId) -> &'static str {
763 match def_kind {
764 DefKind::AssocFn if self.associated_item(def_id).fn_has_self_parameter => "a",
765 DefKind::Generator => match self.generator_kind(def_id).unwrap() {
766 rustc_hir::GeneratorKind::Async(..) => "an",
767 rustc_hir::GeneratorKind::Gen => "a",
768 },
769 _ => def_kind.article(),
770 }
771 }
772
773 /// Return `true` if the supplied `CrateNum` is "user-visible," meaning either a [public]
774 /// dependency, or a [direct] private dependency. This is used to decide whether the crate can
775 /// be shown in `impl` suggestions.
776 ///
777 /// [public]: TyCtxt::is_private_dep
778 /// [direct]: rustc_session::cstore::ExternCrate::is_direct
is_user_visible_dep(self, key: CrateNum) -> bool779 pub fn is_user_visible_dep(self, key: CrateNum) -> bool {
780 // | Private | Direct | Visible | |
781 // |---------|--------|---------|--------------------|
782 // | Yes | Yes | Yes | !true || true |
783 // | No | Yes | Yes | !false || true |
784 // | Yes | No | No | !true || false |
785 // | No | No | Yes | !false || false |
786 !self.is_private_dep(key)
787 // If `extern_crate` is `None`, then the crate was injected (e.g., by the allocator).
788 // Treat that kind of crate as "indirect", since it's an implementation detail of
789 // the language.
790 || self.extern_crate(key.as_def_id()).map_or(false, |e| e.is_direct())
791 }
792 }
793
794 struct OpaqueTypeExpander<'tcx> {
795 // Contains the DefIds of the opaque types that are currently being
796 // expanded. When we expand an opaque type we insert the DefId of
797 // that type, and when we finish expanding that type we remove the
798 // its DefId.
799 seen_opaque_tys: FxHashSet<DefId>,
800 // Cache of all expansions we've seen so far. This is a critical
801 // optimization for some large types produced by async fn trees.
802 expanded_cache: FxHashMap<(DefId, SubstsRef<'tcx>), Ty<'tcx>>,
803 primary_def_id: Option<DefId>,
804 found_recursion: bool,
805 found_any_recursion: bool,
806 expand_generators: bool,
807 /// Whether or not to check for recursive opaque types.
808 /// This is `true` when we're explicitly checking for opaque type
809 /// recursion, and 'false' otherwise to avoid unnecessary work.
810 check_recursion: bool,
811 tcx: TyCtxt<'tcx>,
812 }
813
814 impl<'tcx> OpaqueTypeExpander<'tcx> {
expand_opaque_ty(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) -> Option<Ty<'tcx>>815 fn expand_opaque_ty(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) -> Option<Ty<'tcx>> {
816 if self.found_any_recursion {
817 return None;
818 }
819 let substs = substs.fold_with(self);
820 if !self.check_recursion || self.seen_opaque_tys.insert(def_id) {
821 let expanded_ty = match self.expanded_cache.get(&(def_id, substs)) {
822 Some(expanded_ty) => *expanded_ty,
823 None => {
824 let generic_ty = self.tcx.type_of(def_id);
825 let concrete_ty = generic_ty.subst(self.tcx, substs);
826 let expanded_ty = self.fold_ty(concrete_ty);
827 self.expanded_cache.insert((def_id, substs), expanded_ty);
828 expanded_ty
829 }
830 };
831 if self.check_recursion {
832 self.seen_opaque_tys.remove(&def_id);
833 }
834 Some(expanded_ty)
835 } else {
836 // If another opaque type that we contain is recursive, then it
837 // will report the error, so we don't have to.
838 self.found_any_recursion = true;
839 self.found_recursion = def_id == *self.primary_def_id.as_ref().unwrap();
840 None
841 }
842 }
843
expand_generator(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) -> Option<Ty<'tcx>>844 fn expand_generator(&mut self, def_id: DefId, substs: SubstsRef<'tcx>) -> Option<Ty<'tcx>> {
845 if self.found_any_recursion {
846 return None;
847 }
848 let substs = substs.fold_with(self);
849 if !self.check_recursion || self.seen_opaque_tys.insert(def_id) {
850 let expanded_ty = match self.expanded_cache.get(&(def_id, substs)) {
851 Some(expanded_ty) => *expanded_ty,
852 None => {
853 for bty in self.tcx.generator_hidden_types(def_id) {
854 let hidden_ty = bty.subst(self.tcx, substs);
855 self.fold_ty(hidden_ty);
856 }
857 let expanded_ty = Ty::new_generator_witness_mir(self.tcx, def_id, substs);
858 self.expanded_cache.insert((def_id, substs), expanded_ty);
859 expanded_ty
860 }
861 };
862 if self.check_recursion {
863 self.seen_opaque_tys.remove(&def_id);
864 }
865 Some(expanded_ty)
866 } else {
867 // If another opaque type that we contain is recursive, then it
868 // will report the error, so we don't have to.
869 self.found_any_recursion = true;
870 self.found_recursion = def_id == *self.primary_def_id.as_ref().unwrap();
871 None
872 }
873 }
874 }
875
876 impl<'tcx> TypeFolder<TyCtxt<'tcx>> for OpaqueTypeExpander<'tcx> {
interner(&self) -> TyCtxt<'tcx>877 fn interner(&self) -> TyCtxt<'tcx> {
878 self.tcx
879 }
880
fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx>881 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
882 let mut t = if let ty::Alias(ty::Opaque, ty::AliasTy { def_id, substs, .. }) = *t.kind() {
883 self.expand_opaque_ty(def_id, substs).unwrap_or(t)
884 } else if t.has_opaque_types() || t.has_generators() {
885 t.super_fold_with(self)
886 } else {
887 t
888 };
889 if self.expand_generators {
890 if let ty::GeneratorWitnessMIR(def_id, substs) = *t.kind() {
891 t = self.expand_generator(def_id, substs).unwrap_or(t);
892 }
893 }
894 t
895 }
896
fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx>897 fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> {
898 if let ty::PredicateKind::Clause(clause) = p.kind().skip_binder()
899 && let ty::ClauseKind::Projection(projection_pred) = clause
900 {
901 p.kind()
902 .rebind(ty::ProjectionPredicate {
903 projection_ty: projection_pred.projection_ty.fold_with(self),
904 // Don't fold the term on the RHS of the projection predicate.
905 // This is because for default trait methods with RPITITs, we
906 // install a `NormalizesTo(Projection(RPITIT) -> Opaque(RPITIT))`
907 // predicate, which would trivially cause a cycle when we do
908 // anything that requires `ParamEnv::with_reveal_all_normalized`.
909 term: projection_pred.term,
910 })
911 .to_predicate(self.tcx)
912 } else {
913 p.super_fold_with(self)
914 }
915 }
916 }
917
918 impl<'tcx> Ty<'tcx> {
int_size_and_signed(self, tcx: TyCtxt<'tcx>) -> (Size, bool)919 pub fn int_size_and_signed(self, tcx: TyCtxt<'tcx>) -> (Size, bool) {
920 let (int, signed) = match *self.kind() {
921 ty::Int(ity) => (Integer::from_int_ty(&tcx, ity), true),
922 ty::Uint(uty) => (Integer::from_uint_ty(&tcx, uty), false),
923 _ => bug!("non integer discriminant"),
924 };
925 (int.size(), signed)
926 }
927
928 /// Returns the maximum value for the given numeric type (including `char`s)
929 /// or returns `None` if the type is not numeric.
numeric_max_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>>930 pub fn numeric_max_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>> {
931 let val = match self.kind() {
932 ty::Int(_) | ty::Uint(_) => {
933 let (size, signed) = self.int_size_and_signed(tcx);
934 let val =
935 if signed { size.signed_int_max() as u128 } else { size.unsigned_int_max() };
936 Some(val)
937 }
938 ty::Char => Some(std::char::MAX as u128),
939 ty::Float(fty) => Some(match fty {
940 ty::FloatTy::F32 => rustc_apfloat::ieee::Single::INFINITY.to_bits(),
941 ty::FloatTy::F64 => rustc_apfloat::ieee::Double::INFINITY.to_bits(),
942 }),
943 _ => None,
944 };
945
946 val.map(|v| ty::Const::from_bits(tcx, v, ty::ParamEnv::empty().and(self)))
947 }
948
949 /// Returns the minimum value for the given numeric type (including `char`s)
950 /// or returns `None` if the type is not numeric.
numeric_min_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>>951 pub fn numeric_min_val(self, tcx: TyCtxt<'tcx>) -> Option<ty::Const<'tcx>> {
952 let val = match self.kind() {
953 ty::Int(_) | ty::Uint(_) => {
954 let (size, signed) = self.int_size_and_signed(tcx);
955 let val = if signed { size.truncate(size.signed_int_min() as u128) } else { 0 };
956 Some(val)
957 }
958 ty::Char => Some(0),
959 ty::Float(fty) => Some(match fty {
960 ty::FloatTy::F32 => (-::rustc_apfloat::ieee::Single::INFINITY).to_bits(),
961 ty::FloatTy::F64 => (-::rustc_apfloat::ieee::Double::INFINITY).to_bits(),
962 }),
963 _ => None,
964 };
965
966 val.map(|v| ty::Const::from_bits(tcx, v, ty::ParamEnv::empty().and(self)))
967 }
968
969 /// Checks whether values of this type `T` are *moved* or *copied*
970 /// when referenced -- this amounts to a check for whether `T:
971 /// Copy`, but note that we **don't** consider lifetimes when
972 /// doing this check. This means that we may generate MIR which
973 /// does copies even when the type actually doesn't satisfy the
974 /// full requirements for the `Copy` trait (cc #29149) -- this
975 /// winds up being reported as an error during NLL borrow check.
is_copy_modulo_regions(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool976 pub fn is_copy_modulo_regions(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
977 self.is_trivially_pure_clone_copy() || tcx.is_copy_raw(param_env.and(self))
978 }
979
980 /// Checks whether values of this type `T` have a size known at
981 /// compile time (i.e., whether `T: Sized`). Lifetimes are ignored
982 /// for the purposes of this check, so it can be an
983 /// over-approximation in generic contexts, where one can have
984 /// strange rules like `<T as Foo<'static>>::Bar: Sized` that
985 /// actually carry lifetime requirements.
is_sized(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool986 pub fn is_sized(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
987 self.is_trivially_sized(tcx) || tcx.is_sized_raw(param_env.and(self))
988 }
989
990 /// Checks whether values of this type `T` implement the `Freeze`
991 /// trait -- frozen types are those that do not contain an
992 /// `UnsafeCell` anywhere. This is a language concept used to
993 /// distinguish "true immutability", which is relevant to
994 /// optimization as well as the rules around static values. Note
995 /// that the `Freeze` trait is not exposed to end users and is
996 /// effectively an implementation detail.
is_freeze(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool997 pub fn is_freeze(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
998 self.is_trivially_freeze() || tcx.is_freeze_raw(param_env.and(self))
999 }
1000
1001 /// Fast path helper for testing if a type is `Freeze`.
1002 ///
1003 /// Returning true means the type is known to be `Freeze`. Returning
1004 /// `false` means nothing -- could be `Freeze`, might not be.
is_trivially_freeze(self) -> bool1005 fn is_trivially_freeze(self) -> bool {
1006 match self.kind() {
1007 ty::Int(_)
1008 | ty::Uint(_)
1009 | ty::Float(_)
1010 | ty::Bool
1011 | ty::Char
1012 | ty::Str
1013 | ty::Never
1014 | ty::Ref(..)
1015 | ty::RawPtr(_)
1016 | ty::FnDef(..)
1017 | ty::Error(_)
1018 | ty::FnPtr(_) => true,
1019 ty::Tuple(fields) => fields.iter().all(Self::is_trivially_freeze),
1020 ty::Slice(elem_ty) | ty::Array(elem_ty, _) => elem_ty.is_trivially_freeze(),
1021 ty::Adt(..)
1022 | ty::Bound(..)
1023 | ty::Closure(..)
1024 | ty::Dynamic(..)
1025 | ty::Foreign(_)
1026 | ty::Generator(..)
1027 | ty::GeneratorWitness(_)
1028 | ty::GeneratorWitnessMIR(..)
1029 | ty::Infer(_)
1030 | ty::Alias(..)
1031 | ty::Param(_)
1032 | ty::Placeholder(_) => false,
1033 }
1034 }
1035
1036 /// Checks whether values of this type `T` implement the `Unpin` trait.
is_unpin(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool1037 pub fn is_unpin(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
1038 self.is_trivially_unpin() || tcx.is_unpin_raw(param_env.and(self))
1039 }
1040
1041 /// Fast path helper for testing if a type is `Unpin`.
1042 ///
1043 /// Returning true means the type is known to be `Unpin`. Returning
1044 /// `false` means nothing -- could be `Unpin`, might not be.
is_trivially_unpin(self) -> bool1045 fn is_trivially_unpin(self) -> bool {
1046 match self.kind() {
1047 ty::Int(_)
1048 | ty::Uint(_)
1049 | ty::Float(_)
1050 | ty::Bool
1051 | ty::Char
1052 | ty::Str
1053 | ty::Never
1054 | ty::Ref(..)
1055 | ty::RawPtr(_)
1056 | ty::FnDef(..)
1057 | ty::Error(_)
1058 | ty::FnPtr(_) => true,
1059 ty::Tuple(fields) => fields.iter().all(Self::is_trivially_unpin),
1060 ty::Slice(elem_ty) | ty::Array(elem_ty, _) => elem_ty.is_trivially_unpin(),
1061 ty::Adt(..)
1062 | ty::Bound(..)
1063 | ty::Closure(..)
1064 | ty::Dynamic(..)
1065 | ty::Foreign(_)
1066 | ty::Generator(..)
1067 | ty::GeneratorWitness(_)
1068 | ty::GeneratorWitnessMIR(..)
1069 | ty::Infer(_)
1070 | ty::Alias(..)
1071 | ty::Param(_)
1072 | ty::Placeholder(_) => false,
1073 }
1074 }
1075
1076 /// If `ty.needs_drop(...)` returns `true`, then `ty` is definitely
1077 /// non-copy and *might* have a destructor attached; if it returns
1078 /// `false`, then `ty` definitely has no destructor (i.e., no drop glue).
1079 ///
1080 /// (Note that this implies that if `ty` has a destructor attached,
1081 /// then `needs_drop` will definitely return `true` for `ty`.)
1082 ///
1083 /// Note that this method is used to check eligible types in unions.
1084 #[inline]
needs_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool1085 pub fn needs_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
1086 // Avoid querying in simple cases.
1087 match needs_drop_components(self, &tcx.data_layout) {
1088 Err(AlwaysRequiresDrop) => true,
1089 Ok(components) => {
1090 let query_ty = match *components {
1091 [] => return false,
1092 // If we've got a single component, call the query with that
1093 // to increase the chance that we hit the query cache.
1094 [component_ty] => component_ty,
1095 _ => self,
1096 };
1097
1098 // This doesn't depend on regions, so try to minimize distinct
1099 // query keys used.
1100 // If normalization fails, we just use `query_ty`.
1101 let query_ty =
1102 tcx.try_normalize_erasing_regions(param_env, query_ty).unwrap_or(query_ty);
1103
1104 tcx.needs_drop_raw(param_env.and(query_ty))
1105 }
1106 }
1107 }
1108
1109 /// Checks if `ty` has a significant drop.
1110 ///
1111 /// Note that this method can return false even if `ty` has a destructor
1112 /// attached; even if that is the case then the adt has been marked with
1113 /// the attribute `rustc_insignificant_dtor`.
1114 ///
1115 /// Note that this method is used to check for change in drop order for
1116 /// 2229 drop reorder migration analysis.
1117 #[inline]
has_significant_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool1118 pub fn has_significant_drop(self, tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>) -> bool {
1119 // Avoid querying in simple cases.
1120 match needs_drop_components(self, &tcx.data_layout) {
1121 Err(AlwaysRequiresDrop) => true,
1122 Ok(components) => {
1123 let query_ty = match *components {
1124 [] => return false,
1125 // If we've got a single component, call the query with that
1126 // to increase the chance that we hit the query cache.
1127 [component_ty] => component_ty,
1128 _ => self,
1129 };
1130
1131 // FIXME(#86868): We should be canonicalizing, or else moving this to a method of inference
1132 // context, or *something* like that, but for now just avoid passing inference
1133 // variables to queries that can't cope with them. Instead, conservatively
1134 // return "true" (may change drop order).
1135 if query_ty.has_infer() {
1136 return true;
1137 }
1138
1139 // This doesn't depend on regions, so try to minimize distinct
1140 // query keys used.
1141 let erased = tcx.normalize_erasing_regions(param_env, query_ty);
1142 tcx.has_significant_drop_raw(param_env.and(erased))
1143 }
1144 }
1145 }
1146
1147 /// Returns `true` if equality for this type is both reflexive and structural.
1148 ///
1149 /// Reflexive equality for a type is indicated by an `Eq` impl for that type.
1150 ///
1151 /// Primitive types (`u32`, `str`) have structural equality by definition. For composite data
1152 /// types, equality for the type as a whole is structural when it is the same as equality
1153 /// between all components (fields, array elements, etc.) of that type. For ADTs, structural
1154 /// equality is indicated by an implementation of `PartialStructuralEq` and `StructuralEq` for
1155 /// that type.
1156 ///
1157 /// This function is "shallow" because it may return `true` for a composite type whose fields
1158 /// are not `StructuralEq`. For example, `[T; 4]` has structural equality regardless of `T`
1159 /// because equality for arrays is determined by the equality of each array element. If you
1160 /// want to know whether a given call to `PartialEq::eq` will proceed structurally all the way
1161 /// down, you will need to use a type visitor.
1162 #[inline]
is_structural_eq_shallow(self, tcx: TyCtxt<'tcx>) -> bool1163 pub fn is_structural_eq_shallow(self, tcx: TyCtxt<'tcx>) -> bool {
1164 match self.kind() {
1165 // Look for an impl of both `PartialStructuralEq` and `StructuralEq`.
1166 ty::Adt(..) => tcx.has_structural_eq_impls(self),
1167
1168 // Primitive types that satisfy `Eq`.
1169 ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Str | ty::Never => true,
1170
1171 // Composite types that satisfy `Eq` when all of their fields do.
1172 //
1173 // Because this function is "shallow", we return `true` for these composites regardless
1174 // of the type(s) contained within.
1175 ty::Ref(..) | ty::Array(..) | ty::Slice(_) | ty::Tuple(..) => true,
1176
1177 // Raw pointers use bitwise comparison.
1178 ty::RawPtr(_) | ty::FnPtr(_) => true,
1179
1180 // Floating point numbers are not `Eq`.
1181 ty::Float(_) => false,
1182
1183 // Conservatively return `false` for all others...
1184
1185 // Anonymous function types
1186 ty::FnDef(..) | ty::Closure(..) | ty::Dynamic(..) | ty::Generator(..) => false,
1187
1188 // Generic or inferred types
1189 //
1190 // FIXME(ecstaticmorse): Maybe we should `bug` here? This should probably only be
1191 // called for known, fully-monomorphized types.
1192 ty::Alias(..) | ty::Param(_) | ty::Bound(..) | ty::Placeholder(_) | ty::Infer(_) => {
1193 false
1194 }
1195
1196 ty::Foreign(_)
1197 | ty::GeneratorWitness(..)
1198 | ty::GeneratorWitnessMIR(..)
1199 | ty::Error(_) => false,
1200 }
1201 }
1202
1203 /// Peel off all reference types in this type until there are none left.
1204 ///
1205 /// This method is idempotent, i.e. `ty.peel_refs().peel_refs() == ty.peel_refs()`.
1206 ///
1207 /// # Examples
1208 ///
1209 /// - `u8` -> `u8`
1210 /// - `&'a mut u8` -> `u8`
1211 /// - `&'a &'b u8` -> `u8`
1212 /// - `&'a *const &'b u8 -> *const &'b u8`
peel_refs(self) -> Ty<'tcx>1213 pub fn peel_refs(self) -> Ty<'tcx> {
1214 let mut ty = self;
1215 while let ty::Ref(_, inner_ty, _) = ty.kind() {
1216 ty = *inner_ty;
1217 }
1218 ty
1219 }
1220
1221 #[inline]
outer_exclusive_binder(self) -> ty::DebruijnIndex1222 pub fn outer_exclusive_binder(self) -> ty::DebruijnIndex {
1223 self.0.outer_exclusive_binder
1224 }
1225 }
1226
1227 pub enum ExplicitSelf<'tcx> {
1228 ByValue,
1229 ByReference(ty::Region<'tcx>, hir::Mutability),
1230 ByRawPointer(hir::Mutability),
1231 ByBox,
1232 Other,
1233 }
1234
1235 impl<'tcx> ExplicitSelf<'tcx> {
1236 /// Categorizes an explicit self declaration like `self: SomeType`
1237 /// into either `self`, `&self`, `&mut self`, `Box<Self>`, or
1238 /// `Other`.
1239 /// This is mainly used to require the arbitrary_self_types feature
1240 /// in the case of `Other`, to improve error messages in the common cases,
1241 /// and to make `Other` non-object-safe.
1242 ///
1243 /// Examples:
1244 ///
1245 /// ```ignore (illustrative)
1246 /// impl<'a> Foo for &'a T {
1247 /// // Legal declarations:
1248 /// fn method1(self: &&'a T); // ExplicitSelf::ByReference
1249 /// fn method2(self: &'a T); // ExplicitSelf::ByValue
1250 /// fn method3(self: Box<&'a T>); // ExplicitSelf::ByBox
1251 /// fn method4(self: Rc<&'a T>); // ExplicitSelf::Other
1252 ///
1253 /// // Invalid cases will be caught by `check_method_receiver`:
1254 /// fn method_err1(self: &'a mut T); // ExplicitSelf::Other
1255 /// fn method_err2(self: &'static T) // ExplicitSelf::ByValue
1256 /// fn method_err3(self: &&T) // ExplicitSelf::ByReference
1257 /// }
1258 /// ```
1259 ///
determine<P>(self_arg_ty: Ty<'tcx>, is_self_ty: P) -> ExplicitSelf<'tcx> where P: Fn(Ty<'tcx>) -> bool,1260 pub fn determine<P>(self_arg_ty: Ty<'tcx>, is_self_ty: P) -> ExplicitSelf<'tcx>
1261 where
1262 P: Fn(Ty<'tcx>) -> bool,
1263 {
1264 use self::ExplicitSelf::*;
1265
1266 match *self_arg_ty.kind() {
1267 _ if is_self_ty(self_arg_ty) => ByValue,
1268 ty::Ref(region, ty, mutbl) if is_self_ty(ty) => ByReference(region, mutbl),
1269 ty::RawPtr(ty::TypeAndMut { ty, mutbl }) if is_self_ty(ty) => ByRawPointer(mutbl),
1270 ty::Adt(def, _) if def.is_box() && is_self_ty(self_arg_ty.boxed_ty()) => ByBox,
1271 _ => Other,
1272 }
1273 }
1274 }
1275
1276 /// Returns a list of types such that the given type needs drop if and only if
1277 /// *any* of the returned types need drop. Returns `Err(AlwaysRequiresDrop)` if
1278 /// this type always needs drop.
needs_drop_components<'tcx>( ty: Ty<'tcx>, target_layout: &TargetDataLayout, ) -> Result<SmallVec<[Ty<'tcx>; 2]>, AlwaysRequiresDrop>1279 pub fn needs_drop_components<'tcx>(
1280 ty: Ty<'tcx>,
1281 target_layout: &TargetDataLayout,
1282 ) -> Result<SmallVec<[Ty<'tcx>; 2]>, AlwaysRequiresDrop> {
1283 match ty.kind() {
1284 ty::Infer(ty::FreshIntTy(_))
1285 | ty::Infer(ty::FreshFloatTy(_))
1286 | ty::Bool
1287 | ty::Int(_)
1288 | ty::Uint(_)
1289 | ty::Float(_)
1290 | ty::Never
1291 | ty::FnDef(..)
1292 | ty::FnPtr(_)
1293 | ty::Char
1294 | ty::GeneratorWitness(..)
1295 | ty::GeneratorWitnessMIR(..)
1296 | ty::RawPtr(_)
1297 | ty::Ref(..)
1298 | ty::Str => Ok(SmallVec::new()),
1299
1300 // Foreign types can never have destructors.
1301 ty::Foreign(..) => Ok(SmallVec::new()),
1302
1303 ty::Dynamic(..) | ty::Error(_) => Err(AlwaysRequiresDrop),
1304
1305 ty::Slice(ty) => needs_drop_components(*ty, target_layout),
1306 ty::Array(elem_ty, size) => {
1307 match needs_drop_components(*elem_ty, target_layout) {
1308 Ok(v) if v.is_empty() => Ok(v),
1309 res => match size.try_to_bits(target_layout.pointer_size) {
1310 // Arrays of size zero don't need drop, even if their element
1311 // type does.
1312 Some(0) => Ok(SmallVec::new()),
1313 Some(_) => res,
1314 // We don't know which of the cases above we are in, so
1315 // return the whole type and let the caller decide what to
1316 // do.
1317 None => Ok(smallvec![ty]),
1318 },
1319 }
1320 }
1321 // If any field needs drop, then the whole tuple does.
1322 ty::Tuple(fields) => fields.iter().try_fold(SmallVec::new(), move |mut acc, elem| {
1323 acc.extend(needs_drop_components(elem, target_layout)?);
1324 Ok(acc)
1325 }),
1326
1327 // These require checking for `Copy` bounds or `Adt` destructors.
1328 ty::Adt(..)
1329 | ty::Alias(..)
1330 | ty::Param(_)
1331 | ty::Bound(..)
1332 | ty::Placeholder(..)
1333 | ty::Infer(_)
1334 | ty::Closure(..)
1335 | ty::Generator(..) => Ok(smallvec![ty]),
1336 }
1337 }
1338
is_trivially_const_drop(ty: Ty<'_>) -> bool1339 pub fn is_trivially_const_drop(ty: Ty<'_>) -> bool {
1340 match *ty.kind() {
1341 ty::Bool
1342 | ty::Char
1343 | ty::Int(_)
1344 | ty::Uint(_)
1345 | ty::Float(_)
1346 | ty::Infer(ty::IntVar(_))
1347 | ty::Infer(ty::FloatVar(_))
1348 | ty::Str
1349 | ty::RawPtr(_)
1350 | ty::Ref(..)
1351 | ty::FnDef(..)
1352 | ty::FnPtr(_)
1353 | ty::Never
1354 | ty::Foreign(_) => true,
1355
1356 ty::Alias(..)
1357 | ty::Dynamic(..)
1358 | ty::Error(_)
1359 | ty::Bound(..)
1360 | ty::Param(_)
1361 | ty::Placeholder(_)
1362 | ty::Infer(_) => false,
1363
1364 // Not trivial because they have components, and instead of looking inside,
1365 // we'll just perform trait selection.
1366 ty::Closure(..)
1367 | ty::Generator(..)
1368 | ty::GeneratorWitness(_)
1369 | ty::GeneratorWitnessMIR(..)
1370 | ty::Adt(..) => false,
1371
1372 ty::Array(ty, _) | ty::Slice(ty) => is_trivially_const_drop(ty),
1373
1374 ty::Tuple(tys) => tys.iter().all(|ty| is_trivially_const_drop(ty)),
1375 }
1376 }
1377
1378 /// Does the equivalent of
1379 /// ```ignore (illustrative)
1380 /// let v = self.iter().map(|p| p.fold_with(folder)).collect::<SmallVec<[_; 8]>>();
1381 /// folder.tcx().intern_*(&v)
1382 /// ```
fold_list<'tcx, F, T>( list: &'tcx ty::List<T>, folder: &mut F, intern: impl FnOnce(TyCtxt<'tcx>, &[T]) -> &'tcx ty::List<T>, ) -> Result<&'tcx ty::List<T>, F::Error> where F: FallibleTypeFolder<TyCtxt<'tcx>>, T: TypeFoldable<TyCtxt<'tcx>> + PartialEq + Copy,1383 pub fn fold_list<'tcx, F, T>(
1384 list: &'tcx ty::List<T>,
1385 folder: &mut F,
1386 intern: impl FnOnce(TyCtxt<'tcx>, &[T]) -> &'tcx ty::List<T>,
1387 ) -> Result<&'tcx ty::List<T>, F::Error>
1388 where
1389 F: FallibleTypeFolder<TyCtxt<'tcx>>,
1390 T: TypeFoldable<TyCtxt<'tcx>> + PartialEq + Copy,
1391 {
1392 let mut iter = list.iter();
1393 // Look for the first element that changed
1394 match iter.by_ref().enumerate().find_map(|(i, t)| match t.try_fold_with(folder) {
1395 Ok(new_t) if new_t == t => None,
1396 new_t => Some((i, new_t)),
1397 }) {
1398 Some((i, Ok(new_t))) => {
1399 // An element changed, prepare to intern the resulting list
1400 let mut new_list = SmallVec::<[_; 8]>::with_capacity(list.len());
1401 new_list.extend_from_slice(&list[..i]);
1402 new_list.push(new_t);
1403 for t in iter {
1404 new_list.push(t.try_fold_with(folder)?)
1405 }
1406 Ok(intern(folder.interner(), &new_list))
1407 }
1408 Some((_, Err(err))) => {
1409 return Err(err);
1410 }
1411 None => Ok(list),
1412 }
1413 }
1414
1415 #[derive(Copy, Clone, Debug, HashStable, TyEncodable, TyDecodable)]
1416 pub struct AlwaysRequiresDrop;
1417
1418 /// Reveals all opaque types in the given value, replacing them
1419 /// with their underlying types.
reveal_opaque_types_in_bounds<'tcx>( tcx: TyCtxt<'tcx>, val: &'tcx ty::List<ty::Clause<'tcx>>, ) -> &'tcx ty::List<ty::Clause<'tcx>>1420 pub fn reveal_opaque_types_in_bounds<'tcx>(
1421 tcx: TyCtxt<'tcx>,
1422 val: &'tcx ty::List<ty::Clause<'tcx>>,
1423 ) -> &'tcx ty::List<ty::Clause<'tcx>> {
1424 let mut visitor = OpaqueTypeExpander {
1425 seen_opaque_tys: FxHashSet::default(),
1426 expanded_cache: FxHashMap::default(),
1427 primary_def_id: None,
1428 found_recursion: false,
1429 found_any_recursion: false,
1430 check_recursion: false,
1431 expand_generators: false,
1432 tcx,
1433 };
1434 val.fold_with(&mut visitor)
1435 }
1436
1437 /// Determines whether an item is annotated with `doc(hidden)`.
is_doc_hidden(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool1438 fn is_doc_hidden(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
1439 tcx.get_attrs(def_id, sym::doc)
1440 .filter_map(|attr| attr.meta_item_list())
1441 .any(|items| items.iter().any(|item| item.has_name(sym::hidden)))
1442 }
1443
1444 /// Determines whether an item is annotated with `doc(notable_trait)`.
is_doc_notable_trait(tcx: TyCtxt<'_>, def_id: DefId) -> bool1445 pub fn is_doc_notable_trait(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
1446 tcx.get_attrs(def_id, sym::doc)
1447 .filter_map(|attr| attr.meta_item_list())
1448 .any(|items| items.iter().any(|item| item.has_name(sym::notable_trait)))
1449 }
1450
1451 /// Determines whether an item is an intrinsic by Abi.
is_intrinsic(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool1452 pub fn is_intrinsic(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool {
1453 matches!(tcx.fn_sig(def_id).skip_binder().abi(), Abi::RustIntrinsic | Abi::PlatformIntrinsic)
1454 }
1455
provide(providers: &mut Providers)1456 pub fn provide(providers: &mut Providers) {
1457 *providers = Providers {
1458 reveal_opaque_types_in_bounds,
1459 is_doc_hidden,
1460 is_doc_notable_trait,
1461 is_intrinsic,
1462 ..*providers
1463 }
1464 }
1465