1 //===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the interfaces that ARM uses to lower LLVM code into a
10 // selection DAG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ARMISelLowering.h"
15 #include "ARMBaseInstrInfo.h"
16 #include "ARMBaseRegisterInfo.h"
17 #include "ARMCallingConv.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMPerfectShuffle.h"
21 #include "ARMRegisterInfo.h"
22 #include "ARMSelectionDAGInfo.h"
23 #include "ARMSubtarget.h"
24 #include "MCTargetDesc/ARMAddressingModes.h"
25 #include "MCTargetDesc/ARMBaseInfo.h"
26 #include "Utils/ARMBaseInfo.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/StringExtras.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/StringSwitch.h"
39 #include "llvm/ADT/Triple.h"
40 #include "llvm/ADT/Twine.h"
41 #include "llvm/Analysis/VectorUtils.h"
42 #include "llvm/CodeGen/CallingConvLower.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/IntrinsicLowering.h"
45 #include "llvm/CodeGen/MachineBasicBlock.h"
46 #include "llvm/CodeGen/MachineConstantPool.h"
47 #include "llvm/CodeGen/MachineFrameInfo.h"
48 #include "llvm/CodeGen/MachineFunction.h"
49 #include "llvm/CodeGen/MachineInstr.h"
50 #include "llvm/CodeGen/MachineInstrBuilder.h"
51 #include "llvm/CodeGen/MachineJumpTableInfo.h"
52 #include "llvm/CodeGen/MachineMemOperand.h"
53 #include "llvm/CodeGen/MachineOperand.h"
54 #include "llvm/CodeGen/MachineRegisterInfo.h"
55 #include "llvm/CodeGen/RuntimeLibcalls.h"
56 #include "llvm/CodeGen/SelectionDAG.h"
57 #include "llvm/CodeGen/SelectionDAGNodes.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/Constants.h"
68 #include "llvm/IR/DataLayout.h"
69 #include "llvm/IR/DebugLoc.h"
70 #include "llvm/IR/DerivedTypes.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GlobalAlias.h"
73 #include "llvm/IR/GlobalValue.h"
74 #include "llvm/IR/GlobalVariable.h"
75 #include "llvm/IR/IRBuilder.h"
76 #include "llvm/IR/InlineAsm.h"
77 #include "llvm/IR/Instruction.h"
78 #include "llvm/IR/Instructions.h"
79 #include "llvm/IR/IntrinsicInst.h"
80 #include "llvm/IR/Intrinsics.h"
81 #include "llvm/IR/IntrinsicsARM.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Type.h"
85 #include "llvm/IR/User.h"
86 #include "llvm/IR/Value.h"
87 #include "llvm/MC/MCInstrDesc.h"
88 #include "llvm/MC/MCInstrItineraries.h"
89 #include "llvm/MC/MCRegisterInfo.h"
90 #include "llvm/MC/MCSchedule.h"
91 #include "llvm/Support/AtomicOrdering.h"
92 #include "llvm/Support/BranchProbability.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CodeGen.h"
95 #include "llvm/Support/CommandLine.h"
96 #include "llvm/Support/Compiler.h"
97 #include "llvm/Support/Debug.h"
98 #include "llvm/Support/ErrorHandling.h"
99 #include "llvm/Support/KnownBits.h"
100 #include "llvm/Support/MachineValueType.h"
101 #include "llvm/Support/MathExtras.h"
102 #include "llvm/Support/raw_ostream.h"
103 #include "llvm/Target/TargetMachine.h"
104 #include "llvm/Target/TargetOptions.h"
105 #include <algorithm>
106 #include <cassert>
107 #include <cstdint>
108 #include <cstdlib>
109 #include <iterator>
110 #include <limits>
111 #include <string>
112 #include <tuple>
113 #include <utility>
114 #include <vector>
115
116 using namespace llvm;
117 using namespace llvm::PatternMatch;
118
119 #define DEBUG_TYPE "arm-isel"
120
121 STATISTIC(NumTailCalls, "Number of tail calls");
122 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
123 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
124 STATISTIC(NumConstpoolPromoted,
125 "Number of constants with their storage promoted into constant pools");
126
127 static cl::opt<bool>
128 ARMInterworking("arm-interworking", cl::Hidden,
129 cl::desc("Enable / disable ARM interworking (for debugging only)"),
130 cl::init(true));
131
132 static cl::opt<bool> EnableConstpoolPromotion(
133 "arm-promote-constant", cl::Hidden,
134 cl::desc("Enable / disable promotion of unnamed_addr constants into "
135 "constant pools"),
136 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
137 static cl::opt<unsigned> ConstpoolPromotionMaxSize(
138 "arm-promote-constant-max-size", cl::Hidden,
139 cl::desc("Maximum size of constant to promote into a constant pool"),
140 cl::init(64));
141 static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
142 "arm-promote-constant-max-total", cl::Hidden,
143 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
144 cl::init(128));
145
146 static cl::opt<unsigned>
147 MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
148 cl::desc("Maximum interleave factor for MVE VLDn to generate."),
149 cl::init(2));
150
151 // The APCS parameter registers.
152 static const MCPhysReg GPRArgRegs[] = {
153 ARM::R0, ARM::R1, ARM::R2, ARM::R3
154 };
155
addTypeForNEON(MVT VT,MVT PromotedLdStVT,MVT PromotedBitwiseVT)156 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
157 MVT PromotedBitwiseVT) {
158 if (VT != PromotedLdStVT) {
159 setOperationAction(ISD::LOAD, VT, Promote);
160 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
161
162 setOperationAction(ISD::STORE, VT, Promote);
163 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
164 }
165
166 MVT ElemTy = VT.getVectorElementType();
167 if (ElemTy != MVT::f64)
168 setOperationAction(ISD::SETCC, VT, Custom);
169 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
170 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
171 if (ElemTy == MVT::i32) {
172 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
173 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
174 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
175 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
176 } else {
177 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
178 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
179 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
180 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
181 }
182 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
183 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
184 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
185 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
186 setOperationAction(ISD::SELECT, VT, Expand);
187 setOperationAction(ISD::SELECT_CC, VT, Expand);
188 setOperationAction(ISD::VSELECT, VT, Expand);
189 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190 if (VT.isInteger()) {
191 setOperationAction(ISD::SHL, VT, Custom);
192 setOperationAction(ISD::SRA, VT, Custom);
193 setOperationAction(ISD::SRL, VT, Custom);
194 }
195
196 // Promote all bit-wise operations.
197 if (VT.isInteger() && VT != PromotedBitwiseVT) {
198 setOperationAction(ISD::AND, VT, Promote);
199 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
200 setOperationAction(ISD::OR, VT, Promote);
201 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
202 setOperationAction(ISD::XOR, VT, Promote);
203 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
204 }
205
206 // Neon does not support vector divide/remainder operations.
207 setOperationAction(ISD::SDIV, VT, Expand);
208 setOperationAction(ISD::UDIV, VT, Expand);
209 setOperationAction(ISD::FDIV, VT, Expand);
210 setOperationAction(ISD::SREM, VT, Expand);
211 setOperationAction(ISD::UREM, VT, Expand);
212 setOperationAction(ISD::FREM, VT, Expand);
213
214 if (!VT.isFloatingPoint() &&
215 VT != MVT::v2i64 && VT != MVT::v1i64)
216 for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
217 setOperationAction(Opcode, VT, Legal);
218 if (!VT.isFloatingPoint())
219 for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
220 setOperationAction(Opcode, VT, Legal);
221 }
222
addDRTypeForNEON(MVT VT)223 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
224 addRegisterClass(VT, &ARM::DPRRegClass);
225 addTypeForNEON(VT, MVT::f64, MVT::v2i32);
226 }
227
addQRTypeForNEON(MVT VT)228 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
229 addRegisterClass(VT, &ARM::DPairRegClass);
230 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
231 }
232
setAllExpand(MVT VT)233 void ARMTargetLowering::setAllExpand(MVT VT) {
234 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
235 setOperationAction(Opc, VT, Expand);
236
237 // We support these really simple operations even on types where all
238 // the actual arithmetic has to be broken down into simpler
239 // operations or turned into library calls.
240 setOperationAction(ISD::BITCAST, VT, Legal);
241 setOperationAction(ISD::LOAD, VT, Legal);
242 setOperationAction(ISD::STORE, VT, Legal);
243 setOperationAction(ISD::UNDEF, VT, Legal);
244 }
245
addAllExtLoads(const MVT From,const MVT To,LegalizeAction Action)246 void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
247 LegalizeAction Action) {
248 setLoadExtAction(ISD::EXTLOAD, From, To, Action);
249 setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
250 setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
251 }
252
addMVEVectorTypes(bool HasMVEFP)253 void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
254 const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
255
256 for (auto VT : IntTypes) {
257 addRegisterClass(VT, &ARM::MQPRRegClass);
258 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
259 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
260 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
261 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
262 setOperationAction(ISD::SHL, VT, Custom);
263 setOperationAction(ISD::SRA, VT, Custom);
264 setOperationAction(ISD::SRL, VT, Custom);
265 setOperationAction(ISD::SMIN, VT, Legal);
266 setOperationAction(ISD::SMAX, VT, Legal);
267 setOperationAction(ISD::UMIN, VT, Legal);
268 setOperationAction(ISD::UMAX, VT, Legal);
269 setOperationAction(ISD::ABS, VT, Legal);
270 setOperationAction(ISD::SETCC, VT, Custom);
271 setOperationAction(ISD::MLOAD, VT, Custom);
272 setOperationAction(ISD::MSTORE, VT, Legal);
273 setOperationAction(ISD::CTLZ, VT, Legal);
274 setOperationAction(ISD::CTTZ, VT, Custom);
275 setOperationAction(ISD::BITREVERSE, VT, Legal);
276 setOperationAction(ISD::BSWAP, VT, Legal);
277 setOperationAction(ISD::SADDSAT, VT, Legal);
278 setOperationAction(ISD::UADDSAT, VT, Legal);
279 setOperationAction(ISD::SSUBSAT, VT, Legal);
280 setOperationAction(ISD::USUBSAT, VT, Legal);
281
282 // No native support for these.
283 setOperationAction(ISD::UDIV, VT, Expand);
284 setOperationAction(ISD::SDIV, VT, Expand);
285 setOperationAction(ISD::UREM, VT, Expand);
286 setOperationAction(ISD::SREM, VT, Expand);
287 setOperationAction(ISD::CTPOP, VT, Expand);
288
289 // Vector reductions
290 setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
291 setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
292 setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
293 setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
294 setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
295
296 if (!HasMVEFP) {
297 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
298 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
299 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
300 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
301 }
302
303 // Pre and Post inc are supported on loads and stores
304 for (unsigned im = (unsigned)ISD::PRE_INC;
305 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
306 setIndexedLoadAction(im, VT, Legal);
307 setIndexedStoreAction(im, VT, Legal);
308 setIndexedMaskedLoadAction(im, VT, Legal);
309 setIndexedMaskedStoreAction(im, VT, Legal);
310 }
311 }
312
313 const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
314 for (auto VT : FloatTypes) {
315 addRegisterClass(VT, &ARM::MQPRRegClass);
316 if (!HasMVEFP)
317 setAllExpand(VT);
318
319 // These are legal or custom whether we have MVE.fp or not
320 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
321 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
322 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
323 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
324 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
325 setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
326 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
327 setOperationAction(ISD::SETCC, VT, Custom);
328 setOperationAction(ISD::MLOAD, VT, Custom);
329 setOperationAction(ISD::MSTORE, VT, Legal);
330
331 // Pre and Post inc are supported on loads and stores
332 for (unsigned im = (unsigned)ISD::PRE_INC;
333 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
334 setIndexedLoadAction(im, VT, Legal);
335 setIndexedStoreAction(im, VT, Legal);
336 setIndexedMaskedLoadAction(im, VT, Legal);
337 setIndexedMaskedStoreAction(im, VT, Legal);
338 }
339
340 if (HasMVEFP) {
341 setOperationAction(ISD::FMINNUM, VT, Legal);
342 setOperationAction(ISD::FMAXNUM, VT, Legal);
343 setOperationAction(ISD::FROUND, VT, Legal);
344
345 // No native support for these.
346 setOperationAction(ISD::FDIV, VT, Expand);
347 setOperationAction(ISD::FREM, VT, Expand);
348 setOperationAction(ISD::FSQRT, VT, Expand);
349 setOperationAction(ISD::FSIN, VT, Expand);
350 setOperationAction(ISD::FCOS, VT, Expand);
351 setOperationAction(ISD::FPOW, VT, Expand);
352 setOperationAction(ISD::FLOG, VT, Expand);
353 setOperationAction(ISD::FLOG2, VT, Expand);
354 setOperationAction(ISD::FLOG10, VT, Expand);
355 setOperationAction(ISD::FEXP, VT, Expand);
356 setOperationAction(ISD::FEXP2, VT, Expand);
357 setOperationAction(ISD::FNEARBYINT, VT, Expand);
358 }
359 }
360
361 // We 'support' these types up to bitcast/load/store level, regardless of
362 // MVE integer-only / float support. Only doing FP data processing on the FP
363 // vector types is inhibited at integer-only level.
364 const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
365 for (auto VT : LongTypes) {
366 addRegisterClass(VT, &ARM::MQPRRegClass);
367 setAllExpand(VT);
368 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
369 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
370 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
371 }
372 // We can do bitwise operations on v2i64 vectors
373 setOperationAction(ISD::AND, MVT::v2i64, Legal);
374 setOperationAction(ISD::OR, MVT::v2i64, Legal);
375 setOperationAction(ISD::XOR, MVT::v2i64, Legal);
376
377 // It is legal to extload from v4i8 to v4i16 or v4i32.
378 addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
379 addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
380 addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
381
382 // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
383 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal);
384 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
385 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
386 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal);
387 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
388
389 // Some truncating stores are legal too.
390 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
391 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
392 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
393
394 // Pre and Post inc on these are legal, given the correct extends
395 for (unsigned im = (unsigned)ISD::PRE_INC;
396 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
397 for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
398 setIndexedLoadAction(im, VT, Legal);
399 setIndexedStoreAction(im, VT, Legal);
400 setIndexedMaskedLoadAction(im, VT, Legal);
401 setIndexedMaskedStoreAction(im, VT, Legal);
402 }
403 }
404
405 // Predicate types
406 const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1};
407 for (auto VT : pTypes) {
408 addRegisterClass(VT, &ARM::VCCRRegClass);
409 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
410 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
411 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
412 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
413 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
414 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
415 setOperationAction(ISD::SETCC, VT, Custom);
416 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
417 setOperationAction(ISD::LOAD, VT, Custom);
418 setOperationAction(ISD::STORE, VT, Custom);
419 }
420 }
421
ARMTargetLowering(const TargetMachine & TM,const ARMSubtarget & STI)422 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
423 const ARMSubtarget &STI)
424 : TargetLowering(TM), Subtarget(&STI) {
425 RegInfo = Subtarget->getRegisterInfo();
426 Itins = Subtarget->getInstrItineraryData();
427
428 setBooleanContents(ZeroOrOneBooleanContent);
429 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
430
431 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
432 !Subtarget->isTargetWatchOS()) {
433 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
434 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
435 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
436 IsHFTarget ? CallingConv::ARM_AAPCS_VFP
437 : CallingConv::ARM_AAPCS);
438 }
439
440 if (Subtarget->isTargetMachO()) {
441 // Uses VFP for Thumb libfuncs if available.
442 if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
443 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
444 static const struct {
445 const RTLIB::Libcall Op;
446 const char * const Name;
447 const ISD::CondCode Cond;
448 } LibraryCalls[] = {
449 // Single-precision floating-point arithmetic.
450 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
451 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
452 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
453 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
454
455 // Double-precision floating-point arithmetic.
456 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
457 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
458 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
459 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
460
461 // Single-precision comparisons.
462 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
463 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
464 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
465 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
466 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
467 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
468 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
469
470 // Double-precision comparisons.
471 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
472 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
473 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
474 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
475 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
476 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
477 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
478
479 // Floating-point to integer conversions.
480 // i64 conversions are done via library routines even when generating VFP
481 // instructions, so use the same ones.
482 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
483 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
484 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
485 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
486
487 // Conversions between floating types.
488 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
489 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
490
491 // Integer to floating-point conversions.
492 // i64 conversions are done via library routines even when generating VFP
493 // instructions, so use the same ones.
494 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
495 // e.g., __floatunsidf vs. __floatunssidfvfp.
496 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
497 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
498 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
499 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
500 };
501
502 for (const auto &LC : LibraryCalls) {
503 setLibcallName(LC.Op, LC.Name);
504 if (LC.Cond != ISD::SETCC_INVALID)
505 setCmpLibcallCC(LC.Op, LC.Cond);
506 }
507 }
508 }
509
510 // These libcalls are not available in 32-bit.
511 setLibcallName(RTLIB::SHL_I128, nullptr);
512 setLibcallName(RTLIB::SRL_I128, nullptr);
513 setLibcallName(RTLIB::SRA_I128, nullptr);
514
515 // RTLIB
516 if (Subtarget->isAAPCS_ABI() &&
517 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
518 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
519 static const struct {
520 const RTLIB::Libcall Op;
521 const char * const Name;
522 const CallingConv::ID CC;
523 const ISD::CondCode Cond;
524 } LibraryCalls[] = {
525 // Double-precision floating-point arithmetic helper functions
526 // RTABI chapter 4.1.2, Table 2
527 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
528 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
529 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
530 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
531
532 // Double-precision floating-point comparison helper functions
533 // RTABI chapter 4.1.2, Table 3
534 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
535 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
536 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
537 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
538 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
539 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
540 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
541
542 // Single-precision floating-point arithmetic helper functions
543 // RTABI chapter 4.1.2, Table 4
544 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
545 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
546 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
547 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
548
549 // Single-precision floating-point comparison helper functions
550 // RTABI chapter 4.1.2, Table 5
551 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
552 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
553 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
554 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
555 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
556 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
557 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
558
559 // Floating-point to integer conversions.
560 // RTABI chapter 4.1.2, Table 6
561 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
562 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
563 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
564 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
565 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
566 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
567 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
568 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
569
570 // Conversions between floating types.
571 // RTABI chapter 4.1.2, Table 7
572 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
573 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
574 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
575
576 // Integer to floating-point conversions.
577 // RTABI chapter 4.1.2, Table 8
578 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
579 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
580 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
581 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
582 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
583 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
584 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
585 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
586
587 // Long long helper functions
588 // RTABI chapter 4.2, Table 9
589 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
590 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
591 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
592 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
593
594 // Integer division functions
595 // RTABI chapter 4.3.1
596 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
597 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
598 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
599 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
600 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
601 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
602 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
603 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
604 };
605
606 for (const auto &LC : LibraryCalls) {
607 setLibcallName(LC.Op, LC.Name);
608 setLibcallCallingConv(LC.Op, LC.CC);
609 if (LC.Cond != ISD::SETCC_INVALID)
610 setCmpLibcallCC(LC.Op, LC.Cond);
611 }
612
613 // EABI dependent RTLIB
614 if (TM.Options.EABIVersion == EABI::EABI4 ||
615 TM.Options.EABIVersion == EABI::EABI5) {
616 static const struct {
617 const RTLIB::Libcall Op;
618 const char *const Name;
619 const CallingConv::ID CC;
620 const ISD::CondCode Cond;
621 } MemOpsLibraryCalls[] = {
622 // Memory operations
623 // RTABI chapter 4.3.4
624 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
625 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
626 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
627 };
628
629 for (const auto &LC : MemOpsLibraryCalls) {
630 setLibcallName(LC.Op, LC.Name);
631 setLibcallCallingConv(LC.Op, LC.CC);
632 if (LC.Cond != ISD::SETCC_INVALID)
633 setCmpLibcallCC(LC.Op, LC.Cond);
634 }
635 }
636 }
637
638 if (Subtarget->isTargetWindows()) {
639 static const struct {
640 const RTLIB::Libcall Op;
641 const char * const Name;
642 const CallingConv::ID CC;
643 } LibraryCalls[] = {
644 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
645 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
646 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
647 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
648 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
649 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
650 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
651 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
652 };
653
654 for (const auto &LC : LibraryCalls) {
655 setLibcallName(LC.Op, LC.Name);
656 setLibcallCallingConv(LC.Op, LC.CC);
657 }
658 }
659
660 // Use divmod compiler-rt calls for iOS 5.0 and later.
661 if (Subtarget->isTargetMachO() &&
662 !(Subtarget->isTargetIOS() &&
663 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
664 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
665 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
666 }
667
668 // The half <-> float conversion functions are always soft-float on
669 // non-watchos platforms, but are needed for some targets which use a
670 // hard-float calling convention by default.
671 if (!Subtarget->isTargetWatchABI()) {
672 if (Subtarget->isAAPCS_ABI()) {
673 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
674 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
675 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
676 } else {
677 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
678 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
679 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
680 }
681 }
682
683 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
684 // a __gnu_ prefix (which is the default).
685 if (Subtarget->isTargetAEABI()) {
686 static const struct {
687 const RTLIB::Libcall Op;
688 const char * const Name;
689 const CallingConv::ID CC;
690 } LibraryCalls[] = {
691 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
692 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
693 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
694 };
695
696 for (const auto &LC : LibraryCalls) {
697 setLibcallName(LC.Op, LC.Name);
698 setLibcallCallingConv(LC.Op, LC.CC);
699 }
700 }
701
702 if (Subtarget->isThumb1Only())
703 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
704 else
705 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
706
707 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
708 Subtarget->hasFPRegs()) {
709 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
710 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
711 if (!Subtarget->hasVFP2Base())
712 setAllExpand(MVT::f32);
713 if (!Subtarget->hasFP64())
714 setAllExpand(MVT::f64);
715 }
716
717 if (Subtarget->hasFullFP16()) {
718 addRegisterClass(MVT::f16, &ARM::HPRRegClass);
719 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
720 setOperationAction(ISD::BITCAST, MVT::i32, Custom);
721 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
722
723 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
724 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
725 }
726
727 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
728 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
729 setTruncStoreAction(VT, InnerVT, Expand);
730 addAllExtLoads(VT, InnerVT, Expand);
731 }
732
733 setOperationAction(ISD::MULHS, VT, Expand);
734 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
735 setOperationAction(ISD::MULHU, VT, Expand);
736 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
737
738 setOperationAction(ISD::BSWAP, VT, Expand);
739 }
740
741 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
742 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
743
744 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
745 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
746
747 if (Subtarget->hasMVEIntegerOps())
748 addMVEVectorTypes(Subtarget->hasMVEFloatOps());
749
750 // Combine low-overhead loop intrinsics so that we can lower i1 types.
751 if (Subtarget->hasLOB()) {
752 setTargetDAGCombine(ISD::BRCOND);
753 setTargetDAGCombine(ISD::BR_CC);
754 }
755
756 if (Subtarget->hasNEON()) {
757 addDRTypeForNEON(MVT::v2f32);
758 addDRTypeForNEON(MVT::v8i8);
759 addDRTypeForNEON(MVT::v4i16);
760 addDRTypeForNEON(MVT::v2i32);
761 addDRTypeForNEON(MVT::v1i64);
762
763 addQRTypeForNEON(MVT::v4f32);
764 addQRTypeForNEON(MVT::v2f64);
765 addQRTypeForNEON(MVT::v16i8);
766 addQRTypeForNEON(MVT::v8i16);
767 addQRTypeForNEON(MVT::v4i32);
768 addQRTypeForNEON(MVT::v2i64);
769
770 if (Subtarget->hasFullFP16()) {
771 addQRTypeForNEON(MVT::v8f16);
772 addDRTypeForNEON(MVT::v4f16);
773 }
774 }
775
776 if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
777 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
778 // none of Neon, MVE or VFP supports any arithmetic operations on it.
779 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
780 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
781 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
782 // FIXME: Code duplication: FDIV and FREM are expanded always, see
783 // ARMTargetLowering::addTypeForNEON method for details.
784 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
785 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
786 // FIXME: Create unittest.
787 // In another words, find a way when "copysign" appears in DAG with vector
788 // operands.
789 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
790 // FIXME: Code duplication: SETCC has custom operation action, see
791 // ARMTargetLowering::addTypeForNEON method for details.
792 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
793 // FIXME: Create unittest for FNEG and for FABS.
794 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
795 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
796 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
797 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
798 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
799 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
800 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
801 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
802 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
803 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
804 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
805 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
806 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
807 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
808 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
809 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
810 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
811 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
812 }
813
814 if (Subtarget->hasNEON()) {
815 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
816 // supported for v4f32.
817 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
818 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
819 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
820 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
821 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
822 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
823 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
824 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
825 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
826 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
827 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
828 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
829 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
830 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
831
832 // Mark v2f32 intrinsics.
833 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
834 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
835 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
836 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
837 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
838 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
839 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
840 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
841 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
842 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
843 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
844 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
845 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
846 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
847
848 // Neon does not support some operations on v1i64 and v2i64 types.
849 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
850 // Custom handling for some quad-vector types to detect VMULL.
851 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
852 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
853 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
854 // Custom handling for some vector types to avoid expensive expansions
855 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
856 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
857 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
858 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
859 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
860 // a destination type that is wider than the source, and nor does
861 // it have a FP_TO_[SU]INT instruction with a narrower destination than
862 // source.
863 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
864 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
865 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
866 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
867 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
868 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
869 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
870 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
871
872 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
873 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
874
875 // NEON does not have single instruction CTPOP for vectors with element
876 // types wider than 8-bits. However, custom lowering can leverage the
877 // v8i8/v16i8 vcnt instruction.
878 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
879 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
880 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
881 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
882 setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
883 setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
884
885 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
886 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
887
888 // NEON does not have single instruction CTTZ for vectors.
889 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
890 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
891 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
892 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
893
894 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
895 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
896 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
897 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
898
899 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
900 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
901 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
902 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
903
904 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
905 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
906 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
907 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
908
909 // NEON only has FMA instructions as of VFP4.
910 if (!Subtarget->hasVFP4Base()) {
911 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
912 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
913 }
914
915 setTargetDAGCombine(ISD::INTRINSIC_VOID);
916 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
917 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
918 setTargetDAGCombine(ISD::SHL);
919 setTargetDAGCombine(ISD::SRL);
920 setTargetDAGCombine(ISD::SRA);
921 setTargetDAGCombine(ISD::FP_TO_SINT);
922 setTargetDAGCombine(ISD::FP_TO_UINT);
923 setTargetDAGCombine(ISD::FDIV);
924 setTargetDAGCombine(ISD::LOAD);
925
926 // It is legal to extload from v4i8 to v4i16 or v4i32.
927 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
928 MVT::v2i32}) {
929 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
930 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
931 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
932 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
933 }
934 }
935 }
936
937 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
938 setTargetDAGCombine(ISD::BUILD_VECTOR);
939 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
940 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
941 setTargetDAGCombine(ISD::STORE);
942 setTargetDAGCombine(ISD::SIGN_EXTEND);
943 setTargetDAGCombine(ISD::ZERO_EXTEND);
944 setTargetDAGCombine(ISD::ANY_EXTEND);
945 }
946
947 if (!Subtarget->hasFP64()) {
948 // When targeting a floating-point unit with only single-precision
949 // operations, f64 is legal for the few double-precision instructions which
950 // are present However, no double-precision operations other than moves,
951 // loads and stores are provided by the hardware.
952 setOperationAction(ISD::FADD, MVT::f64, Expand);
953 setOperationAction(ISD::FSUB, MVT::f64, Expand);
954 setOperationAction(ISD::FMUL, MVT::f64, Expand);
955 setOperationAction(ISD::FMA, MVT::f64, Expand);
956 setOperationAction(ISD::FDIV, MVT::f64, Expand);
957 setOperationAction(ISD::FREM, MVT::f64, Expand);
958 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
959 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
960 setOperationAction(ISD::FNEG, MVT::f64, Expand);
961 setOperationAction(ISD::FABS, MVT::f64, Expand);
962 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
963 setOperationAction(ISD::FSIN, MVT::f64, Expand);
964 setOperationAction(ISD::FCOS, MVT::f64, Expand);
965 setOperationAction(ISD::FPOW, MVT::f64, Expand);
966 setOperationAction(ISD::FLOG, MVT::f64, Expand);
967 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
968 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
969 setOperationAction(ISD::FEXP, MVT::f64, Expand);
970 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
971 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
972 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
973 setOperationAction(ISD::FRINT, MVT::f64, Expand);
974 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
975 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
976 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
977 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
978 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
979 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
980 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
981 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
982 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
983 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
984 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
985 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
986 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
987 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
988 }
989
990 if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
991 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
992 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
993 if (Subtarget->hasFullFP16()) {
994 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
995 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
996 }
997 }
998
999 if (!Subtarget->hasFP16()) {
1000 setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
1001 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1002 }
1003
1004 computeRegisterProperties(Subtarget->getRegisterInfo());
1005
1006 // ARM does not have floating-point extending loads.
1007 for (MVT VT : MVT::fp_valuetypes()) {
1008 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1009 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1010 }
1011
1012 // ... or truncating stores
1013 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1014 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1015 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1016
1017 // ARM does not have i1 sign extending load.
1018 for (MVT VT : MVT::integer_valuetypes())
1019 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1020
1021 // ARM supports all 4 flavors of integer indexed load / store.
1022 if (!Subtarget->isThumb1Only()) {
1023 for (unsigned im = (unsigned)ISD::PRE_INC;
1024 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1025 setIndexedLoadAction(im, MVT::i1, Legal);
1026 setIndexedLoadAction(im, MVT::i8, Legal);
1027 setIndexedLoadAction(im, MVT::i16, Legal);
1028 setIndexedLoadAction(im, MVT::i32, Legal);
1029 setIndexedStoreAction(im, MVT::i1, Legal);
1030 setIndexedStoreAction(im, MVT::i8, Legal);
1031 setIndexedStoreAction(im, MVT::i16, Legal);
1032 setIndexedStoreAction(im, MVT::i32, Legal);
1033 }
1034 } else {
1035 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1036 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1037 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1038 }
1039
1040 setOperationAction(ISD::SADDO, MVT::i32, Custom);
1041 setOperationAction(ISD::UADDO, MVT::i32, Custom);
1042 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1043 setOperationAction(ISD::USUBO, MVT::i32, Custom);
1044
1045 setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1046 setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1047 if (Subtarget->hasDSP()) {
1048 setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1049 setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1050 setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1051 setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1052 }
1053 if (Subtarget->hasBaseDSP()) {
1054 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1055 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1056 }
1057
1058 // i64 operation support.
1059 setOperationAction(ISD::MUL, MVT::i64, Expand);
1060 setOperationAction(ISD::MULHU, MVT::i32, Expand);
1061 if (Subtarget->isThumb1Only()) {
1062 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1063 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1064 }
1065 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1066 || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1067 setOperationAction(ISD::MULHS, MVT::i32, Expand);
1068
1069 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1070 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1071 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1072 setOperationAction(ISD::SRL, MVT::i64, Custom);
1073 setOperationAction(ISD::SRA, MVT::i64, Custom);
1074 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1075 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1076
1077 // MVE lowers 64 bit shifts to lsll and lsrl
1078 // assuming that ISD::SRL and SRA of i64 are already marked custom
1079 if (Subtarget->hasMVEIntegerOps())
1080 setOperationAction(ISD::SHL, MVT::i64, Custom);
1081
1082 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1083 if (Subtarget->isThumb1Only()) {
1084 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1085 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1086 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1087 }
1088
1089 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1090 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1091
1092 // ARM does not have ROTL.
1093 setOperationAction(ISD::ROTL, MVT::i32, Expand);
1094 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1095 setOperationAction(ISD::ROTL, VT, Expand);
1096 setOperationAction(ISD::ROTR, VT, Expand);
1097 }
1098 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
1099 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1100 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1101 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1102 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1103 }
1104
1105 // @llvm.readcyclecounter requires the Performance Monitors extension.
1106 // Default to the 0 expansion on unsupported platforms.
1107 // FIXME: Technically there are older ARM CPUs that have
1108 // implementation-specific ways of obtaining this information.
1109 if (Subtarget->hasPerfMon())
1110 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1111
1112 // Only ARMv6 has BSWAP.
1113 if (!Subtarget->hasV6Ops())
1114 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1115
1116 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1117 : Subtarget->hasDivideInARMMode();
1118 if (!hasDivide) {
1119 // These are expanded into libcalls if the cpu doesn't have HW divider.
1120 setOperationAction(ISD::SDIV, MVT::i32, LibCall);
1121 setOperationAction(ISD::UDIV, MVT::i32, LibCall);
1122 }
1123
1124 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1125 setOperationAction(ISD::SDIV, MVT::i32, Custom);
1126 setOperationAction(ISD::UDIV, MVT::i32, Custom);
1127
1128 setOperationAction(ISD::SDIV, MVT::i64, Custom);
1129 setOperationAction(ISD::UDIV, MVT::i64, Custom);
1130 }
1131
1132 setOperationAction(ISD::SREM, MVT::i32, Expand);
1133 setOperationAction(ISD::UREM, MVT::i32, Expand);
1134
1135 // Register based DivRem for AEABI (RTABI 4.2)
1136 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1137 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1138 Subtarget->isTargetWindows()) {
1139 setOperationAction(ISD::SREM, MVT::i64, Custom);
1140 setOperationAction(ISD::UREM, MVT::i64, Custom);
1141 HasStandaloneRem = false;
1142
1143 if (Subtarget->isTargetWindows()) {
1144 const struct {
1145 const RTLIB::Libcall Op;
1146 const char * const Name;
1147 const CallingConv::ID CC;
1148 } LibraryCalls[] = {
1149 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1150 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1151 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1152 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1153
1154 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1155 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1156 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1157 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1158 };
1159
1160 for (const auto &LC : LibraryCalls) {
1161 setLibcallName(LC.Op, LC.Name);
1162 setLibcallCallingConv(LC.Op, LC.CC);
1163 }
1164 } else {
1165 const struct {
1166 const RTLIB::Libcall Op;
1167 const char * const Name;
1168 const CallingConv::ID CC;
1169 } LibraryCalls[] = {
1170 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1171 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1172 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1173 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1174
1175 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1176 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1177 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1178 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1179 };
1180
1181 for (const auto &LC : LibraryCalls) {
1182 setLibcallName(LC.Op, LC.Name);
1183 setLibcallCallingConv(LC.Op, LC.CC);
1184 }
1185 }
1186
1187 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1188 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1189 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1190 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1191 } else {
1192 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1193 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1194 }
1195
1196 if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1197 // MSVCRT doesn't have powi; fall back to pow
1198 setLibcallName(RTLIB::POWI_F32, nullptr);
1199 setLibcallName(RTLIB::POWI_F64, nullptr);
1200 }
1201
1202 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1203 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1204 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1205 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1206
1207 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1208 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1209
1210 // Use the default implementation.
1211 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1212 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1213 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1214 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1215 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1216 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1217
1218 if (Subtarget->isTargetWindows())
1219 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1220 else
1221 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1222
1223 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1224 // the default expansion.
1225 InsertFencesForAtomic = false;
1226 if (Subtarget->hasAnyDataBarrier() &&
1227 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1228 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1229 // to ldrex/strex loops already.
1230 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1231 if (!Subtarget->isThumb() || !Subtarget->isMClass())
1232 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
1233
1234 // On v8, we have particularly efficient implementations of atomic fences
1235 // if they can be combined with nearby atomic loads and stores.
1236 if (!Subtarget->hasAcquireRelease() ||
1237 getTargetMachine().getOptLevel() == 0) {
1238 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1239 InsertFencesForAtomic = true;
1240 }
1241 } else {
1242 // If there's anything we can use as a barrier, go through custom lowering
1243 // for ATOMIC_FENCE.
1244 // If target has DMB in thumb, Fences can be inserted.
1245 if (Subtarget->hasDataBarrier())
1246 InsertFencesForAtomic = true;
1247
1248 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
1249 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1250
1251 // Set them all for expansion, which will force libcalls.
1252 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
1253 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
1254 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
1255 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
1256 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
1257 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
1258 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
1259 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1260 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1261 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1262 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1263 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1264 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1265 // Unordered/Monotonic case.
1266 if (!InsertFencesForAtomic) {
1267 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1268 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1269 }
1270 }
1271
1272 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1273
1274 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1275 if (!Subtarget->hasV6Ops()) {
1276 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1277 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1278 }
1279 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1280
1281 if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1282 !Subtarget->isThumb1Only()) {
1283 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1284 // iff target supports vfp2.
1285 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1286 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
1287 }
1288
1289 // We want to custom lower some of our intrinsics.
1290 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1291 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1292 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1293 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1294 if (Subtarget->useSjLjEH())
1295 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1296
1297 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1298 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1299 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1300 setOperationAction(ISD::SELECT, MVT::i32, Custom);
1301 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1302 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1303 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1304 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1305 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1306 if (Subtarget->hasFullFP16()) {
1307 setOperationAction(ISD::SETCC, MVT::f16, Expand);
1308 setOperationAction(ISD::SELECT, MVT::f16, Custom);
1309 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1310 }
1311
1312 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1313
1314 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1315 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1316 if (Subtarget->hasFullFP16())
1317 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1318 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1319 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1320 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1321
1322 // We don't support sin/cos/fmod/copysign/pow
1323 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1324 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1325 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1326 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1327 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1328 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1329 setOperationAction(ISD::FREM, MVT::f64, Expand);
1330 setOperationAction(ISD::FREM, MVT::f32, Expand);
1331 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1332 !Subtarget->isThumb1Only()) {
1333 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1334 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1335 }
1336 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1337 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1338
1339 if (!Subtarget->hasVFP4Base()) {
1340 setOperationAction(ISD::FMA, MVT::f64, Expand);
1341 setOperationAction(ISD::FMA, MVT::f32, Expand);
1342 }
1343
1344 // Various VFP goodness
1345 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1346 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1347 if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1348 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1349 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1350 }
1351
1352 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1353 if (!Subtarget->hasFP16()) {
1354 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1355 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1356 }
1357
1358 // Strict floating-point comparisons need custom lowering.
1359 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
1360 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1361 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
1362 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1363 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
1364 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1365 }
1366
1367 // Use __sincos_stret if available.
1368 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1369 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1370 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1371 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1372 }
1373
1374 // FP-ARMv8 implements a lot of rounding-like FP operations.
1375 if (Subtarget->hasFPARMv8Base()) {
1376 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1377 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1378 setOperationAction(ISD::FROUND, MVT::f32, Legal);
1379 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1380 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1381 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1382 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1383 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1384 if (Subtarget->hasNEON()) {
1385 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1386 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1387 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1388 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1389 }
1390
1391 if (Subtarget->hasFP64()) {
1392 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1393 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1394 setOperationAction(ISD::FROUND, MVT::f64, Legal);
1395 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1396 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1397 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1398 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1399 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1400 }
1401 }
1402
1403 // FP16 often need to be promoted to call lib functions
1404 if (Subtarget->hasFullFP16()) {
1405 setOperationAction(ISD::FREM, MVT::f16, Promote);
1406 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1407 setOperationAction(ISD::FSIN, MVT::f16, Promote);
1408 setOperationAction(ISD::FCOS, MVT::f16, Promote);
1409 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1410 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1411 setOperationAction(ISD::FPOW, MVT::f16, Promote);
1412 setOperationAction(ISD::FEXP, MVT::f16, Promote);
1413 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1414 setOperationAction(ISD::FLOG, MVT::f16, Promote);
1415 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1416 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1417
1418 setOperationAction(ISD::FROUND, MVT::f16, Legal);
1419 }
1420
1421 if (Subtarget->hasNEON()) {
1422 // vmin and vmax aren't available in a scalar form, so we use
1423 // a NEON instruction with an undef lane instead.
1424 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1425 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1426 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1427 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1428 setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1429 setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1430 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1431 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1432
1433 if (Subtarget->hasFullFP16()) {
1434 setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1435 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1436 setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1437 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1438
1439 setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1440 setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1441 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1442 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1443 }
1444 }
1445
1446 // We have target-specific dag combine patterns for the following nodes:
1447 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1448 setTargetDAGCombine(ISD::ADD);
1449 setTargetDAGCombine(ISD::SUB);
1450 setTargetDAGCombine(ISD::MUL);
1451 setTargetDAGCombine(ISD::AND);
1452 setTargetDAGCombine(ISD::OR);
1453 setTargetDAGCombine(ISD::XOR);
1454
1455 if (Subtarget->hasV6Ops())
1456 setTargetDAGCombine(ISD::SRL);
1457 if (Subtarget->isThumb1Only())
1458 setTargetDAGCombine(ISD::SHL);
1459
1460 setStackPointerRegisterToSaveRestore(ARM::SP);
1461
1462 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1463 !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1464 setSchedulingPreference(Sched::RegPressure);
1465 else
1466 setSchedulingPreference(Sched::Hybrid);
1467
1468 //// temporary - rewrite interface to use type
1469 MaxStoresPerMemset = 8;
1470 MaxStoresPerMemsetOptSize = 4;
1471 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1472 MaxStoresPerMemcpyOptSize = 2;
1473 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1474 MaxStoresPerMemmoveOptSize = 2;
1475
1476 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1477 // are at least 4 bytes aligned.
1478 setMinStackArgumentAlignment(Align(4));
1479
1480 // Prefer likely predicted branches to selects on out-of-order cores.
1481 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1482
1483 setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1484
1485 setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1486
1487 if (Subtarget->isThumb() || Subtarget->isThumb2())
1488 setTargetDAGCombine(ISD::ABS);
1489 }
1490
useSoftFloat() const1491 bool ARMTargetLowering::useSoftFloat() const {
1492 return Subtarget->useSoftFloat();
1493 }
1494
1495 // FIXME: It might make sense to define the representative register class as the
1496 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1497 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1498 // SPR's representative would be DPR_VFP2. This should work well if register
1499 // pressure tracking were modified such that a register use would increment the
1500 // pressure of the register class's representative and all of it's super
1501 // classes' representatives transitively. We have not implemented this because
1502 // of the difficulty prior to coalescing of modeling operand register classes
1503 // due to the common occurrence of cross class copies and subregister insertions
1504 // and extractions.
1505 std::pair<const TargetRegisterClass *, uint8_t>
findRepresentativeClass(const TargetRegisterInfo * TRI,MVT VT) const1506 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1507 MVT VT) const {
1508 const TargetRegisterClass *RRC = nullptr;
1509 uint8_t Cost = 1;
1510 switch (VT.SimpleTy) {
1511 default:
1512 return TargetLowering::findRepresentativeClass(TRI, VT);
1513 // Use DPR as representative register class for all floating point
1514 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1515 // the cost is 1 for both f32 and f64.
1516 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1517 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1518 RRC = &ARM::DPRRegClass;
1519 // When NEON is used for SP, only half of the register file is available
1520 // because operations that define both SP and DP results will be constrained
1521 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1522 // coalescing by double-counting the SP regs. See the FIXME above.
1523 if (Subtarget->useNEONForSinglePrecisionFP())
1524 Cost = 2;
1525 break;
1526 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1527 case MVT::v4f32: case MVT::v2f64:
1528 RRC = &ARM::DPRRegClass;
1529 Cost = 2;
1530 break;
1531 case MVT::v4i64:
1532 RRC = &ARM::DPRRegClass;
1533 Cost = 4;
1534 break;
1535 case MVT::v8i64:
1536 RRC = &ARM::DPRRegClass;
1537 Cost = 8;
1538 break;
1539 }
1540 return std::make_pair(RRC, Cost);
1541 }
1542
getTargetNodeName(unsigned Opcode) const1543 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1544 switch ((ARMISD::NodeType)Opcode) {
1545 case ARMISD::FIRST_NUMBER: break;
1546 case ARMISD::Wrapper: return "ARMISD::Wrapper";
1547 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
1548 case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
1549 case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
1550 case ARMISD::CALL: return "ARMISD::CALL";
1551 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
1552 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
1553 case ARMISD::BRCOND: return "ARMISD::BRCOND";
1554 case ARMISD::BR_JT: return "ARMISD::BR_JT";
1555 case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
1556 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
1557 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
1558 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
1559 case ARMISD::CMP: return "ARMISD::CMP";
1560 case ARMISD::CMN: return "ARMISD::CMN";
1561 case ARMISD::CMPZ: return "ARMISD::CMPZ";
1562 case ARMISD::CMPFP: return "ARMISD::CMPFP";
1563 case ARMISD::CMPFPE: return "ARMISD::CMPFPE";
1564 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
1565 case ARMISD::CMPFPEw0: return "ARMISD::CMPFPEw0";
1566 case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
1567 case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
1568
1569 case ARMISD::CMOV: return "ARMISD::CMOV";
1570 case ARMISD::SUBS: return "ARMISD::SUBS";
1571
1572 case ARMISD::SSAT: return "ARMISD::SSAT";
1573 case ARMISD::USAT: return "ARMISD::USAT";
1574
1575 case ARMISD::ASRL: return "ARMISD::ASRL";
1576 case ARMISD::LSRL: return "ARMISD::LSRL";
1577 case ARMISD::LSLL: return "ARMISD::LSLL";
1578
1579 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
1580 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
1581 case ARMISD::RRX: return "ARMISD::RRX";
1582
1583 case ARMISD::ADDC: return "ARMISD::ADDC";
1584 case ARMISD::ADDE: return "ARMISD::ADDE";
1585 case ARMISD::SUBC: return "ARMISD::SUBC";
1586 case ARMISD::SUBE: return "ARMISD::SUBE";
1587 case ARMISD::LSLS: return "ARMISD::LSLS";
1588
1589 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
1590 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
1591 case ARMISD::VMOVhr: return "ARMISD::VMOVhr";
1592 case ARMISD::VMOVrh: return "ARMISD::VMOVrh";
1593 case ARMISD::VMOVSR: return "ARMISD::VMOVSR";
1594
1595 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
1596 case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
1597 case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
1598
1599 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
1600
1601 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
1602
1603 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
1604
1605 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
1606
1607 case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
1608
1609 case ARMISD::WIN__CHKSTK: return "ARMISD::WIN__CHKSTK";
1610 case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
1611
1612 case ARMISD::PREDICATE_CAST: return "ARMISD::PREDICATE_CAST";
1613 case ARMISD::VCMP: return "ARMISD::VCMP";
1614 case ARMISD::VCMPZ: return "ARMISD::VCMPZ";
1615 case ARMISD::VTST: return "ARMISD::VTST";
1616
1617 case ARMISD::VSHLs: return "ARMISD::VSHLs";
1618 case ARMISD::VSHLu: return "ARMISD::VSHLu";
1619 case ARMISD::VSHLIMM: return "ARMISD::VSHLIMM";
1620 case ARMISD::VSHRsIMM: return "ARMISD::VSHRsIMM";
1621 case ARMISD::VSHRuIMM: return "ARMISD::VSHRuIMM";
1622 case ARMISD::VRSHRsIMM: return "ARMISD::VRSHRsIMM";
1623 case ARMISD::VRSHRuIMM: return "ARMISD::VRSHRuIMM";
1624 case ARMISD::VRSHRNIMM: return "ARMISD::VRSHRNIMM";
1625 case ARMISD::VQSHLsIMM: return "ARMISD::VQSHLsIMM";
1626 case ARMISD::VQSHLuIMM: return "ARMISD::VQSHLuIMM";
1627 case ARMISD::VQSHLsuIMM: return "ARMISD::VQSHLsuIMM";
1628 case ARMISD::VQSHRNsIMM: return "ARMISD::VQSHRNsIMM";
1629 case ARMISD::VQSHRNuIMM: return "ARMISD::VQSHRNuIMM";
1630 case ARMISD::VQSHRNsuIMM: return "ARMISD::VQSHRNsuIMM";
1631 case ARMISD::VQRSHRNsIMM: return "ARMISD::VQRSHRNsIMM";
1632 case ARMISD::VQRSHRNuIMM: return "ARMISD::VQRSHRNuIMM";
1633 case ARMISD::VQRSHRNsuIMM: return "ARMISD::VQRSHRNsuIMM";
1634 case ARMISD::VSLIIMM: return "ARMISD::VSLIIMM";
1635 case ARMISD::VSRIIMM: return "ARMISD::VSRIIMM";
1636 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
1637 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
1638 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
1639 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
1640 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
1641 case ARMISD::VDUP: return "ARMISD::VDUP";
1642 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
1643 case ARMISD::VEXT: return "ARMISD::VEXT";
1644 case ARMISD::VREV64: return "ARMISD::VREV64";
1645 case ARMISD::VREV32: return "ARMISD::VREV32";
1646 case ARMISD::VREV16: return "ARMISD::VREV16";
1647 case ARMISD::VZIP: return "ARMISD::VZIP";
1648 case ARMISD::VUZP: return "ARMISD::VUZP";
1649 case ARMISD::VTRN: return "ARMISD::VTRN";
1650 case ARMISD::VTBL1: return "ARMISD::VTBL1";
1651 case ARMISD::VTBL2: return "ARMISD::VTBL2";
1652 case ARMISD::VMOVN: return "ARMISD::VMOVN";
1653 case ARMISD::VMULLs: return "ARMISD::VMULLs";
1654 case ARMISD::VMULLu: return "ARMISD::VMULLu";
1655 case ARMISD::UMAAL: return "ARMISD::UMAAL";
1656 case ARMISD::UMLAL: return "ARMISD::UMLAL";
1657 case ARMISD::SMLAL: return "ARMISD::SMLAL";
1658 case ARMISD::SMLALBB: return "ARMISD::SMLALBB";
1659 case ARMISD::SMLALBT: return "ARMISD::SMLALBT";
1660 case ARMISD::SMLALTB: return "ARMISD::SMLALTB";
1661 case ARMISD::SMLALTT: return "ARMISD::SMLALTT";
1662 case ARMISD::SMULWB: return "ARMISD::SMULWB";
1663 case ARMISD::SMULWT: return "ARMISD::SMULWT";
1664 case ARMISD::SMLALD: return "ARMISD::SMLALD";
1665 case ARMISD::SMLALDX: return "ARMISD::SMLALDX";
1666 case ARMISD::SMLSLD: return "ARMISD::SMLSLD";
1667 case ARMISD::SMLSLDX: return "ARMISD::SMLSLDX";
1668 case ARMISD::SMMLAR: return "ARMISD::SMMLAR";
1669 case ARMISD::SMMLSR: return "ARMISD::SMMLSR";
1670 case ARMISD::QADD16b: return "ARMISD::QADD16b";
1671 case ARMISD::QSUB16b: return "ARMISD::QSUB16b";
1672 case ARMISD::QADD8b: return "ARMISD::QADD8b";
1673 case ARMISD::QSUB8b: return "ARMISD::QSUB8b";
1674 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
1675 case ARMISD::BFI: return "ARMISD::BFI";
1676 case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
1677 case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
1678 case ARMISD::VBSL: return "ARMISD::VBSL";
1679 case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
1680 case ARMISD::VLD1DUP: return "ARMISD::VLD1DUP";
1681 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
1682 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
1683 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
1684 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
1685 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
1686 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
1687 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
1688 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
1689 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
1690 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
1691 case ARMISD::VLD1DUP_UPD: return "ARMISD::VLD1DUP_UPD";
1692 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
1693 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
1694 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
1695 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
1696 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
1697 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
1698 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
1699 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
1700 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
1701 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
1702 case ARMISD::WLS: return "ARMISD::WLS";
1703 case ARMISD::LE: return "ARMISD::LE";
1704 case ARMISD::LOOP_DEC: return "ARMISD::LOOP_DEC";
1705 case ARMISD::CSINV: return "ARMISD::CSINV";
1706 case ARMISD::CSNEG: return "ARMISD::CSNEG";
1707 case ARMISD::CSINC: return "ARMISD::CSINC";
1708 }
1709 return nullptr;
1710 }
1711
getSetCCResultType(const DataLayout & DL,LLVMContext &,EVT VT) const1712 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1713 EVT VT) const {
1714 if (!VT.isVector())
1715 return getPointerTy(DL);
1716
1717 // MVE has a predicate register.
1718 if (Subtarget->hasMVEIntegerOps() &&
1719 (VT == MVT::v4i32 || VT == MVT::v8i16 || VT == MVT::v16i8))
1720 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1721 return VT.changeVectorElementTypeToInteger();
1722 }
1723
1724 /// getRegClassFor - Return the register class that should be used for the
1725 /// specified value type.
1726 const TargetRegisterClass *
getRegClassFor(MVT VT,bool isDivergent) const1727 ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1728 (void)isDivergent;
1729 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1730 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1731 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1732 // MVE Q registers.
1733 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1734 if (VT == MVT::v4i64)
1735 return &ARM::QQPRRegClass;
1736 if (VT == MVT::v8i64)
1737 return &ARM::QQQQPRRegClass;
1738 }
1739 return TargetLowering::getRegClassFor(VT);
1740 }
1741
1742 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1743 // source/dest is aligned and the copy size is large enough. We therefore want
1744 // to align such objects passed to memory intrinsics.
shouldAlignPointerArgs(CallInst * CI,unsigned & MinSize,unsigned & PrefAlign) const1745 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1746 unsigned &PrefAlign) const {
1747 if (!isa<MemIntrinsic>(CI))
1748 return false;
1749 MinSize = 8;
1750 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1751 // cycle faster than 4-byte aligned LDM.
1752 PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
1753 return true;
1754 }
1755
1756 // Create a fast isel object.
1757 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo,const TargetLibraryInfo * libInfo) const1758 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1759 const TargetLibraryInfo *libInfo) const {
1760 return ARM::createFastISel(funcInfo, libInfo);
1761 }
1762
getSchedulingPreference(SDNode * N) const1763 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1764 unsigned NumVals = N->getNumValues();
1765 if (!NumVals)
1766 return Sched::RegPressure;
1767
1768 for (unsigned i = 0; i != NumVals; ++i) {
1769 EVT VT = N->getValueType(i);
1770 if (VT == MVT::Glue || VT == MVT::Other)
1771 continue;
1772 if (VT.isFloatingPoint() || VT.isVector())
1773 return Sched::ILP;
1774 }
1775
1776 if (!N->isMachineOpcode())
1777 return Sched::RegPressure;
1778
1779 // Load are scheduled for latency even if there instruction itinerary
1780 // is not available.
1781 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1782 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1783
1784 if (MCID.getNumDefs() == 0)
1785 return Sched::RegPressure;
1786 if (!Itins->isEmpty() &&
1787 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1788 return Sched::ILP;
1789
1790 return Sched::RegPressure;
1791 }
1792
1793 //===----------------------------------------------------------------------===//
1794 // Lowering Code
1795 //===----------------------------------------------------------------------===//
1796
isSRL16(const SDValue & Op)1797 static bool isSRL16(const SDValue &Op) {
1798 if (Op.getOpcode() != ISD::SRL)
1799 return false;
1800 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1801 return Const->getZExtValue() == 16;
1802 return false;
1803 }
1804
isSRA16(const SDValue & Op)1805 static bool isSRA16(const SDValue &Op) {
1806 if (Op.getOpcode() != ISD::SRA)
1807 return false;
1808 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1809 return Const->getZExtValue() == 16;
1810 return false;
1811 }
1812
isSHL16(const SDValue & Op)1813 static bool isSHL16(const SDValue &Op) {
1814 if (Op.getOpcode() != ISD::SHL)
1815 return false;
1816 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1817 return Const->getZExtValue() == 16;
1818 return false;
1819 }
1820
1821 // Check for a signed 16-bit value. We special case SRA because it makes it
1822 // more simple when also looking for SRAs that aren't sign extending a
1823 // smaller value. Without the check, we'd need to take extra care with
1824 // checking order for some operations.
isS16(const SDValue & Op,SelectionDAG & DAG)1825 static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
1826 if (isSRA16(Op))
1827 return isSHL16(Op.getOperand(0));
1828 return DAG.ComputeNumSignBits(Op) == 17;
1829 }
1830
1831 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
IntCCToARMCC(ISD::CondCode CC)1832 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
1833 switch (CC) {
1834 default: llvm_unreachable("Unknown condition code!");
1835 case ISD::SETNE: return ARMCC::NE;
1836 case ISD::SETEQ: return ARMCC::EQ;
1837 case ISD::SETGT: return ARMCC::GT;
1838 case ISD::SETGE: return ARMCC::GE;
1839 case ISD::SETLT: return ARMCC::LT;
1840 case ISD::SETLE: return ARMCC::LE;
1841 case ISD::SETUGT: return ARMCC::HI;
1842 case ISD::SETUGE: return ARMCC::HS;
1843 case ISD::SETULT: return ARMCC::LO;
1844 case ISD::SETULE: return ARMCC::LS;
1845 }
1846 }
1847
1848 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
FPCCToARMCC(ISD::CondCode CC,ARMCC::CondCodes & CondCode,ARMCC::CondCodes & CondCode2)1849 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
1850 ARMCC::CondCodes &CondCode2) {
1851 CondCode2 = ARMCC::AL;
1852 switch (CC) {
1853 default: llvm_unreachable("Unknown FP condition!");
1854 case ISD::SETEQ:
1855 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
1856 case ISD::SETGT:
1857 case ISD::SETOGT: CondCode = ARMCC::GT; break;
1858 case ISD::SETGE:
1859 case ISD::SETOGE: CondCode = ARMCC::GE; break;
1860 case ISD::SETOLT: CondCode = ARMCC::MI; break;
1861 case ISD::SETOLE: CondCode = ARMCC::LS; break;
1862 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
1863 case ISD::SETO: CondCode = ARMCC::VC; break;
1864 case ISD::SETUO: CondCode = ARMCC::VS; break;
1865 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
1866 case ISD::SETUGT: CondCode = ARMCC::HI; break;
1867 case ISD::SETUGE: CondCode = ARMCC::PL; break;
1868 case ISD::SETLT:
1869 case ISD::SETULT: CondCode = ARMCC::LT; break;
1870 case ISD::SETLE:
1871 case ISD::SETULE: CondCode = ARMCC::LE; break;
1872 case ISD::SETNE:
1873 case ISD::SETUNE: CondCode = ARMCC::NE; break;
1874 }
1875 }
1876
1877 //===----------------------------------------------------------------------===//
1878 // Calling Convention Implementation
1879 //===----------------------------------------------------------------------===//
1880
1881 /// getEffectiveCallingConv - Get the effective calling convention, taking into
1882 /// account presence of floating point hardware and calling convention
1883 /// limitations, such as support for variadic functions.
1884 CallingConv::ID
getEffectiveCallingConv(CallingConv::ID CC,bool isVarArg) const1885 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
1886 bool isVarArg) const {
1887 switch (CC) {
1888 default:
1889 report_fatal_error("Unsupported calling convention");
1890 case CallingConv::ARM_AAPCS:
1891 case CallingConv::ARM_APCS:
1892 case CallingConv::GHC:
1893 case CallingConv::CFGuard_Check:
1894 return CC;
1895 case CallingConv::PreserveMost:
1896 return CallingConv::PreserveMost;
1897 case CallingConv::ARM_AAPCS_VFP:
1898 case CallingConv::Swift:
1899 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
1900 case CallingConv::C:
1901 if (!Subtarget->isAAPCS_ABI())
1902 return CallingConv::ARM_APCS;
1903 else if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() &&
1904 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
1905 !isVarArg)
1906 return CallingConv::ARM_AAPCS_VFP;
1907 else
1908 return CallingConv::ARM_AAPCS;
1909 case CallingConv::Fast:
1910 case CallingConv::CXX_FAST_TLS:
1911 if (!Subtarget->isAAPCS_ABI()) {
1912 if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
1913 return CallingConv::Fast;
1914 return CallingConv::ARM_APCS;
1915 } else if (Subtarget->hasVFP2Base() &&
1916 !Subtarget->isThumb1Only() && !isVarArg)
1917 return CallingConv::ARM_AAPCS_VFP;
1918 else
1919 return CallingConv::ARM_AAPCS;
1920 }
1921 }
1922
CCAssignFnForCall(CallingConv::ID CC,bool isVarArg) const1923 CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1924 bool isVarArg) const {
1925 return CCAssignFnForNode(CC, false, isVarArg);
1926 }
1927
CCAssignFnForReturn(CallingConv::ID CC,bool isVarArg) const1928 CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1929 bool isVarArg) const {
1930 return CCAssignFnForNode(CC, true, isVarArg);
1931 }
1932
1933 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
1934 /// CallingConvention.
CCAssignFnForNode(CallingConv::ID CC,bool Return,bool isVarArg) const1935 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
1936 bool Return,
1937 bool isVarArg) const {
1938 switch (getEffectiveCallingConv(CC, isVarArg)) {
1939 default:
1940 report_fatal_error("Unsupported calling convention");
1941 case CallingConv::ARM_APCS:
1942 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
1943 case CallingConv::ARM_AAPCS:
1944 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1945 case CallingConv::ARM_AAPCS_VFP:
1946 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
1947 case CallingConv::Fast:
1948 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
1949 case CallingConv::GHC:
1950 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
1951 case CallingConv::PreserveMost:
1952 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
1953 case CallingConv::CFGuard_Check:
1954 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
1955 }
1956 }
1957
1958 /// LowerCallResult - Lower the result values of a call into the
1959 /// appropriate copies out of appropriate physical registers.
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,bool isThisReturn,SDValue ThisVal) const1960 SDValue ARMTargetLowering::LowerCallResult(
1961 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1962 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1963 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
1964 SDValue ThisVal) const {
1965 // Assign locations to each value returned by this call.
1966 SmallVector<CCValAssign, 16> RVLocs;
1967 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1968 *DAG.getContext());
1969 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
1970
1971 // Copy all of the result registers out of their specified physreg.
1972 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1973 CCValAssign VA = RVLocs[i];
1974
1975 // Pass 'this' value directly from the argument to return value, to avoid
1976 // reg unit interference
1977 if (i == 0 && isThisReturn) {
1978 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
1979 "unexpected return calling convention register assignment");
1980 InVals.push_back(ThisVal);
1981 continue;
1982 }
1983
1984 SDValue Val;
1985 if (VA.needsCustom()) {
1986 // Handle f64 or half of a v2f64.
1987 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1988 InFlag);
1989 Chain = Lo.getValue(1);
1990 InFlag = Lo.getValue(2);
1991 VA = RVLocs[++i]; // skip ahead to next loc
1992 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
1993 InFlag);
1994 Chain = Hi.getValue(1);
1995 InFlag = Hi.getValue(2);
1996 if (!Subtarget->isLittle())
1997 std::swap (Lo, Hi);
1998 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
1999
2000 if (VA.getLocVT() == MVT::v2f64) {
2001 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2002 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2003 DAG.getConstant(0, dl, MVT::i32));
2004
2005 VA = RVLocs[++i]; // skip ahead to next loc
2006 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2007 Chain = Lo.getValue(1);
2008 InFlag = Lo.getValue(2);
2009 VA = RVLocs[++i]; // skip ahead to next loc
2010 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2011 Chain = Hi.getValue(1);
2012 InFlag = Hi.getValue(2);
2013 if (!Subtarget->isLittle())
2014 std::swap (Lo, Hi);
2015 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2016 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2017 DAG.getConstant(1, dl, MVT::i32));
2018 }
2019 } else {
2020 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2021 InFlag);
2022 Chain = Val.getValue(1);
2023 InFlag = Val.getValue(2);
2024 }
2025
2026 switch (VA.getLocInfo()) {
2027 default: llvm_unreachable("Unknown loc info!");
2028 case CCValAssign::Full: break;
2029 case CCValAssign::BCvt:
2030 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2031 break;
2032 }
2033
2034 InVals.push_back(Val);
2035 }
2036
2037 return Chain;
2038 }
2039
2040 /// LowerMemOpCallTo - Store the argument to the stack.
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,const SDLoc & dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const2041 SDValue ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, SDValue StackPtr,
2042 SDValue Arg, const SDLoc &dl,
2043 SelectionDAG &DAG,
2044 const CCValAssign &VA,
2045 ISD::ArgFlagsTy Flags) const {
2046 unsigned LocMemOffset = VA.getLocMemOffset();
2047 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2048 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2049 StackPtr, PtrOff);
2050 return DAG.getStore(
2051 Chain, dl, Arg, PtrOff,
2052 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset));
2053 }
2054
PassF64ArgInRegs(const SDLoc & dl,SelectionDAG & DAG,SDValue Chain,SDValue & Arg,RegsToPassVector & RegsToPass,CCValAssign & VA,CCValAssign & NextVA,SDValue & StackPtr,SmallVectorImpl<SDValue> & MemOpChains,ISD::ArgFlagsTy Flags) const2055 void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2056 SDValue Chain, SDValue &Arg,
2057 RegsToPassVector &RegsToPass,
2058 CCValAssign &VA, CCValAssign &NextVA,
2059 SDValue &StackPtr,
2060 SmallVectorImpl<SDValue> &MemOpChains,
2061 ISD::ArgFlagsTy Flags) const {
2062 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2063 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2064 unsigned id = Subtarget->isLittle() ? 0 : 1;
2065 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2066
2067 if (NextVA.isRegLoc())
2068 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2069 else {
2070 assert(NextVA.isMemLoc());
2071 if (!StackPtr.getNode())
2072 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2073 getPointerTy(DAG.getDataLayout()));
2074
2075 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
2076 dl, DAG, NextVA,
2077 Flags));
2078 }
2079 }
2080
2081 /// LowerCall - Lowering a call into a callseq_start <-
2082 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2083 /// nodes.
2084 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const2085 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2086 SmallVectorImpl<SDValue> &InVals) const {
2087 SelectionDAG &DAG = CLI.DAG;
2088 SDLoc &dl = CLI.DL;
2089 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2090 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2091 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2092 SDValue Chain = CLI.Chain;
2093 SDValue Callee = CLI.Callee;
2094 bool &isTailCall = CLI.IsTailCall;
2095 CallingConv::ID CallConv = CLI.CallConv;
2096 bool doesNotRet = CLI.DoesNotReturn;
2097 bool isVarArg = CLI.IsVarArg;
2098
2099 MachineFunction &MF = DAG.getMachineFunction();
2100 MachineFunction::CallSiteInfo CSInfo;
2101 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2102 bool isThisReturn = false;
2103 bool PreferIndirect = false;
2104
2105 // Disable tail calls if they're not supported.
2106 if (!Subtarget->supportsTailCall())
2107 isTailCall = false;
2108
2109 if (isa<GlobalAddressSDNode>(Callee)) {
2110 // If we're optimizing for minimum size and the function is called three or
2111 // more times in this block, we can improve codesize by calling indirectly
2112 // as BLXr has a 16-bit encoding.
2113 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2114 if (CLI.CS) {
2115 auto *BB = CLI.CS.getParent();
2116 PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2117 count_if(GV->users(), [&BB](const User *U) {
2118 return isa<Instruction>(U) &&
2119 cast<Instruction>(U)->getParent() == BB;
2120 }) > 2;
2121 }
2122 }
2123 if (isTailCall) {
2124 // Check if it's really possible to do a tail call.
2125 isTailCall = IsEligibleForTailCallOptimization(
2126 Callee, CallConv, isVarArg, isStructRet,
2127 MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2128 PreferIndirect);
2129 if (!isTailCall && CLI.CS && CLI.CS.isMustTailCall())
2130 report_fatal_error("failed to perform tail call elimination on a call "
2131 "site marked musttail");
2132 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2133 // detected sibcalls.
2134 if (isTailCall)
2135 ++NumTailCalls;
2136 }
2137
2138 // Analyze operands of the call, assigning locations to each operand.
2139 SmallVector<CCValAssign, 16> ArgLocs;
2140 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2141 *DAG.getContext());
2142 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2143
2144 // Get a count of how many bytes are to be pushed on the stack.
2145 unsigned NumBytes = CCInfo.getNextStackOffset();
2146
2147 if (isTailCall) {
2148 // For tail calls, memory operands are available in our caller's stack.
2149 NumBytes = 0;
2150 } else {
2151 // Adjust the stack pointer for the new arguments...
2152 // These operations are automatically eliminated by the prolog/epilog pass
2153 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
2154 }
2155
2156 SDValue StackPtr =
2157 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2158
2159 RegsToPassVector RegsToPass;
2160 SmallVector<SDValue, 8> MemOpChains;
2161
2162 // Walk the register/memloc assignments, inserting copies/loads. In the case
2163 // of tail call optimization, arguments are handled later.
2164 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2165 i != e;
2166 ++i, ++realArgIdx) {
2167 CCValAssign &VA = ArgLocs[i];
2168 SDValue Arg = OutVals[realArgIdx];
2169 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2170 bool isByVal = Flags.isByVal();
2171
2172 // Promote the value if needed.
2173 switch (VA.getLocInfo()) {
2174 default: llvm_unreachable("Unknown loc info!");
2175 case CCValAssign::Full: break;
2176 case CCValAssign::SExt:
2177 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2178 break;
2179 case CCValAssign::ZExt:
2180 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2181 break;
2182 case CCValAssign::AExt:
2183 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2184 break;
2185 case CCValAssign::BCvt:
2186 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2187 break;
2188 }
2189
2190 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2191 if (VA.needsCustom()) {
2192 if (VA.getLocVT() == MVT::v2f64) {
2193 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2194 DAG.getConstant(0, dl, MVT::i32));
2195 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2196 DAG.getConstant(1, dl, MVT::i32));
2197
2198 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
2199 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2200
2201 VA = ArgLocs[++i]; // skip ahead to next loc
2202 if (VA.isRegLoc()) {
2203 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
2204 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
2205 } else {
2206 assert(VA.isMemLoc());
2207
2208 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
2209 dl, DAG, VA, Flags));
2210 }
2211 } else {
2212 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2213 StackPtr, MemOpChains, Flags);
2214 }
2215 } else if (VA.isRegLoc()) {
2216 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2217 Outs[0].VT == MVT::i32) {
2218 assert(VA.getLocVT() == MVT::i32 &&
2219 "unexpected calling convention register assignment");
2220 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
2221 "unexpected use of 'returned'");
2222 isThisReturn = true;
2223 }
2224 const TargetOptions &Options = DAG.getTarget().Options;
2225 if (Options.EnableDebugEntryValues)
2226 CSInfo.emplace_back(VA.getLocReg(), i);
2227 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2228 } else if (isByVal) {
2229 assert(VA.isMemLoc());
2230 unsigned offset = 0;
2231
2232 // True if this byval aggregate will be split between registers
2233 // and memory.
2234 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2235 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2236
2237 if (CurByValIdx < ByValArgsCount) {
2238
2239 unsigned RegBegin, RegEnd;
2240 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2241
2242 EVT PtrVT =
2243 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2244 unsigned int i, j;
2245 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2246 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2247 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2248 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
2249 MachinePointerInfo(),
2250 DAG.InferPtrAlignment(AddArg));
2251 MemOpChains.push_back(Load.getValue(1));
2252 RegsToPass.push_back(std::make_pair(j, Load));
2253 }
2254
2255 // If parameter size outsides register area, "offset" value
2256 // helps us to calculate stack slot for remained part properly.
2257 offset = RegEnd - RegBegin;
2258
2259 CCInfo.nextInRegsParam();
2260 }
2261
2262 if (Flags.getByValSize() > 4*offset) {
2263 auto PtrVT = getPointerTy(DAG.getDataLayout());
2264 unsigned LocMemOffset = VA.getLocMemOffset();
2265 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
2266 SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
2267 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2268 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2269 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2270 MVT::i32);
2271 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
2272 MVT::i32);
2273
2274 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2275 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2276 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2277 Ops));
2278 }
2279 } else if (!isTailCall) {
2280 assert(VA.isMemLoc());
2281
2282 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2283 dl, DAG, VA, Flags));
2284 }
2285 }
2286
2287 if (!MemOpChains.empty())
2288 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2289
2290 // Build a sequence of copy-to-reg nodes chained together with token chain
2291 // and flag operands which copy the outgoing args into the appropriate regs.
2292 SDValue InFlag;
2293 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2294 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2295 RegsToPass[i].second, InFlag);
2296 InFlag = Chain.getValue(1);
2297 }
2298
2299 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2300 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2301 // node so that legalize doesn't hack it.
2302 bool isDirect = false;
2303
2304 const TargetMachine &TM = getTargetMachine();
2305 const Module *Mod = MF.getFunction().getParent();
2306 const GlobalValue *GV = nullptr;
2307 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2308 GV = G->getGlobal();
2309 bool isStub =
2310 !TM.shouldAssumeDSOLocal(*Mod, GV) && Subtarget->isTargetMachO();
2311
2312 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2313 bool isLocalARMFunc = false;
2314 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2315 auto PtrVt = getPointerTy(DAG.getDataLayout());
2316
2317 if (Subtarget->genLongCalls()) {
2318 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&
2319 "long-calls codegen is not position independent!");
2320 // Handle a global address or an external symbol. If it's not one of
2321 // those, the target's already in a register, so we don't need to do
2322 // anything extra.
2323 if (isa<GlobalAddressSDNode>(Callee)) {
2324 // Create a constant pool entry for the callee address
2325 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2326 ARMConstantPoolValue *CPV =
2327 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
2328
2329 // Get the address of the callee into a register
2330 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2331 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2332 Callee = DAG.getLoad(
2333 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2334 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2335 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2336 const char *Sym = S->getSymbol();
2337
2338 // Create a constant pool entry for the callee address
2339 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2340 ARMConstantPoolValue *CPV =
2341 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2342 ARMPCLabelIndex, 0);
2343 // Get the address of the callee into a register
2344 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2345 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2346 Callee = DAG.getLoad(
2347 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2348 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2349 }
2350 } else if (isa<GlobalAddressSDNode>(Callee)) {
2351 if (!PreferIndirect) {
2352 isDirect = true;
2353 bool isDef = GV->isStrongDefinitionForLinker();
2354
2355 // ARM call to a local ARM function is predicable.
2356 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2357 // tBX takes a register source operand.
2358 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2359 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
2360 Callee = DAG.getNode(
2361 ARMISD::WrapperPIC, dl, PtrVt,
2362 DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2363 Callee = DAG.getLoad(
2364 PtrVt, dl, DAG.getEntryNode(), Callee,
2365 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
2366 /* Alignment = */ 0, MachineMemOperand::MODereferenceable |
2367 MachineMemOperand::MOInvariant);
2368 } else if (Subtarget->isTargetCOFF()) {
2369 assert(Subtarget->isTargetWindows() &&
2370 "Windows is the only supported COFF target");
2371 unsigned TargetFlags = ARMII::MO_NO_FLAG;
2372 if (GV->hasDLLImportStorageClass())
2373 TargetFlags = ARMII::MO_DLLIMPORT;
2374 else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
2375 TargetFlags = ARMII::MO_COFFSTUB;
2376 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*offset=*/0,
2377 TargetFlags);
2378 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2379 Callee =
2380 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2381 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2382 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2383 } else {
2384 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, 0);
2385 }
2386 }
2387 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2388 isDirect = true;
2389 // tBX takes a register source operand.
2390 const char *Sym = S->getSymbol();
2391 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2392 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2393 ARMConstantPoolValue *CPV =
2394 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2395 ARMPCLabelIndex, 4);
2396 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
2397 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2398 Callee = DAG.getLoad(
2399 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2400 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2401 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2402 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2403 } else {
2404 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2405 }
2406 }
2407
2408 // FIXME: handle tail calls differently.
2409 unsigned CallOpc;
2410 if (Subtarget->isThumb()) {
2411 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2412 CallOpc = ARMISD::CALL_NOLINK;
2413 else
2414 CallOpc = ARMISD::CALL;
2415 } else {
2416 if (!isDirect && !Subtarget->hasV5TOps())
2417 CallOpc = ARMISD::CALL_NOLINK;
2418 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2419 // Emit regular call when code size is the priority
2420 !Subtarget->hasMinSize())
2421 // "mov lr, pc; b _foo" to avoid confusing the RSP
2422 CallOpc = ARMISD::CALL_NOLINK;
2423 else
2424 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2425 }
2426
2427 std::vector<SDValue> Ops;
2428 Ops.push_back(Chain);
2429 Ops.push_back(Callee);
2430
2431 // Add argument registers to the end of the list so that they are known live
2432 // into the call.
2433 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2434 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2435 RegsToPass[i].second.getValueType()));
2436
2437 // Add a register mask operand representing the call-preserved registers.
2438 if (!isTailCall) {
2439 const uint32_t *Mask;
2440 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2441 if (isThisReturn) {
2442 // For 'this' returns, use the R0-preserving mask if applicable
2443 Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2444 if (!Mask) {
2445 // Set isThisReturn to false if the calling convention is not one that
2446 // allows 'returned' to be modeled in this way, so LowerCallResult does
2447 // not try to pass 'this' straight through
2448 isThisReturn = false;
2449 Mask = ARI->getCallPreservedMask(MF, CallConv);
2450 }
2451 } else
2452 Mask = ARI->getCallPreservedMask(MF, CallConv);
2453
2454 assert(Mask && "Missing call preserved mask for calling convention");
2455 Ops.push_back(DAG.getRegisterMask(Mask));
2456 }
2457
2458 if (InFlag.getNode())
2459 Ops.push_back(InFlag);
2460
2461 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2462 if (isTailCall) {
2463 MF.getFrameInfo().setHasTailCall();
2464 SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2465 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2466 return Ret;
2467 }
2468
2469 // Returns a chain and a flag for retval copy to use.
2470 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2471 InFlag = Chain.getValue(1);
2472 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2473
2474 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
2475 DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
2476 if (!Ins.empty())
2477 InFlag = Chain.getValue(1);
2478
2479 // Handle result values, copying them out of physregs into vregs that we
2480 // return.
2481 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2482 InVals, isThisReturn,
2483 isThisReturn ? OutVals[0] : SDValue());
2484 }
2485
2486 /// HandleByVal - Every parameter *after* a byval parameter is passed
2487 /// on the stack. Remember the next parameter register to allocate,
2488 /// and then confiscate the rest of the parameter registers to insure
2489 /// this.
HandleByVal(CCState * State,unsigned & Size,unsigned Align) const2490 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2491 unsigned Align) const {
2492 // Byval (as with any stack) slots are always at least 4 byte aligned.
2493 Align = std::max(Align, 4U);
2494
2495 unsigned Reg = State->AllocateReg(GPRArgRegs);
2496 if (!Reg)
2497 return;
2498
2499 unsigned AlignInRegs = Align / 4;
2500 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2501 for (unsigned i = 0; i < Waste; ++i)
2502 Reg = State->AllocateReg(GPRArgRegs);
2503
2504 if (!Reg)
2505 return;
2506
2507 unsigned Excess = 4 * (ARM::R4 - Reg);
2508
2509 // Special case when NSAA != SP and parameter size greater than size of
2510 // all remained GPR regs. In that case we can't split parameter, we must
2511 // send it to stack. We also must set NCRN to R4, so waste all
2512 // remained registers.
2513 const unsigned NSAAOffset = State->getNextStackOffset();
2514 if (NSAAOffset != 0 && Size > Excess) {
2515 while (State->AllocateReg(GPRArgRegs))
2516 ;
2517 return;
2518 }
2519
2520 // First register for byval parameter is the first register that wasn't
2521 // allocated before this method call, so it would be "reg".
2522 // If parameter is small enough to be saved in range [reg, r4), then
2523 // the end (first after last) register would be reg + param-size-in-regs,
2524 // else parameter would be splitted between registers and stack,
2525 // end register would be r4 in this case.
2526 unsigned ByValRegBegin = Reg;
2527 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2528 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2529 // Note, first register is allocated in the beginning of function already,
2530 // allocate remained amount of registers we need.
2531 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2532 State->AllocateReg(GPRArgRegs);
2533 // A byval parameter that is split between registers and memory needs its
2534 // size truncated here.
2535 // In the case where the entire structure fits in registers, we set the
2536 // size in memory to zero.
2537 Size = std::max<int>(Size - Excess, 0);
2538 }
2539
2540 /// MatchingStackOffset - Return true if the given stack call argument is
2541 /// already available in the same position (relatively) of the caller's
2542 /// incoming argument stack.
2543 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo & MFI,const MachineRegisterInfo * MRI,const TargetInstrInfo * TII)2544 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2545 MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2546 const TargetInstrInfo *TII) {
2547 unsigned Bytes = Arg.getValueSizeInBits() / 8;
2548 int FI = std::numeric_limits<int>::max();
2549 if (Arg.getOpcode() == ISD::CopyFromReg) {
2550 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2551 if (!Register::isVirtualRegister(VR))
2552 return false;
2553 MachineInstr *Def = MRI->getVRegDef(VR);
2554 if (!Def)
2555 return false;
2556 if (!Flags.isByVal()) {
2557 if (!TII->isLoadFromStackSlot(*Def, FI))
2558 return false;
2559 } else {
2560 return false;
2561 }
2562 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2563 if (Flags.isByVal())
2564 // ByVal argument is passed in as a pointer but it's now being
2565 // dereferenced. e.g.
2566 // define @foo(%struct.X* %A) {
2567 // tail call @bar(%struct.X* byval %A)
2568 // }
2569 return false;
2570 SDValue Ptr = Ld->getBasePtr();
2571 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2572 if (!FINode)
2573 return false;
2574 FI = FINode->getIndex();
2575 } else
2576 return false;
2577
2578 assert(FI != std::numeric_limits<int>::max());
2579 if (!MFI.isFixedObjectIndex(FI))
2580 return false;
2581 return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2582 }
2583
2584 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2585 /// for tail call optimization. Targets which want to do tail call
2586 /// optimization should implement this function.
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG,const bool isIndirect) const2587 bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2588 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2589 bool isCalleeStructRet, bool isCallerStructRet,
2590 const SmallVectorImpl<ISD::OutputArg> &Outs,
2591 const SmallVectorImpl<SDValue> &OutVals,
2592 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2593 const bool isIndirect) const {
2594 MachineFunction &MF = DAG.getMachineFunction();
2595 const Function &CallerF = MF.getFunction();
2596 CallingConv::ID CallerCC = CallerF.getCallingConv();
2597
2598 assert(Subtarget->supportsTailCall());
2599
2600 // Indirect tail calls cannot be optimized for Thumb1 if the args
2601 // to the call take up r0-r3. The reason is that there are no legal registers
2602 // left to hold the pointer to the function to be called.
2603 if (Subtarget->isThumb1Only() && Outs.size() >= 4 &&
2604 (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect))
2605 return false;
2606
2607 // Look for obvious safe cases to perform tail call optimization that do not
2608 // require ABI changes. This is what gcc calls sibcall.
2609
2610 // Exception-handling functions need a special set of instructions to indicate
2611 // a return to the hardware. Tail-calling another function would probably
2612 // break this.
2613 if (CallerF.hasFnAttribute("interrupt"))
2614 return false;
2615
2616 // Also avoid sibcall optimization if either caller or callee uses struct
2617 // return semantics.
2618 if (isCalleeStructRet || isCallerStructRet)
2619 return false;
2620
2621 // Externally-defined functions with weak linkage should not be
2622 // tail-called on ARM when the OS does not support dynamic
2623 // pre-emption of symbols, as the AAELF spec requires normal calls
2624 // to undefined weak functions to be replaced with a NOP or jump to the
2625 // next instruction. The behaviour of branch instructions in this
2626 // situation (as used for tail calls) is implementation-defined, so we
2627 // cannot rely on the linker replacing the tail call with a return.
2628 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2629 const GlobalValue *GV = G->getGlobal();
2630 const Triple &TT = getTargetMachine().getTargetTriple();
2631 if (GV->hasExternalWeakLinkage() &&
2632 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
2633 return false;
2634 }
2635
2636 // Check that the call results are passed in the same way.
2637 LLVMContext &C = *DAG.getContext();
2638 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
2639 CCAssignFnForReturn(CalleeCC, isVarArg),
2640 CCAssignFnForReturn(CallerCC, isVarArg)))
2641 return false;
2642 // The callee has to preserve all registers the caller needs to preserve.
2643 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2644 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2645 if (CalleeCC != CallerCC) {
2646 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2647 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2648 return false;
2649 }
2650
2651 // If Caller's vararg or byval argument has been split between registers and
2652 // stack, do not perform tail call, since part of the argument is in caller's
2653 // local frame.
2654 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
2655 if (AFI_Caller->getArgRegsSaveSize())
2656 return false;
2657
2658 // If the callee takes no arguments then go on to check the results of the
2659 // call.
2660 if (!Outs.empty()) {
2661 // Check if stack adjustment is needed. For now, do not do this if any
2662 // argument is passed on the stack.
2663 SmallVector<CCValAssign, 16> ArgLocs;
2664 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
2665 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
2666 if (CCInfo.getNextStackOffset()) {
2667 // Check if the arguments are already laid out in the right way as
2668 // the caller's fixed stack objects.
2669 MachineFrameInfo &MFI = MF.getFrameInfo();
2670 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2671 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
2672 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2673 i != e;
2674 ++i, ++realArgIdx) {
2675 CCValAssign &VA = ArgLocs[i];
2676 EVT RegVT = VA.getLocVT();
2677 SDValue Arg = OutVals[realArgIdx];
2678 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2679 if (VA.getLocInfo() == CCValAssign::Indirect)
2680 return false;
2681 if (VA.needsCustom()) {
2682 // f64 and vector types are split into multiple registers or
2683 // register/stack-slot combinations. The types will not match
2684 // the registers; give up on memory f64 refs until we figure
2685 // out what to do about this.
2686 if (!VA.isRegLoc())
2687 return false;
2688 if (!ArgLocs[++i].isRegLoc())
2689 return false;
2690 if (RegVT == MVT::v2f64) {
2691 if (!ArgLocs[++i].isRegLoc())
2692 return false;
2693 if (!ArgLocs[++i].isRegLoc())
2694 return false;
2695 }
2696 } else if (!VA.isRegLoc()) {
2697 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2698 MFI, MRI, TII))
2699 return false;
2700 }
2701 }
2702 }
2703
2704 const MachineRegisterInfo &MRI = MF.getRegInfo();
2705 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
2706 return false;
2707 }
2708
2709 return true;
2710 }
2711
2712 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const2713 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
2714 MachineFunction &MF, bool isVarArg,
2715 const SmallVectorImpl<ISD::OutputArg> &Outs,
2716 LLVMContext &Context) const {
2717 SmallVector<CCValAssign, 16> RVLocs;
2718 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
2719 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2720 }
2721
LowerInterruptReturn(SmallVectorImpl<SDValue> & RetOps,const SDLoc & DL,SelectionDAG & DAG)2722 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
2723 const SDLoc &DL, SelectionDAG &DAG) {
2724 const MachineFunction &MF = DAG.getMachineFunction();
2725 const Function &F = MF.getFunction();
2726
2727 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
2728
2729 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
2730 // version of the "preferred return address". These offsets affect the return
2731 // instruction if this is a return from PL1 without hypervisor extensions.
2732 // IRQ/FIQ: +4 "subs pc, lr, #4"
2733 // SWI: 0 "subs pc, lr, #0"
2734 // ABORT: +4 "subs pc, lr, #4"
2735 // UNDEF: +4/+2 "subs pc, lr, #0"
2736 // UNDEF varies depending on where the exception came from ARM or Thumb
2737 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
2738
2739 int64_t LROffset;
2740 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
2741 IntKind == "ABORT")
2742 LROffset = 4;
2743 else if (IntKind == "SWI" || IntKind == "UNDEF")
2744 LROffset = 0;
2745 else
2746 report_fatal_error("Unsupported interrupt attribute. If present, value "
2747 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
2748
2749 RetOps.insert(RetOps.begin() + 1,
2750 DAG.getConstant(LROffset, DL, MVT::i32, false));
2751
2752 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
2753 }
2754
2755 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const2756 ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2757 bool isVarArg,
2758 const SmallVectorImpl<ISD::OutputArg> &Outs,
2759 const SmallVectorImpl<SDValue> &OutVals,
2760 const SDLoc &dl, SelectionDAG &DAG) const {
2761 // CCValAssign - represent the assignment of the return value to a location.
2762 SmallVector<CCValAssign, 16> RVLocs;
2763
2764 // CCState - Info about the registers and stack slots.
2765 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2766 *DAG.getContext());
2767
2768 // Analyze outgoing return values.
2769 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2770
2771 SDValue Flag;
2772 SmallVector<SDValue, 4> RetOps;
2773 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2774 bool isLittleEndian = Subtarget->isLittle();
2775
2776 MachineFunction &MF = DAG.getMachineFunction();
2777 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2778 AFI->setReturnRegsCount(RVLocs.size());
2779
2780 // Copy the result values into the output registers.
2781 for (unsigned i = 0, realRVLocIdx = 0;
2782 i != RVLocs.size();
2783 ++i, ++realRVLocIdx) {
2784 CCValAssign &VA = RVLocs[i];
2785 assert(VA.isRegLoc() && "Can only return in registers!");
2786
2787 SDValue Arg = OutVals[realRVLocIdx];
2788 bool ReturnF16 = false;
2789
2790 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
2791 // Half-precision return values can be returned like this:
2792 //
2793 // t11 f16 = fadd ...
2794 // t12: i16 = bitcast t11
2795 // t13: i32 = zero_extend t12
2796 // t14: f32 = bitcast t13 <~~~~~~~ Arg
2797 //
2798 // to avoid code generation for bitcasts, we simply set Arg to the node
2799 // that produces the f16 value, t11 in this case.
2800 //
2801 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
2802 SDValue ZE = Arg.getOperand(0);
2803 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
2804 SDValue BC = ZE.getOperand(0);
2805 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
2806 Arg = BC.getOperand(0);
2807 ReturnF16 = true;
2808 }
2809 }
2810 }
2811 }
2812
2813 switch (VA.getLocInfo()) {
2814 default: llvm_unreachable("Unknown loc info!");
2815 case CCValAssign::Full: break;
2816 case CCValAssign::BCvt:
2817 if (!ReturnF16)
2818 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2819 break;
2820 }
2821
2822 if (VA.needsCustom()) {
2823 if (VA.getLocVT() == MVT::v2f64) {
2824 // Extract the first half and return it in two registers.
2825 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2826 DAG.getConstant(0, dl, MVT::i32));
2827 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
2828 DAG.getVTList(MVT::i32, MVT::i32), Half);
2829
2830 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2831 HalfGPRs.getValue(isLittleEndian ? 0 : 1),
2832 Flag);
2833 Flag = Chain.getValue(1);
2834 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2835 VA = RVLocs[++i]; // skip ahead to next loc
2836 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2837 HalfGPRs.getValue(isLittleEndian ? 1 : 0),
2838 Flag);
2839 Flag = Chain.getValue(1);
2840 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2841 VA = RVLocs[++i]; // skip ahead to next loc
2842
2843 // Extract the 2nd half and fall through to handle it as an f64 value.
2844 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2845 DAG.getConstant(1, dl, MVT::i32));
2846 }
2847 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
2848 // available.
2849 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2850 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2851 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2852 fmrrd.getValue(isLittleEndian ? 0 : 1),
2853 Flag);
2854 Flag = Chain.getValue(1);
2855 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2856 VA = RVLocs[++i]; // skip ahead to next loc
2857 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
2858 fmrrd.getValue(isLittleEndian ? 1 : 0),
2859 Flag);
2860 } else
2861 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
2862
2863 // Guarantee that all emitted copies are
2864 // stuck together, avoiding something bad.
2865 Flag = Chain.getValue(1);
2866 RetOps.push_back(DAG.getRegister(VA.getLocReg(),
2867 ReturnF16 ? MVT::f16 : VA.getLocVT()));
2868 }
2869 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
2870 const MCPhysReg *I =
2871 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2872 if (I) {
2873 for (; *I; ++I) {
2874 if (ARM::GPRRegClass.contains(*I))
2875 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2876 else if (ARM::DPRRegClass.contains(*I))
2877 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
2878 else
2879 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
2880 }
2881 }
2882
2883 // Update chain and glue.
2884 RetOps[0] = Chain;
2885 if (Flag.getNode())
2886 RetOps.push_back(Flag);
2887
2888 // CPUs which aren't M-class use a special sequence to return from
2889 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
2890 // though we use "subs pc, lr, #N").
2891 //
2892 // M-class CPUs actually use a normal return sequence with a special
2893 // (hardware-provided) value in LR, so the normal code path works.
2894 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
2895 !Subtarget->isMClass()) {
2896 if (Subtarget->isThumb1Only())
2897 report_fatal_error("interrupt attribute is not supported in Thumb1");
2898 return LowerInterruptReturn(RetOps, dl, DAG);
2899 }
2900
2901 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
2902 }
2903
isUsedByReturnOnly(SDNode * N,SDValue & Chain) const2904 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
2905 if (N->getNumValues() != 1)
2906 return false;
2907 if (!N->hasNUsesOfValue(1, 0))
2908 return false;
2909
2910 SDValue TCChain = Chain;
2911 SDNode *Copy = *N->use_begin();
2912 if (Copy->getOpcode() == ISD::CopyToReg) {
2913 // If the copy has a glue operand, we conservatively assume it isn't safe to
2914 // perform a tail call.
2915 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2916 return false;
2917 TCChain = Copy->getOperand(0);
2918 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
2919 SDNode *VMov = Copy;
2920 // f64 returned in a pair of GPRs.
2921 SmallPtrSet<SDNode*, 2> Copies;
2922 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2923 UI != UE; ++UI) {
2924 if (UI->getOpcode() != ISD::CopyToReg)
2925 return false;
2926 Copies.insert(*UI);
2927 }
2928 if (Copies.size() > 2)
2929 return false;
2930
2931 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
2932 UI != UE; ++UI) {
2933 SDValue UseChain = UI->getOperand(0);
2934 if (Copies.count(UseChain.getNode()))
2935 // Second CopyToReg
2936 Copy = *UI;
2937 else {
2938 // We are at the top of this chain.
2939 // If the copy has a glue operand, we conservatively assume it
2940 // isn't safe to perform a tail call.
2941 if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
2942 return false;
2943 // First CopyToReg
2944 TCChain = UseChain;
2945 }
2946 }
2947 } else if (Copy->getOpcode() == ISD::BITCAST) {
2948 // f32 returned in a single GPR.
2949 if (!Copy->hasOneUse())
2950 return false;
2951 Copy = *Copy->use_begin();
2952 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
2953 return false;
2954 // If the copy has a glue operand, we conservatively assume it isn't safe to
2955 // perform a tail call.
2956 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
2957 return false;
2958 TCChain = Copy->getOperand(0);
2959 } else {
2960 return false;
2961 }
2962
2963 bool HasRet = false;
2964 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
2965 UI != UE; ++UI) {
2966 if (UI->getOpcode() != ARMISD::RET_FLAG &&
2967 UI->getOpcode() != ARMISD::INTRET_FLAG)
2968 return false;
2969 HasRet = true;
2970 }
2971
2972 if (!HasRet)
2973 return false;
2974
2975 Chain = TCChain;
2976 return true;
2977 }
2978
mayBeEmittedAsTailCall(const CallInst * CI) const2979 bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2980 if (!Subtarget->supportsTailCall())
2981 return false;
2982
2983 if (!CI->isTailCall())
2984 return false;
2985
2986 return true;
2987 }
2988
2989 // Trying to write a 64 bit value so need to split into two 32 bit values first,
2990 // and pass the lower and high parts through.
LowerWRITE_REGISTER(SDValue Op,SelectionDAG & DAG)2991 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
2992 SDLoc DL(Op);
2993 SDValue WriteValue = Op->getOperand(2);
2994
2995 // This function is only supposed to be called for i64 type argument.
2996 assert(WriteValue.getValueType() == MVT::i64
2997 && "LowerWRITE_REGISTER called for non-i64 type argument.");
2998
2999 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3000 DAG.getConstant(0, DL, MVT::i32));
3001 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3002 DAG.getConstant(1, DL, MVT::i32));
3003 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3004 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3005 }
3006
3007 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3008 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3009 // one of the above mentioned nodes. It has to be wrapped because otherwise
3010 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3011 // be used to form addressing mode. These wrapped nodes will be selected
3012 // into MOVi.
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const3013 SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3014 SelectionDAG &DAG) const {
3015 EVT PtrVT = Op.getValueType();
3016 // FIXME there is no actual debug info here
3017 SDLoc dl(Op);
3018 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3019 SDValue Res;
3020
3021 // When generating execute-only code Constant Pools must be promoted to the
3022 // global data section. It's a bit ugly that we can't share them across basic
3023 // blocks, but this way we guarantee that execute-only behaves correct with
3024 // position-independent addressing modes.
3025 if (Subtarget->genExecuteOnly()) {
3026 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3027 auto T = const_cast<Type*>(CP->getType());
3028 auto C = const_cast<Constant*>(CP->getConstVal());
3029 auto M = const_cast<Module*>(DAG.getMachineFunction().
3030 getFunction().getParent());
3031 auto GV = new GlobalVariable(
3032 *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3033 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3034 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3035 Twine(AFI->createPICLabelUId())
3036 );
3037 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3038 dl, PtrVT);
3039 return LowerGlobalAddress(GA, DAG);
3040 }
3041
3042 if (CP->isMachineConstantPoolEntry())
3043 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
3044 CP->getAlignment());
3045 else
3046 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
3047 CP->getAlignment());
3048 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3049 }
3050
getJumpTableEncoding() const3051 unsigned ARMTargetLowering::getJumpTableEncoding() const {
3052 return MachineJumpTableInfo::EK_Inline;
3053 }
3054
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const3055 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3056 SelectionDAG &DAG) const {
3057 MachineFunction &MF = DAG.getMachineFunction();
3058 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3059 unsigned ARMPCLabelIndex = 0;
3060 SDLoc DL(Op);
3061 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3062 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3063 SDValue CPAddr;
3064 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3065 if (!IsPositionIndependent) {
3066 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
3067 } else {
3068 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3069 ARMPCLabelIndex = AFI->createPICLabelUId();
3070 ARMConstantPoolValue *CPV =
3071 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3072 ARMCP::CPBlockAddress, PCAdj);
3073 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3074 }
3075 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3076 SDValue Result = DAG.getLoad(
3077 PtrVT, DL, DAG.getEntryNode(), CPAddr,
3078 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3079 if (!IsPositionIndependent)
3080 return Result;
3081 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3082 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3083 }
3084
3085 /// Convert a TLS address reference into the correct sequence of loads
3086 /// and calls to compute the variable's address for Darwin, and return an
3087 /// SDValue containing the final node.
3088
3089 /// Darwin only has one TLS scheme which must be capable of dealing with the
3090 /// fully general situation, in the worst case. This means:
3091 /// + "extern __thread" declaration.
3092 /// + Defined in a possibly unknown dynamic library.
3093 ///
3094 /// The general system is that each __thread variable has a [3 x i32] descriptor
3095 /// which contains information used by the runtime to calculate the address. The
3096 /// only part of this the compiler needs to know about is the first word, which
3097 /// contains a function pointer that must be called with the address of the
3098 /// entire descriptor in "r0".
3099 ///
3100 /// Since this descriptor may be in a different unit, in general access must
3101 /// proceed along the usual ARM rules. A common sequence to produce is:
3102 ///
3103 /// movw rT1, :lower16:_var$non_lazy_ptr
3104 /// movt rT1, :upper16:_var$non_lazy_ptr
3105 /// ldr r0, [rT1]
3106 /// ldr rT2, [r0]
3107 /// blx rT2
3108 /// [...address now in r0...]
3109 SDValue
LowerGlobalTLSAddressDarwin(SDValue Op,SelectionDAG & DAG) const3110 ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3111 SelectionDAG &DAG) const {
3112 assert(Subtarget->isTargetDarwin() &&
3113 "This function expects a Darwin target");
3114 SDLoc DL(Op);
3115
3116 // First step is to get the address of the actua global symbol. This is where
3117 // the TLS descriptor lives.
3118 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3119
3120 // The first entry in the descriptor is a function pointer that we must call
3121 // to obtain the address of the variable.
3122 SDValue Chain = DAG.getEntryNode();
3123 SDValue FuncTLVGet = DAG.getLoad(
3124 MVT::i32, DL, Chain, DescAddr,
3125 MachinePointerInfo::getGOT(DAG.getMachineFunction()),
3126 /* Alignment = */ 4,
3127 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3128 MachineMemOperand::MOInvariant);
3129 Chain = FuncTLVGet.getValue(1);
3130
3131 MachineFunction &F = DAG.getMachineFunction();
3132 MachineFrameInfo &MFI = F.getFrameInfo();
3133 MFI.setAdjustsStack(true);
3134
3135 // TLS calls preserve all registers except those that absolutely must be
3136 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3137 // silly).
3138 auto TRI =
3139 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3140 auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3141 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3142
3143 // Finally, we can make the call. This is just a degenerate version of a
3144 // normal AArch64 call node: r0 takes the address of the descriptor, and
3145 // returns the address of the variable in this thread.
3146 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3147 Chain =
3148 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3149 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3150 DAG.getRegisterMask(Mask), Chain.getValue(1));
3151 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3152 }
3153
3154 SDValue
LowerGlobalTLSAddressWindows(SDValue Op,SelectionDAG & DAG) const3155 ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3156 SelectionDAG &DAG) const {
3157 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering");
3158
3159 SDValue Chain = DAG.getEntryNode();
3160 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3161 SDLoc DL(Op);
3162
3163 // Load the current TEB (thread environment block)
3164 SDValue Ops[] = {Chain,
3165 DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3166 DAG.getTargetConstant(15, DL, MVT::i32),
3167 DAG.getTargetConstant(0, DL, MVT::i32),
3168 DAG.getTargetConstant(13, DL, MVT::i32),
3169 DAG.getTargetConstant(0, DL, MVT::i32),
3170 DAG.getTargetConstant(2, DL, MVT::i32)};
3171 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3172 DAG.getVTList(MVT::i32, MVT::Other), Ops);
3173
3174 SDValue TEB = CurrentTEB.getValue(0);
3175 Chain = CurrentTEB.getValue(1);
3176
3177 // Load the ThreadLocalStoragePointer from the TEB
3178 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3179 SDValue TLSArray =
3180 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3181 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3182
3183 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3184 // offset into the TLSArray.
3185
3186 // Load the TLS index from the C runtime
3187 SDValue TLSIndex =
3188 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3189 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3190 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3191
3192 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3193 DAG.getConstant(2, DL, MVT::i32));
3194 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3195 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3196 MachinePointerInfo());
3197
3198 // Get the offset of the start of the .tls section (section base)
3199 const auto *GA = cast<GlobalAddressSDNode>(Op);
3200 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3201 SDValue Offset = DAG.getLoad(
3202 PtrVT, DL, Chain, DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3203 DAG.getTargetConstantPool(CPV, PtrVT, 4)),
3204 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3205
3206 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3207 }
3208
3209 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
3210 SDValue
LowerToTLSGeneralDynamicModel(GlobalAddressSDNode * GA,SelectionDAG & DAG) const3211 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3212 SelectionDAG &DAG) const {
3213 SDLoc dl(GA);
3214 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3215 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3216 MachineFunction &MF = DAG.getMachineFunction();
3217 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3218 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3219 ARMConstantPoolValue *CPV =
3220 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3221 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3222 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3223 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3224 Argument = DAG.getLoad(
3225 PtrVT, dl, DAG.getEntryNode(), Argument,
3226 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3227 SDValue Chain = Argument.getValue(1);
3228
3229 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3230 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3231
3232 // call __tls_get_addr.
3233 ArgListTy Args;
3234 ArgListEntry Entry;
3235 Entry.Node = Argument;
3236 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3237 Args.push_back(Entry);
3238
3239 // FIXME: is there useful debug info available here?
3240 TargetLowering::CallLoweringInfo CLI(DAG);
3241 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3242 CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3243 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3244
3245 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3246 return CallResult.first;
3247 }
3248
3249 // Lower ISD::GlobalTLSAddress using the "initial exec" or
3250 // "local exec" model.
3251 SDValue
LowerToTLSExecModels(GlobalAddressSDNode * GA,SelectionDAG & DAG,TLSModel::Model model) const3252 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3253 SelectionDAG &DAG,
3254 TLSModel::Model model) const {
3255 const GlobalValue *GV = GA->getGlobal();
3256 SDLoc dl(GA);
3257 SDValue Offset;
3258 SDValue Chain = DAG.getEntryNode();
3259 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3260 // Get the Thread Pointer
3261 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3262
3263 if (model == TLSModel::InitialExec) {
3264 MachineFunction &MF = DAG.getMachineFunction();
3265 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3266 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3267 // Initial exec model.
3268 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3269 ARMConstantPoolValue *CPV =
3270 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3271 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3272 true);
3273 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3274 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3275 Offset = DAG.getLoad(
3276 PtrVT, dl, Chain, Offset,
3277 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3278 Chain = Offset.getValue(1);
3279
3280 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3281 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3282
3283 Offset = DAG.getLoad(
3284 PtrVT, dl, Chain, Offset,
3285 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3286 } else {
3287 // local exec model
3288 assert(model == TLSModel::LocalExec);
3289 ARMConstantPoolValue *CPV =
3290 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3291 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3292 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3293 Offset = DAG.getLoad(
3294 PtrVT, dl, Chain, Offset,
3295 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3296 }
3297
3298 // The address of the thread local variable is the add of the thread
3299 // pointer with the offset of the variable.
3300 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3301 }
3302
3303 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3304 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3305 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3306 if (DAG.getTarget().useEmulatedTLS())
3307 return LowerToTLSEmulatedModel(GA, DAG);
3308
3309 if (Subtarget->isTargetDarwin())
3310 return LowerGlobalTLSAddressDarwin(Op, DAG);
3311
3312 if (Subtarget->isTargetWindows())
3313 return LowerGlobalTLSAddressWindows(Op, DAG);
3314
3315 // TODO: implement the "local dynamic" model
3316 assert(Subtarget->isTargetELF() && "Only ELF implemented here");
3317 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3318
3319 switch (model) {
3320 case TLSModel::GeneralDynamic:
3321 case TLSModel::LocalDynamic:
3322 return LowerToTLSGeneralDynamicModel(GA, DAG);
3323 case TLSModel::InitialExec:
3324 case TLSModel::LocalExec:
3325 return LowerToTLSExecModels(GA, DAG, model);
3326 }
3327 llvm_unreachable("bogus TLS model");
3328 }
3329
3330 /// Return true if all users of V are within function F, looking through
3331 /// ConstantExprs.
allUsersAreInFunction(const Value * V,const Function * F)3332 static bool allUsersAreInFunction(const Value *V, const Function *F) {
3333 SmallVector<const User*,4> Worklist;
3334 for (auto *U : V->users())
3335 Worklist.push_back(U);
3336 while (!Worklist.empty()) {
3337 auto *U = Worklist.pop_back_val();
3338 if (isa<ConstantExpr>(U)) {
3339 for (auto *UU : U->users())
3340 Worklist.push_back(UU);
3341 continue;
3342 }
3343
3344 auto *I = dyn_cast<Instruction>(U);
3345 if (!I || I->getParent()->getParent() != F)
3346 return false;
3347 }
3348 return true;
3349 }
3350
promoteToConstantPool(const ARMTargetLowering * TLI,const GlobalValue * GV,SelectionDAG & DAG,EVT PtrVT,const SDLoc & dl)3351 static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3352 const GlobalValue *GV, SelectionDAG &DAG,
3353 EVT PtrVT, const SDLoc &dl) {
3354 // If we're creating a pool entry for a constant global with unnamed address,
3355 // and the global is small enough, we can emit it inline into the constant pool
3356 // to save ourselves an indirection.
3357 //
3358 // This is a win if the constant is only used in one function (so it doesn't
3359 // need to be duplicated) or duplicating the constant wouldn't increase code
3360 // size (implying the constant is no larger than 4 bytes).
3361 const Function &F = DAG.getMachineFunction().getFunction();
3362
3363 // We rely on this decision to inline being idemopotent and unrelated to the
3364 // use-site. We know that if we inline a variable at one use site, we'll
3365 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3366 // doesn't know about this optimization, so bail out if it's enabled else
3367 // we could decide to inline here (and thus never emit the GV) but require
3368 // the GV from fast-isel generated code.
3369 if (!EnableConstpoolPromotion ||
3370 DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3371 return SDValue();
3372
3373 auto *GVar = dyn_cast<GlobalVariable>(GV);
3374 if (!GVar || !GVar->hasInitializer() ||
3375 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3376 !GVar->hasLocalLinkage())
3377 return SDValue();
3378
3379 // If we inline a value that contains relocations, we move the relocations
3380 // from .data to .text. This is not allowed in position-independent code.
3381 auto *Init = GVar->getInitializer();
3382 if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3383 Init->needsRelocation())
3384 return SDValue();
3385
3386 // The constant islands pass can only really deal with alignment requests
3387 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3388 // any type wanting greater alignment requirements than 4 bytes. We also
3389 // can only promote constants that are multiples of 4 bytes in size or
3390 // are paddable to a multiple of 4. Currently we only try and pad constants
3391 // that are strings for simplicity.
3392 auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3393 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3394 unsigned Align = DAG.getDataLayout().getPreferredAlignment(GVar);
3395 unsigned RequiredPadding = 4 - (Size % 4);
3396 bool PaddingPossible =
3397 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3398 if (!PaddingPossible || Align > 4 || Size > ConstpoolPromotionMaxSize ||
3399 Size == 0)
3400 return SDValue();
3401
3402 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3403 MachineFunction &MF = DAG.getMachineFunction();
3404 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3405
3406 // We can't bloat the constant pool too much, else the ConstantIslands pass
3407 // may fail to converge. If we haven't promoted this global yet (it may have
3408 // multiple uses), and promoting it would increase the constant pool size (Sz
3409 // > 4), ensure we have space to do so up to MaxTotal.
3410 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3411 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3412 ConstpoolPromotionMaxTotal)
3413 return SDValue();
3414
3415 // This is only valid if all users are in a single function; we can't clone
3416 // the constant in general. The LLVM IR unnamed_addr allows merging
3417 // constants, but not cloning them.
3418 //
3419 // We could potentially allow cloning if we could prove all uses of the
3420 // constant in the current function don't care about the address, like
3421 // printf format strings. But that isn't implemented for now.
3422 if (!allUsersAreInFunction(GVar, &F))
3423 return SDValue();
3424
3425 // We're going to inline this global. Pad it out if needed.
3426 if (RequiredPadding != 4) {
3427 StringRef S = CDAInit->getAsString();
3428
3429 SmallVector<uint8_t,16> V(S.size());
3430 std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3431 while (RequiredPadding--)
3432 V.push_back(0);
3433 Init = ConstantDataArray::get(*DAG.getContext(), V);
3434 }
3435
3436 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3437 SDValue CPAddr =
3438 DAG.getTargetConstantPool(CPVal, PtrVT, /*Align=*/4);
3439 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3440 AFI->markGlobalAsPromotedToConstantPool(GVar);
3441 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3442 PaddedSize - 4);
3443 }
3444 ++NumConstpoolPromoted;
3445 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3446 }
3447
isReadOnly(const GlobalValue * GV) const3448 bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3449 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3450 if (!(GV = GA->getBaseObject()))
3451 return false;
3452 if (const auto *V = dyn_cast<GlobalVariable>(GV))
3453 return V->isConstant();
3454 return isa<Function>(GV);
3455 }
3456
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3457 SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3458 SelectionDAG &DAG) const {
3459 switch (Subtarget->getTargetTriple().getObjectFormat()) {
3460 default: llvm_unreachable("unknown object format");
3461 case Triple::COFF:
3462 return LowerGlobalAddressWindows(Op, DAG);
3463 case Triple::ELF:
3464 return LowerGlobalAddressELF(Op, DAG);
3465 case Triple::MachO:
3466 return LowerGlobalAddressDarwin(Op, DAG);
3467 }
3468 }
3469
LowerGlobalAddressELF(SDValue Op,SelectionDAG & DAG) const3470 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3471 SelectionDAG &DAG) const {
3472 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3473 SDLoc dl(Op);
3474 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3475 const TargetMachine &TM = getTargetMachine();
3476 bool IsRO = isReadOnly(GV);
3477
3478 // promoteToConstantPool only if not generating XO text section
3479 if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3480 if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3481 return V;
3482
3483 if (isPositionIndependent()) {
3484 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3485 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3486 UseGOT_PREL ? ARMII::MO_GOT : 0);
3487 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3488 if (UseGOT_PREL)
3489 Result =
3490 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3491 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3492 return Result;
3493 } else if (Subtarget->isROPI() && IsRO) {
3494 // PC-relative.
3495 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3496 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3497 return Result;
3498 } else if (Subtarget->isRWPI() && !IsRO) {
3499 // SB-relative.
3500 SDValue RelAddr;
3501 if (Subtarget->useMovt()) {
3502 ++NumMovwMovt;
3503 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3504 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3505 } else { // use literal pool for address constant
3506 ARMConstantPoolValue *CPV =
3507 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3508 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3509 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3510 RelAddr = DAG.getLoad(
3511 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3512 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3513 }
3514 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3515 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3516 return Result;
3517 }
3518
3519 // If we have T2 ops, we can materialize the address directly via movt/movw
3520 // pair. This is always cheaper.
3521 if (Subtarget->useMovt()) {
3522 ++NumMovwMovt;
3523 // FIXME: Once remat is capable of dealing with instructions with register
3524 // operands, expand this into two nodes.
3525 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3526 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3527 } else {
3528 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
3529 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3530 return DAG.getLoad(
3531 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3532 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3533 }
3534 }
3535
LowerGlobalAddressDarwin(SDValue Op,SelectionDAG & DAG) const3536 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3537 SelectionDAG &DAG) const {
3538 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3539 "ROPI/RWPI not currently supported for Darwin");
3540 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3541 SDLoc dl(Op);
3542 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3543
3544 if (Subtarget->useMovt())
3545 ++NumMovwMovt;
3546
3547 // FIXME: Once remat is capable of dealing with instructions with register
3548 // operands, expand this into multiple nodes
3549 unsigned Wrapper =
3550 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3551
3552 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3553 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3554
3555 if (Subtarget->isGVIndirectSymbol(GV))
3556 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3557 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3558 return Result;
3559 }
3560
LowerGlobalAddressWindows(SDValue Op,SelectionDAG & DAG) const3561 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3562 SelectionDAG &DAG) const {
3563 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
3564 assert(Subtarget->useMovt() &&
3565 "Windows on ARM expects to use movw/movt");
3566 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
3567 "ROPI/RWPI not currently supported for Windows");
3568
3569 const TargetMachine &TM = getTargetMachine();
3570 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3571 ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
3572 if (GV->hasDLLImportStorageClass())
3573 TargetFlags = ARMII::MO_DLLIMPORT;
3574 else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
3575 TargetFlags = ARMII::MO_COFFSTUB;
3576 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3577 SDValue Result;
3578 SDLoc DL(Op);
3579
3580 ++NumMovwMovt;
3581
3582 // FIXME: Once remat is capable of dealing with instructions with register
3583 // operands, expand this into two nodes.
3584 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
3585 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
3586 TargetFlags));
3587 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
3588 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
3589 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3590 return Result;
3591 }
3592
3593 SDValue
LowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const3594 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
3595 SDLoc dl(Op);
3596 SDValue Val = DAG.getConstant(0, dl, MVT::i32);
3597 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
3598 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
3599 Op.getOperand(1), Val);
3600 }
3601
3602 SDValue
LowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const3603 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
3604 SDLoc dl(Op);
3605 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
3606 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
3607 }
3608
LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,SelectionDAG & DAG) const3609 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
3610 SelectionDAG &DAG) const {
3611 SDLoc dl(Op);
3612 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
3613 Op.getOperand(0));
3614 }
3615
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3616 SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
3617 SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
3618 unsigned IntNo =
3619 cast<ConstantSDNode>(
3620 Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
3621 ->getZExtValue();
3622 switch (IntNo) {
3623 default:
3624 return SDValue(); // Don't custom lower most intrinsics.
3625 case Intrinsic::arm_gnu_eabi_mcount: {
3626 MachineFunction &MF = DAG.getMachineFunction();
3627 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3628 SDLoc dl(Op);
3629 SDValue Chain = Op.getOperand(0);
3630 // call "\01__gnu_mcount_nc"
3631 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
3632 const uint32_t *Mask =
3633 ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
3634 assert(Mask && "Missing call preserved mask for calling convention");
3635 // Mark LR an implicit live-in.
3636 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
3637 SDValue ReturnAddress =
3638 DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
3639 std::vector<EVT> ResultTys = {MVT::Other, MVT::Glue};
3640 SDValue Callee =
3641 DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
3642 SDValue RegisterMask = DAG.getRegisterMask(Mask);
3643 if (Subtarget->isThumb())
3644 return SDValue(
3645 DAG.getMachineNode(
3646 ARM::tBL_PUSHLR, dl, ResultTys,
3647 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
3648 DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
3649 0);
3650 return SDValue(
3651 DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
3652 {ReturnAddress, Callee, RegisterMask, Chain}),
3653 0);
3654 }
3655 }
3656 }
3657
3658 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget) const3659 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
3660 const ARMSubtarget *Subtarget) const {
3661 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
3662 SDLoc dl(Op);
3663 switch (IntNo) {
3664 default: return SDValue(); // Don't custom lower most intrinsics.
3665 case Intrinsic::thread_pointer: {
3666 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3667 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3668 }
3669 case Intrinsic::arm_cls: {
3670 const SDValue &Operand = Op.getOperand(1);
3671 const EVT VTy = Op.getValueType();
3672 SDValue SRA =
3673 DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
3674 SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
3675 SDValue SHL =
3676 DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
3677 SDValue OR =
3678 DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
3679 SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
3680 return Result;
3681 }
3682 case Intrinsic::arm_cls64: {
3683 // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
3684 // else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
3685 const SDValue &Operand = Op.getOperand(1);
3686 const EVT VTy = Op.getValueType();
3687
3688 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3689 DAG.getConstant(1, dl, VTy));
3690 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
3691 DAG.getConstant(0, dl, VTy));
3692 SDValue Constant0 = DAG.getConstant(0, dl, VTy);
3693 SDValue Constant1 = DAG.getConstant(1, dl, VTy);
3694 SDValue Constant31 = DAG.getConstant(31, dl, VTy);
3695 SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
3696 SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
3697 SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
3698 SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
3699 SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
3700 SDValue CheckLo =
3701 DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
3702 SDValue HiIsZero =
3703 DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
3704 SDValue AdjustedLo =
3705 DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
3706 SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
3707 SDValue Result =
3708 DAG.getSelect(dl, VTy, CheckLo,
3709 DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
3710 return Result;
3711 }
3712 case Intrinsic::eh_sjlj_lsda: {
3713 MachineFunction &MF = DAG.getMachineFunction();
3714 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3715 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3716 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3717 SDValue CPAddr;
3718 bool IsPositionIndependent = isPositionIndependent();
3719 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
3720 ARMConstantPoolValue *CPV =
3721 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
3722 ARMCP::CPLSDA, PCAdj);
3723 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
3724 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3725 SDValue Result = DAG.getLoad(
3726 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3727 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3728
3729 if (IsPositionIndependent) {
3730 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3731 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
3732 }
3733 return Result;
3734 }
3735 case Intrinsic::arm_neon_vabs:
3736 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
3737 Op.getOperand(1));
3738 case Intrinsic::arm_neon_vmulls:
3739 case Intrinsic::arm_neon_vmullu: {
3740 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
3741 ? ARMISD::VMULLs : ARMISD::VMULLu;
3742 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3743 Op.getOperand(1), Op.getOperand(2));
3744 }
3745 case Intrinsic::arm_neon_vminnm:
3746 case Intrinsic::arm_neon_vmaxnm: {
3747 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
3748 ? ISD::FMINNUM : ISD::FMAXNUM;
3749 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3750 Op.getOperand(1), Op.getOperand(2));
3751 }
3752 case Intrinsic::arm_neon_vminu:
3753 case Intrinsic::arm_neon_vmaxu: {
3754 if (Op.getValueType().isFloatingPoint())
3755 return SDValue();
3756 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
3757 ? ISD::UMIN : ISD::UMAX;
3758 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3759 Op.getOperand(1), Op.getOperand(2));
3760 }
3761 case Intrinsic::arm_neon_vmins:
3762 case Intrinsic::arm_neon_vmaxs: {
3763 // v{min,max}s is overloaded between signed integers and floats.
3764 if (!Op.getValueType().isFloatingPoint()) {
3765 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3766 ? ISD::SMIN : ISD::SMAX;
3767 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3768 Op.getOperand(1), Op.getOperand(2));
3769 }
3770 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
3771 ? ISD::FMINIMUM : ISD::FMAXIMUM;
3772 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
3773 Op.getOperand(1), Op.getOperand(2));
3774 }
3775 case Intrinsic::arm_neon_vtbl1:
3776 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
3777 Op.getOperand(1), Op.getOperand(2));
3778 case Intrinsic::arm_neon_vtbl2:
3779 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
3780 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
3781 case Intrinsic::arm_mve_pred_i2v:
3782 case Intrinsic::arm_mve_pred_v2i:
3783 return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
3784 Op.getOperand(1));
3785 }
3786 }
3787
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3788 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
3789 const ARMSubtarget *Subtarget) {
3790 SDLoc dl(Op);
3791 ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
3792 auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
3793 if (SSID == SyncScope::SingleThread)
3794 return Op;
3795
3796 if (!Subtarget->hasDataBarrier()) {
3797 // Some ARMv6 cpus can support data barriers with an mcr instruction.
3798 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
3799 // here.
3800 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
3801 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
3802 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
3803 DAG.getConstant(0, dl, MVT::i32));
3804 }
3805
3806 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
3807 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
3808 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
3809 if (Subtarget->isMClass()) {
3810 // Only a full system barrier exists in the M-class architectures.
3811 Domain = ARM_MB::SY;
3812 } else if (Subtarget->preferISHSTBarriers() &&
3813 Ord == AtomicOrdering::Release) {
3814 // Swift happens to implement ISHST barriers in a way that's compatible with
3815 // Release semantics but weaker than ISH so we'd be fools not to use
3816 // it. Beware: other processors probably don't!
3817 Domain = ARM_MB::ISHST;
3818 }
3819
3820 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
3821 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
3822 DAG.getConstant(Domain, dl, MVT::i32));
3823 }
3824
LowerPREFETCH(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)3825 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
3826 const ARMSubtarget *Subtarget) {
3827 // ARM pre v5TE and Thumb1 does not have preload instructions.
3828 if (!(Subtarget->isThumb2() ||
3829 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
3830 // Just preserve the chain.
3831 return Op.getOperand(0);
3832
3833 SDLoc dl(Op);
3834 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
3835 if (!isRead &&
3836 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
3837 // ARMv7 with MP extension has PLDW.
3838 return Op.getOperand(0);
3839
3840 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
3841 if (Subtarget->isThumb()) {
3842 // Invert the bits.
3843 isRead = ~isRead & 1;
3844 isData = ~isData & 1;
3845 }
3846
3847 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
3848 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
3849 DAG.getConstant(isData, dl, MVT::i32));
3850 }
3851
LowerVASTART(SDValue Op,SelectionDAG & DAG)3852 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
3853 MachineFunction &MF = DAG.getMachineFunction();
3854 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
3855
3856 // vastart just stores the address of the VarArgsFrameIndex slot into the
3857 // memory location argument.
3858 SDLoc dl(Op);
3859 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
3860 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3861 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3862 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3863 MachinePointerInfo(SV));
3864 }
3865
GetF64FormalArgument(CCValAssign & VA,CCValAssign & NextVA,SDValue & Root,SelectionDAG & DAG,const SDLoc & dl) const3866 SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
3867 CCValAssign &NextVA,
3868 SDValue &Root,
3869 SelectionDAG &DAG,
3870 const SDLoc &dl) const {
3871 MachineFunction &MF = DAG.getMachineFunction();
3872 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3873
3874 const TargetRegisterClass *RC;
3875 if (AFI->isThumb1OnlyFunction())
3876 RC = &ARM::tGPRRegClass;
3877 else
3878 RC = &ARM::GPRRegClass;
3879
3880 // Transform the arguments stored in physical registers into virtual ones.
3881 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3882 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3883
3884 SDValue ArgValue2;
3885 if (NextVA.isMemLoc()) {
3886 MachineFrameInfo &MFI = MF.getFrameInfo();
3887 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
3888
3889 // Create load node to retrieve arguments from the stack.
3890 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
3891 ArgValue2 = DAG.getLoad(
3892 MVT::i32, dl, Root, FIN,
3893 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
3894 } else {
3895 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
3896 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
3897 }
3898 if (!Subtarget->isLittle())
3899 std::swap (ArgValue, ArgValue2);
3900 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
3901 }
3902
3903 // The remaining GPRs hold either the beginning of variable-argument
3904 // data, or the beginning of an aggregate passed by value (usually
3905 // byval). Either way, we allocate stack slots adjacent to the data
3906 // provided by our caller, and store the unallocated registers there.
3907 // If this is a variadic function, the va_list pointer will begin with
3908 // these values; otherwise, this reassembles a (byval) structure that
3909 // was split between registers and memory.
3910 // Return: The frame index registers were stored into.
StoreByValRegs(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,const Value * OrigArg,unsigned InRegsParamRecordIdx,int ArgOffset,unsigned ArgSize) const3911 int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
3912 const SDLoc &dl, SDValue &Chain,
3913 const Value *OrigArg,
3914 unsigned InRegsParamRecordIdx,
3915 int ArgOffset, unsigned ArgSize) const {
3916 // Currently, two use-cases possible:
3917 // Case #1. Non-var-args function, and we meet first byval parameter.
3918 // Setup first unallocated register as first byval register;
3919 // eat all remained registers
3920 // (these two actions are performed by HandleByVal method).
3921 // Then, here, we initialize stack frame with
3922 // "store-reg" instructions.
3923 // Case #2. Var-args function, that doesn't contain byval parameters.
3924 // The same: eat all remained unallocated registers,
3925 // initialize stack frame.
3926
3927 MachineFunction &MF = DAG.getMachineFunction();
3928 MachineFrameInfo &MFI = MF.getFrameInfo();
3929 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3930 unsigned RBegin, REnd;
3931 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
3932 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
3933 } else {
3934 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
3935 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
3936 REnd = ARM::R4;
3937 }
3938
3939 if (REnd != RBegin)
3940 ArgOffset = -4 * (ARM::R4 - RBegin);
3941
3942 auto PtrVT = getPointerTy(DAG.getDataLayout());
3943 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
3944 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
3945
3946 SmallVector<SDValue, 4> MemOps;
3947 const TargetRegisterClass *RC =
3948 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
3949
3950 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
3951 unsigned VReg = MF.addLiveIn(Reg, RC);
3952 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
3953 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3954 MachinePointerInfo(OrigArg, 4 * i));
3955 MemOps.push_back(Store);
3956 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
3957 }
3958
3959 if (!MemOps.empty())
3960 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3961 return FrameIndex;
3962 }
3963
3964 // Setup stack frame, the va_list pointer will start from.
VarArgStyleRegisters(CCState & CCInfo,SelectionDAG & DAG,const SDLoc & dl,SDValue & Chain,unsigned ArgOffset,unsigned TotalArgRegsSaveSize,bool ForceMutable) const3965 void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
3966 const SDLoc &dl, SDValue &Chain,
3967 unsigned ArgOffset,
3968 unsigned TotalArgRegsSaveSize,
3969 bool ForceMutable) const {
3970 MachineFunction &MF = DAG.getMachineFunction();
3971 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3972
3973 // Try to store any remaining integer argument regs
3974 // to their spots on the stack so that they may be loaded by dereferencing
3975 // the result of va_next.
3976 // If there is no regs to be stored, just point address after last
3977 // argument passed via stack.
3978 int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
3979 CCInfo.getInRegsParamsCount(),
3980 CCInfo.getNextStackOffset(),
3981 std::max(4U, TotalArgRegsSaveSize));
3982 AFI->setVarArgsFrameIndex(FrameIndex);
3983 }
3984
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const3985 SDValue ARMTargetLowering::LowerFormalArguments(
3986 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3987 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3988 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3989 MachineFunction &MF = DAG.getMachineFunction();
3990 MachineFrameInfo &MFI = MF.getFrameInfo();
3991
3992 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3993
3994 // Assign locations to all of the incoming arguments.
3995 SmallVector<CCValAssign, 16> ArgLocs;
3996 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3997 *DAG.getContext());
3998 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
3999
4000 SmallVector<SDValue, 16> ArgValues;
4001 SDValue ArgValue;
4002 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4003 unsigned CurArgIdx = 0;
4004
4005 // Initially ArgRegsSaveSize is zero.
4006 // Then we increase this value each time we meet byval parameter.
4007 // We also increase this value in case of varargs function.
4008 AFI->setArgRegsSaveSize(0);
4009
4010 // Calculate the amount of stack space that we need to allocate to store
4011 // byval and variadic arguments that are passed in registers.
4012 // We need to know this before we allocate the first byval or variadic
4013 // argument, as they will be allocated a stack slot below the CFA (Canonical
4014 // Frame Address, the stack pointer at entry to the function).
4015 unsigned ArgRegBegin = ARM::R4;
4016 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4017 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4018 break;
4019
4020 CCValAssign &VA = ArgLocs[i];
4021 unsigned Index = VA.getValNo();
4022 ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4023 if (!Flags.isByVal())
4024 continue;
4025
4026 assert(VA.isMemLoc() && "unexpected byval pointer in reg");
4027 unsigned RBegin, REnd;
4028 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4029 ArgRegBegin = std::min(ArgRegBegin, RBegin);
4030
4031 CCInfo.nextInRegsParam();
4032 }
4033 CCInfo.rewindByValRegsInfo();
4034
4035 int lastInsIndex = -1;
4036 if (isVarArg && MFI.hasVAStart()) {
4037 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4038 if (RegIdx != array_lengthof(GPRArgRegs))
4039 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4040 }
4041
4042 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4043 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4044 auto PtrVT = getPointerTy(DAG.getDataLayout());
4045
4046 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4047 CCValAssign &VA = ArgLocs[i];
4048 if (Ins[VA.getValNo()].isOrigArg()) {
4049 std::advance(CurOrigArg,
4050 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4051 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4052 }
4053 // Arguments stored in registers.
4054 if (VA.isRegLoc()) {
4055 EVT RegVT = VA.getLocVT();
4056
4057 if (VA.needsCustom()) {
4058 // f64 and vector types are split up into multiple registers or
4059 // combinations of registers and stack slots.
4060 if (VA.getLocVT() == MVT::v2f64) {
4061 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
4062 Chain, DAG, dl);
4063 VA = ArgLocs[++i]; // skip ahead to next loc
4064 SDValue ArgValue2;
4065 if (VA.isMemLoc()) {
4066 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4067 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4068 ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
4069 MachinePointerInfo::getFixedStack(
4070 DAG.getMachineFunction(), FI));
4071 } else {
4072 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
4073 Chain, DAG, dl);
4074 }
4075 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4076 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
4077 ArgValue, ArgValue1,
4078 DAG.getIntPtrConstant(0, dl));
4079 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
4080 ArgValue, ArgValue2,
4081 DAG.getIntPtrConstant(1, dl));
4082 } else
4083 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4084 } else {
4085 const TargetRegisterClass *RC;
4086
4087
4088 if (RegVT == MVT::f16)
4089 RC = &ARM::HPRRegClass;
4090 else if (RegVT == MVT::f32)
4091 RC = &ARM::SPRRegClass;
4092 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16)
4093 RC = &ARM::DPRRegClass;
4094 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16)
4095 RC = &ARM::QPRRegClass;
4096 else if (RegVT == MVT::i32)
4097 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4098 : &ARM::GPRRegClass;
4099 else
4100 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
4101
4102 // Transform the arguments in physical registers into virtual ones.
4103 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
4104 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4105
4106 // If this value is passed in r0 and has the returned attribute (e.g.
4107 // C++ 'structors), record this fact for later use.
4108 if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4109 AFI->setPreservesR0();
4110 }
4111 }
4112
4113 // If this is an 8 or 16-bit value, it is really passed promoted
4114 // to 32 bits. Insert an assert[sz]ext to capture this, then
4115 // truncate to the right size.
4116 switch (VA.getLocInfo()) {
4117 default: llvm_unreachable("Unknown loc info!");
4118 case CCValAssign::Full: break;
4119 case CCValAssign::BCvt:
4120 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4121 break;
4122 case CCValAssign::SExt:
4123 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4124 DAG.getValueType(VA.getValVT()));
4125 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4126 break;
4127 case CCValAssign::ZExt:
4128 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4129 DAG.getValueType(VA.getValVT()));
4130 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4131 break;
4132 }
4133
4134 InVals.push_back(ArgValue);
4135 } else { // VA.isRegLoc()
4136 // sanity check
4137 assert(VA.isMemLoc());
4138 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
4139
4140 int index = VA.getValNo();
4141
4142 // Some Ins[] entries become multiple ArgLoc[] entries.
4143 // Process them only once.
4144 if (index != lastInsIndex)
4145 {
4146 ISD::ArgFlagsTy Flags = Ins[index].Flags;
4147 // FIXME: For now, all byval parameter objects are marked mutable.
4148 // This can be changed with more analysis.
4149 // In case of tail call optimization mark all arguments mutable.
4150 // Since they could be overwritten by lowering of arguments in case of
4151 // a tail call.
4152 if (Flags.isByVal()) {
4153 assert(Ins[index].isOrigArg() &&
4154 "Byval arguments cannot be implicit");
4155 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4156
4157 int FrameIndex = StoreByValRegs(
4158 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4159 VA.getLocMemOffset(), Flags.getByValSize());
4160 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4161 CCInfo.nextInRegsParam();
4162 } else {
4163 unsigned FIOffset = VA.getLocMemOffset();
4164 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4165 FIOffset, true);
4166
4167 // Create load nodes to retrieve arguments from the stack.
4168 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4169 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4170 MachinePointerInfo::getFixedStack(
4171 DAG.getMachineFunction(), FI)));
4172 }
4173 lastInsIndex = index;
4174 }
4175 }
4176 }
4177
4178 // varargs
4179 if (isVarArg && MFI.hasVAStart())
4180 VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
4181 CCInfo.getNextStackOffset(),
4182 TotalArgRegsSaveSize);
4183
4184 AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
4185
4186 return Chain;
4187 }
4188
4189 /// isFloatingPointZero - Return true if this is +0.0.
isFloatingPointZero(SDValue Op)4190 static bool isFloatingPointZero(SDValue Op) {
4191 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4192 return CFP->getValueAPF().isPosZero();
4193 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4194 // Maybe this has already been legalized into the constant pool?
4195 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4196 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4197 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4198 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4199 return CFP->getValueAPF().isPosZero();
4200 }
4201 } else if (Op->getOpcode() == ISD::BITCAST &&
4202 Op->getValueType(0) == MVT::f64) {
4203 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4204 // created by LowerConstantFP().
4205 SDValue BitcastOp = Op->getOperand(0);
4206 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4207 isNullConstant(BitcastOp->getOperand(0)))
4208 return true;
4209 }
4210 return false;
4211 }
4212
4213 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4214 /// the given operands.
getARMCmp(SDValue LHS,SDValue RHS,ISD::CondCode CC,SDValue & ARMcc,SelectionDAG & DAG,const SDLoc & dl) const4215 SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4216 SDValue &ARMcc, SelectionDAG &DAG,
4217 const SDLoc &dl) const {
4218 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4219 unsigned C = RHSC->getZExtValue();
4220 if (!isLegalICmpImmediate((int32_t)C)) {
4221 // Constant does not fit, try adjusting it by one.
4222 switch (CC) {
4223 default: break;
4224 case ISD::SETLT:
4225 case ISD::SETGE:
4226 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4227 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4228 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4229 }
4230 break;
4231 case ISD::SETULT:
4232 case ISD::SETUGE:
4233 if (C != 0 && isLegalICmpImmediate(C-1)) {
4234 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4235 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4236 }
4237 break;
4238 case ISD::SETLE:
4239 case ISD::SETGT:
4240 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4241 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4242 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4243 }
4244 break;
4245 case ISD::SETULE:
4246 case ISD::SETUGT:
4247 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4248 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4249 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4250 }
4251 break;
4252 }
4253 }
4254 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4255 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4256 // In ARM and Thumb-2, the compare instructions can shift their second
4257 // operand.
4258 CC = ISD::getSetCCSwappedOperands(CC);
4259 std::swap(LHS, RHS);
4260 }
4261
4262 // Thumb1 has very limited immediate modes, so turning an "and" into a
4263 // shift can save multiple instructions.
4264 //
4265 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4266 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4267 // own. If it's the operand to an unsigned comparison with an immediate,
4268 // we can eliminate one of the shifts: we transform
4269 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4270 //
4271 // We avoid transforming cases which aren't profitable due to encoding
4272 // details:
4273 //
4274 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4275 // would not; in that case, we're essentially trading one immediate load for
4276 // another.
4277 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4278 // 3. C2 is zero; we have other code for this special case.
4279 //
4280 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4281 // instruction, since the AND is always one instruction anyway, but we could
4282 // use narrow instructions in some cases.
4283 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4284 LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4285 LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4286 !isSignedIntSetCC(CC)) {
4287 unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4288 auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4289 uint64_t RHSV = RHSC->getZExtValue();
4290 if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4291 unsigned ShiftBits = countLeadingZeros(Mask);
4292 if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4293 SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4294 LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4295 RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4296 }
4297 }
4298 }
4299
4300 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4301 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4302 // way a cmp would.
4303 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4304 // some tweaks to the heuristics for the previous and->shift transform.
4305 // FIXME: Optimize cases where the LHS isn't a shift.
4306 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4307 isa<ConstantSDNode>(RHS) &&
4308 cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4309 CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4310 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4311 unsigned ShiftAmt =
4312 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4313 SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4314 DAG.getVTList(MVT::i32, MVT::i32),
4315 LHS.getOperand(0),
4316 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4317 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4318 Shift.getValue(1), SDValue());
4319 ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4320 return Chain.getValue(1);
4321 }
4322
4323 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4324
4325 // If the RHS is a constant zero then the V (overflow) flag will never be
4326 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4327 // simpler for other passes (like the peephole optimiser) to deal with.
4328 if (isNullConstant(RHS)) {
4329 switch (CondCode) {
4330 default: break;
4331 case ARMCC::GE:
4332 CondCode = ARMCC::PL;
4333 break;
4334 case ARMCC::LT:
4335 CondCode = ARMCC::MI;
4336 break;
4337 }
4338 }
4339
4340 ARMISD::NodeType CompareType;
4341 switch (CondCode) {
4342 default:
4343 CompareType = ARMISD::CMP;
4344 break;
4345 case ARMCC::EQ:
4346 case ARMCC::NE:
4347 // Uses only Z Flag
4348 CompareType = ARMISD::CMPZ;
4349 break;
4350 }
4351 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4352 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4353 }
4354
4355 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
getVFPCmp(SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,bool Signaling) const4356 SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4357 SelectionDAG &DAG, const SDLoc &dl,
4358 bool Signaling) const {
4359 assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64);
4360 SDValue Cmp;
4361 if (!isFloatingPointZero(RHS))
4362 Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4363 dl, MVT::Glue, LHS, RHS);
4364 else
4365 Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4366 dl, MVT::Glue, LHS);
4367 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4368 }
4369
4370 /// duplicateCmp - Glue values can have only one use, so this function
4371 /// duplicates a comparison node.
4372 SDValue
duplicateCmp(SDValue Cmp,SelectionDAG & DAG) const4373 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4374 unsigned Opc = Cmp.getOpcode();
4375 SDLoc DL(Cmp);
4376 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4377 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4378
4379 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
4380 Cmp = Cmp.getOperand(0);
4381 Opc = Cmp.getOpcode();
4382 if (Opc == ARMISD::CMPFP)
4383 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4384 else {
4385 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
4386 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4387 }
4388 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4389 }
4390
4391 // This function returns three things: the arithmetic computation itself
4392 // (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4393 // comparison and the condition code define the case in which the arithmetic
4394 // computation *does not* overflow.
4395 std::pair<SDValue, SDValue>
getARMXALUOOp(SDValue Op,SelectionDAG & DAG,SDValue & ARMcc) const4396 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4397 SDValue &ARMcc) const {
4398 assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
4399
4400 SDValue Value, OverflowCmp;
4401 SDValue LHS = Op.getOperand(0);
4402 SDValue RHS = Op.getOperand(1);
4403 SDLoc dl(Op);
4404
4405 // FIXME: We are currently always generating CMPs because we don't support
4406 // generating CMN through the backend. This is not as good as the natural
4407 // CMP case because it causes a register dependency and cannot be folded
4408 // later.
4409
4410 switch (Op.getOpcode()) {
4411 default:
4412 llvm_unreachable("Unknown overflow instruction!");
4413 case ISD::SADDO:
4414 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4415 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4416 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4417 break;
4418 case ISD::UADDO:
4419 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4420 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4421 // We do not use it in the USUBO case as Value may not be used.
4422 Value = DAG.getNode(ARMISD::ADDC, dl,
4423 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4424 .getValue(0);
4425 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4426 break;
4427 case ISD::SSUBO:
4428 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4429 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4430 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4431 break;
4432 case ISD::USUBO:
4433 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4434 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4435 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4436 break;
4437 case ISD::UMULO:
4438 // We generate a UMUL_LOHI and then check if the high word is 0.
4439 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4440 Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4441 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4442 LHS, RHS);
4443 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4444 DAG.getConstant(0, dl, MVT::i32));
4445 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4446 break;
4447 case ISD::SMULO:
4448 // We generate a SMUL_LOHI and then check if all the bits of the high word
4449 // are the same as the sign bit of the low word.
4450 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4451 Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4452 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4453 LHS, RHS);
4454 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4455 DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4456 Value.getValue(0),
4457 DAG.getConstant(31, dl, MVT::i32)));
4458 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4459 break;
4460 } // switch (...)
4461
4462 return std::make_pair(Value, OverflowCmp);
4463 }
4464
4465 SDValue
LowerSignedALUO(SDValue Op,SelectionDAG & DAG) const4466 ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4467 // Let legalize expand this if it isn't a legal type yet.
4468 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4469 return SDValue();
4470
4471 SDValue Value, OverflowCmp;
4472 SDValue ARMcc;
4473 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4474 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4475 SDLoc dl(Op);
4476 // We use 0 and 1 as false and true values.
4477 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4478 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4479 EVT VT = Op.getValueType();
4480
4481 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4482 ARMcc, CCR, OverflowCmp);
4483
4484 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4485 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4486 }
4487
ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,SelectionDAG & DAG)4488 static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4489 SelectionDAG &DAG) {
4490 SDLoc DL(BoolCarry);
4491 EVT CarryVT = BoolCarry.getValueType();
4492
4493 // This converts the boolean value carry into the carry flag by doing
4494 // ARMISD::SUBC Carry, 1
4495 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4496 DAG.getVTList(CarryVT, MVT::i32),
4497 BoolCarry, DAG.getConstant(1, DL, CarryVT));
4498 return Carry.getValue(1);
4499 }
4500
ConvertCarryFlagToBooleanCarry(SDValue Flags,EVT VT,SelectionDAG & DAG)4501 static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4502 SelectionDAG &DAG) {
4503 SDLoc DL(Flags);
4504
4505 // Now convert the carry flag into a boolean carry. We do this
4506 // using ARMISD:ADDE 0, 0, Carry
4507 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
4508 DAG.getConstant(0, DL, MVT::i32),
4509 DAG.getConstant(0, DL, MVT::i32), Flags);
4510 }
4511
LowerUnsignedALUO(SDValue Op,SelectionDAG & DAG) const4512 SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
4513 SelectionDAG &DAG) const {
4514 // Let legalize expand this if it isn't a legal type yet.
4515 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4516 return SDValue();
4517
4518 SDValue LHS = Op.getOperand(0);
4519 SDValue RHS = Op.getOperand(1);
4520 SDLoc dl(Op);
4521
4522 EVT VT = Op.getValueType();
4523 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
4524 SDValue Value;
4525 SDValue Overflow;
4526 switch (Op.getOpcode()) {
4527 default:
4528 llvm_unreachable("Unknown overflow instruction!");
4529 case ISD::UADDO:
4530 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
4531 // Convert the carry flag into a boolean value.
4532 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4533 break;
4534 case ISD::USUBO: {
4535 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
4536 // Convert the carry flag into a boolean value.
4537 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
4538 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
4539 // value. So compute 1 - C.
4540 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
4541 DAG.getConstant(1, dl, MVT::i32), Overflow);
4542 break;
4543 }
4544 }
4545
4546 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4547 }
4548
LowerSADDSUBSAT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * Subtarget)4549 static SDValue LowerSADDSUBSAT(SDValue Op, SelectionDAG &DAG,
4550 const ARMSubtarget *Subtarget) {
4551 EVT VT = Op.getValueType();
4552 if (!Subtarget->hasDSP())
4553 return SDValue();
4554 if (!VT.isSimple())
4555 return SDValue();
4556
4557 unsigned NewOpcode;
4558 bool IsAdd = Op->getOpcode() == ISD::SADDSAT;
4559 switch (VT.getSimpleVT().SimpleTy) {
4560 default:
4561 return SDValue();
4562 case MVT::i8:
4563 NewOpcode = IsAdd ? ARMISD::QADD8b : ARMISD::QSUB8b;
4564 break;
4565 case MVT::i16:
4566 NewOpcode = IsAdd ? ARMISD::QADD16b : ARMISD::QSUB16b;
4567 break;
4568 }
4569
4570 SDLoc dl(Op);
4571 SDValue Add =
4572 DAG.getNode(NewOpcode, dl, MVT::i32,
4573 DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
4574 DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
4575 return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
4576 }
4577
LowerSELECT(SDValue Op,SelectionDAG & DAG) const4578 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
4579 SDValue Cond = Op.getOperand(0);
4580 SDValue SelectTrue = Op.getOperand(1);
4581 SDValue SelectFalse = Op.getOperand(2);
4582 SDLoc dl(Op);
4583 unsigned Opc = Cond.getOpcode();
4584
4585 if (Cond.getResNo() == 1 &&
4586 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
4587 Opc == ISD::USUBO)) {
4588 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
4589 return SDValue();
4590
4591 SDValue Value, OverflowCmp;
4592 SDValue ARMcc;
4593 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
4594 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4595 EVT VT = Op.getValueType();
4596
4597 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
4598 OverflowCmp, DAG);
4599 }
4600
4601 // Convert:
4602 //
4603 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
4604 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
4605 //
4606 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
4607 const ConstantSDNode *CMOVTrue =
4608 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
4609 const ConstantSDNode *CMOVFalse =
4610 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
4611
4612 if (CMOVTrue && CMOVFalse) {
4613 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
4614 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
4615
4616 SDValue True;
4617 SDValue False;
4618 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
4619 True = SelectTrue;
4620 False = SelectFalse;
4621 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
4622 True = SelectFalse;
4623 False = SelectTrue;
4624 }
4625
4626 if (True.getNode() && False.getNode()) {
4627 EVT VT = Op.getValueType();
4628 SDValue ARMcc = Cond.getOperand(2);
4629 SDValue CCR = Cond.getOperand(3);
4630 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
4631 assert(True.getValueType() == VT);
4632 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
4633 }
4634 }
4635 }
4636
4637 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
4638 // undefined bits before doing a full-word comparison with zero.
4639 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
4640 DAG.getConstant(1, dl, Cond.getValueType()));
4641
4642 return DAG.getSelectCC(dl, Cond,
4643 DAG.getConstant(0, dl, Cond.getValueType()),
4644 SelectTrue, SelectFalse, ISD::SETNE);
4645 }
4646
checkVSELConstraints(ISD::CondCode CC,ARMCC::CondCodes & CondCode,bool & swpCmpOps,bool & swpVselOps)4647 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
4648 bool &swpCmpOps, bool &swpVselOps) {
4649 // Start by selecting the GE condition code for opcodes that return true for
4650 // 'equality'
4651 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
4652 CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
4653 CondCode = ARMCC::GE;
4654
4655 // and GT for opcodes that return false for 'equality'.
4656 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
4657 CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
4658 CondCode = ARMCC::GT;
4659
4660 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
4661 // to swap the compare operands.
4662 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
4663 CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
4664 swpCmpOps = true;
4665
4666 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
4667 // If we have an unordered opcode, we need to swap the operands to the VSEL
4668 // instruction (effectively negating the condition).
4669 //
4670 // This also has the effect of swapping which one of 'less' or 'greater'
4671 // returns true, so we also swap the compare operands. It also switches
4672 // whether we return true for 'equality', so we compensate by picking the
4673 // opposite condition code to our original choice.
4674 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
4675 CC == ISD::SETUGT) {
4676 swpCmpOps = !swpCmpOps;
4677 swpVselOps = !swpVselOps;
4678 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
4679 }
4680
4681 // 'ordered' is 'anything but unordered', so use the VS condition code and
4682 // swap the VSEL operands.
4683 if (CC == ISD::SETO) {
4684 CondCode = ARMCC::VS;
4685 swpVselOps = true;
4686 }
4687
4688 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
4689 // code and swap the VSEL operands. Also do this if we don't care about the
4690 // unordered case.
4691 if (CC == ISD::SETUNE || CC == ISD::SETNE) {
4692 CondCode = ARMCC::EQ;
4693 swpVselOps = true;
4694 }
4695 }
4696
getCMOV(const SDLoc & dl,EVT VT,SDValue FalseVal,SDValue TrueVal,SDValue ARMcc,SDValue CCR,SDValue Cmp,SelectionDAG & DAG) const4697 SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
4698 SDValue TrueVal, SDValue ARMcc, SDValue CCR,
4699 SDValue Cmp, SelectionDAG &DAG) const {
4700 if (!Subtarget->hasFP64() && VT == MVT::f64) {
4701 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4702 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
4703 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
4704 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
4705
4706 SDValue TrueLow = TrueVal.getValue(0);
4707 SDValue TrueHigh = TrueVal.getValue(1);
4708 SDValue FalseLow = FalseVal.getValue(0);
4709 SDValue FalseHigh = FalseVal.getValue(1);
4710
4711 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
4712 ARMcc, CCR, Cmp);
4713 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
4714 ARMcc, CCR, duplicateCmp(Cmp, DAG));
4715
4716 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
4717 } else {
4718 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
4719 Cmp);
4720 }
4721 }
4722
isGTorGE(ISD::CondCode CC)4723 static bool isGTorGE(ISD::CondCode CC) {
4724 return CC == ISD::SETGT || CC == ISD::SETGE;
4725 }
4726
isLTorLE(ISD::CondCode CC)4727 static bool isLTorLE(ISD::CondCode CC) {
4728 return CC == ISD::SETLT || CC == ISD::SETLE;
4729 }
4730
4731 // See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
4732 // All of these conditions (and their <= and >= counterparts) will do:
4733 // x < k ? k : x
4734 // x > k ? x : k
4735 // k < x ? x : k
4736 // k > x ? k : x
isLowerSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4737 static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
4738 const SDValue TrueVal, const SDValue FalseVal,
4739 const ISD::CondCode CC, const SDValue K) {
4740 return (isGTorGE(CC) &&
4741 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
4742 (isLTorLE(CC) &&
4743 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
4744 }
4745
4746 // Similar to isLowerSaturate(), but checks for upper-saturating conditions.
isUpperSaturate(const SDValue LHS,const SDValue RHS,const SDValue TrueVal,const SDValue FalseVal,const ISD::CondCode CC,const SDValue K)4747 static bool isUpperSaturate(const SDValue LHS, const SDValue RHS,
4748 const SDValue TrueVal, const SDValue FalseVal,
4749 const ISD::CondCode CC, const SDValue K) {
4750 return (isGTorGE(CC) &&
4751 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal))) ||
4752 (isLTorLE(CC) &&
4753 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal)));
4754 }
4755
4756 // Check if two chained conditionals could be converted into SSAT or USAT.
4757 //
4758 // SSAT can replace a set of two conditional selectors that bound a number to an
4759 // interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
4760 //
4761 // x < -k ? -k : (x > k ? k : x)
4762 // x < -k ? -k : (x < k ? x : k)
4763 // x > -k ? (x > k ? k : x) : -k
4764 // x < k ? (x < -k ? -k : x) : k
4765 // etc.
4766 //
4767 // USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1 is
4768 // a power of 2.
4769 //
4770 // It returns true if the conversion can be done, false otherwise.
4771 // Additionally, the variable is returned in parameter V, the constant in K and
4772 // usat is set to true if the conditional represents an unsigned saturation
isSaturatingConditional(const SDValue & Op,SDValue & V,uint64_t & K,bool & usat)4773 static bool isSaturatingConditional(const SDValue &Op, SDValue &V,
4774 uint64_t &K, bool &usat) {
4775 SDValue LHS1 = Op.getOperand(0);
4776 SDValue RHS1 = Op.getOperand(1);
4777 SDValue TrueVal1 = Op.getOperand(2);
4778 SDValue FalseVal1 = Op.getOperand(3);
4779 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4780
4781 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
4782 if (Op2.getOpcode() != ISD::SELECT_CC)
4783 return false;
4784
4785 SDValue LHS2 = Op2.getOperand(0);
4786 SDValue RHS2 = Op2.getOperand(1);
4787 SDValue TrueVal2 = Op2.getOperand(2);
4788 SDValue FalseVal2 = Op2.getOperand(3);
4789 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
4790
4791 // Find out which are the constants and which are the variables
4792 // in each conditional
4793 SDValue *K1 = isa<ConstantSDNode>(LHS1) ? &LHS1 : isa<ConstantSDNode>(RHS1)
4794 ? &RHS1
4795 : nullptr;
4796 SDValue *K2 = isa<ConstantSDNode>(LHS2) ? &LHS2 : isa<ConstantSDNode>(RHS2)
4797 ? &RHS2
4798 : nullptr;
4799 SDValue K2Tmp = isa<ConstantSDNode>(TrueVal2) ? TrueVal2 : FalseVal2;
4800 SDValue V1Tmp = (K1 && *K1 == LHS1) ? RHS1 : LHS1;
4801 SDValue V2Tmp = (K2 && *K2 == LHS2) ? RHS2 : LHS2;
4802 SDValue V2 = (K2Tmp == TrueVal2) ? FalseVal2 : TrueVal2;
4803
4804 // We must detect cases where the original operations worked with 16- or
4805 // 8-bit values. In such case, V2Tmp != V2 because the comparison operations
4806 // must work with sign-extended values but the select operations return
4807 // the original non-extended value.
4808 SDValue V2TmpReg = V2Tmp;
4809 if (V2Tmp->getOpcode() == ISD::SIGN_EXTEND_INREG)
4810 V2TmpReg = V2Tmp->getOperand(0);
4811
4812 // Check that the registers and the constants have the correct values
4813 // in both conditionals
4814 if (!K1 || !K2 || *K1 == Op2 || *K2 != K2Tmp || V1Tmp != V2Tmp ||
4815 V2TmpReg != V2)
4816 return false;
4817
4818 // Figure out which conditional is saturating the lower/upper bound.
4819 const SDValue *LowerCheckOp =
4820 isLowerSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4821 ? &Op
4822 : isLowerSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4823 ? &Op2
4824 : nullptr;
4825 const SDValue *UpperCheckOp =
4826 isUpperSaturate(LHS1, RHS1, TrueVal1, FalseVal1, CC1, *K1)
4827 ? &Op
4828 : isUpperSaturate(LHS2, RHS2, TrueVal2, FalseVal2, CC2, *K2)
4829 ? &Op2
4830 : nullptr;
4831
4832 if (!UpperCheckOp || !LowerCheckOp || LowerCheckOp == UpperCheckOp)
4833 return false;
4834
4835 // Check that the constant in the lower-bound check is
4836 // the opposite of the constant in the upper-bound check
4837 // in 1's complement.
4838 int64_t Val1 = cast<ConstantSDNode>(*K1)->getSExtValue();
4839 int64_t Val2 = cast<ConstantSDNode>(*K2)->getSExtValue();
4840 int64_t PosVal = std::max(Val1, Val2);
4841 int64_t NegVal = std::min(Val1, Val2);
4842
4843 if (((Val1 > Val2 && UpperCheckOp == &Op) ||
4844 (Val1 < Val2 && UpperCheckOp == &Op2)) &&
4845 isPowerOf2_64(PosVal + 1)) {
4846
4847 // Handle the difference between USAT (unsigned) and SSAT (signed) saturation
4848 if (Val1 == ~Val2)
4849 usat = false;
4850 else if (NegVal == 0)
4851 usat = true;
4852 else
4853 return false;
4854
4855 V = V2;
4856 K = (uint64_t)PosVal; // At this point, PosVal is guaranteed to be positive
4857
4858 return true;
4859 }
4860
4861 return false;
4862 }
4863
4864 // Check if a condition of the type x < k ? k : x can be converted into a
4865 // bit operation instead of conditional moves.
4866 // Currently this is allowed given:
4867 // - The conditions and values match up
4868 // - k is 0 or -1 (all ones)
4869 // This function will not check the last condition, thats up to the caller
4870 // It returns true if the transformation can be made, and in such case
4871 // returns x in V, and k in SatK.
isLowerSaturatingConditional(const SDValue & Op,SDValue & V,SDValue & SatK)4872 static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
4873 SDValue &SatK)
4874 {
4875 SDValue LHS = Op.getOperand(0);
4876 SDValue RHS = Op.getOperand(1);
4877 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4878 SDValue TrueVal = Op.getOperand(2);
4879 SDValue FalseVal = Op.getOperand(3);
4880
4881 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
4882 ? &RHS
4883 : nullptr;
4884
4885 // No constant operation in comparison, early out
4886 if (!K)
4887 return false;
4888
4889 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
4890 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
4891 SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
4892
4893 // If the constant on left and right side, or variable on left and right,
4894 // does not match, early out
4895 if (*K != KTmp || V != VTmp)
4896 return false;
4897
4898 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
4899 SatK = *K;
4900 return true;
4901 }
4902
4903 return false;
4904 }
4905
isUnsupportedFloatingType(EVT VT) const4906 bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
4907 if (VT == MVT::f32)
4908 return !Subtarget->hasVFP2Base();
4909 if (VT == MVT::f64)
4910 return !Subtarget->hasFP64();
4911 if (VT == MVT::f16)
4912 return !Subtarget->hasFullFP16();
4913 return false;
4914 }
4915
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const4916 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4917 EVT VT = Op.getValueType();
4918 SDLoc dl(Op);
4919
4920 // Try to convert two saturating conditional selects into a single SSAT
4921 SDValue SatValue;
4922 uint64_t SatConstant;
4923 bool SatUSat;
4924 if (((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2()) &&
4925 isSaturatingConditional(Op, SatValue, SatConstant, SatUSat)) {
4926 if (SatUSat)
4927 return DAG.getNode(ARMISD::USAT, dl, VT, SatValue,
4928 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4929 else
4930 return DAG.getNode(ARMISD::SSAT, dl, VT, SatValue,
4931 DAG.getConstant(countTrailingOnes(SatConstant), dl, VT));
4932 }
4933
4934 // Try to convert expressions of the form x < k ? k : x (and similar forms)
4935 // into more efficient bit operations, which is possible when k is 0 or -1
4936 // On ARM and Thumb-2 which have flexible operand 2 this will result in
4937 // single instructions. On Thumb the shift and the bit operation will be two
4938 // instructions.
4939 // Only allow this transformation on full-width (32-bit) operations
4940 SDValue LowerSatConstant;
4941 if (VT == MVT::i32 &&
4942 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
4943 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
4944 DAG.getConstant(31, dl, VT));
4945 if (isNullConstant(LowerSatConstant)) {
4946 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
4947 DAG.getAllOnesConstant(dl, VT));
4948 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
4949 } else if (isAllOnesConstant(LowerSatConstant))
4950 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
4951 }
4952
4953 SDValue LHS = Op.getOperand(0);
4954 SDValue RHS = Op.getOperand(1);
4955 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4956 SDValue TrueVal = Op.getOperand(2);
4957 SDValue FalseVal = Op.getOperand(3);
4958 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
4959 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
4960
4961 if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
4962 LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
4963 unsigned TVal = CTVal->getZExtValue();
4964 unsigned FVal = CFVal->getZExtValue();
4965 unsigned Opcode = 0;
4966
4967 if (TVal == ~FVal) {
4968 Opcode = ARMISD::CSINV;
4969 } else if (TVal == ~FVal + 1) {
4970 Opcode = ARMISD::CSNEG;
4971 } else if (TVal + 1 == FVal) {
4972 Opcode = ARMISD::CSINC;
4973 } else if (TVal == FVal + 1) {
4974 Opcode = ARMISD::CSINC;
4975 std::swap(TrueVal, FalseVal);
4976 std::swap(TVal, FVal);
4977 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
4978 }
4979
4980 if (Opcode) {
4981 // If one of the constants is cheaper than another, materialise the
4982 // cheaper one and let the csel generate the other.
4983 if (Opcode != ARMISD::CSINC &&
4984 HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
4985 std::swap(TrueVal, FalseVal);
4986 std::swap(TVal, FVal);
4987 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
4988 }
4989
4990 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
4991 // to get there. CSINC not is invertable like the other two (~(~a) == a,
4992 // -(-a) == a, but (a+1)+1 != a).
4993 if (FVal == 0 && Opcode != ARMISD::CSINC) {
4994 std::swap(TrueVal, FalseVal);
4995 std::swap(TVal, FVal);
4996 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
4997 }
4998 if (TVal == 0)
4999 TrueVal = DAG.getRegister(ARM::ZR, MVT::i32);
5000
5001 // Drops F's value because we can get it by inverting/negating TVal.
5002 FalseVal = TrueVal;
5003
5004 SDValue ARMcc;
5005 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5006 EVT VT = TrueVal.getValueType();
5007 return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5008 }
5009 }
5010
5011 if (isUnsupportedFloatingType(LHS.getValueType())) {
5012 DAG.getTargetLoweringInfo().softenSetCCOperands(
5013 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5014
5015 // If softenSetCCOperands only returned one value, we should compare it to
5016 // zero.
5017 if (!RHS.getNode()) {
5018 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5019 CC = ISD::SETNE;
5020 }
5021 }
5022
5023 if (LHS.getValueType() == MVT::i32) {
5024 // Try to generate VSEL on ARMv8.
5025 // The VSEL instruction can't use all the usual ARM condition
5026 // codes: it only has two bits to select the condition code, so it's
5027 // constrained to use only GE, GT, VS and EQ.
5028 //
5029 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5030 // swap the operands of the previous compare instruction (effectively
5031 // inverting the compare condition, swapping 'less' and 'greater') and
5032 // sometimes need to swap the operands to the VSEL (which inverts the
5033 // condition in the sense of firing whenever the previous condition didn't)
5034 if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5035 TrueVal.getValueType() == MVT::f32 ||
5036 TrueVal.getValueType() == MVT::f64)) {
5037 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5038 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5039 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5040 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5041 std::swap(TrueVal, FalseVal);
5042 }
5043 }
5044
5045 SDValue ARMcc;
5046 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5047 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5048 // Choose GE over PL, which vsel does now support
5049 if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5050 ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5051 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5052 }
5053
5054 ARMCC::CondCodes CondCode, CondCode2;
5055 FPCCToARMCC(CC, CondCode, CondCode2);
5056
5057 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5058 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5059 // must use VSEL (limited condition codes), due to not having conditional f16
5060 // moves.
5061 if (Subtarget->hasFPARMv8Base() &&
5062 !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5063 (TrueVal.getValueType() == MVT::f16 ||
5064 TrueVal.getValueType() == MVT::f32 ||
5065 TrueVal.getValueType() == MVT::f64)) {
5066 bool swpCmpOps = false;
5067 bool swpVselOps = false;
5068 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5069
5070 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5071 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5072 if (swpCmpOps)
5073 std::swap(LHS, RHS);
5074 if (swpVselOps)
5075 std::swap(TrueVal, FalseVal);
5076 }
5077 }
5078
5079 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5080 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5081 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5082 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5083 if (CondCode2 != ARMCC::AL) {
5084 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5085 // FIXME: Needs another CMP because flag can have but one use.
5086 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5087 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5088 }
5089 return Result;
5090 }
5091
5092 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
5093 /// to morph to an integer compare sequence.
canChangeToInt(SDValue Op,bool & SeenZero,const ARMSubtarget * Subtarget)5094 static bool canChangeToInt(SDValue Op, bool &SeenZero,
5095 const ARMSubtarget *Subtarget) {
5096 SDNode *N = Op.getNode();
5097 if (!N->hasOneUse())
5098 // Otherwise it requires moving the value from fp to integer registers.
5099 return false;
5100 if (!N->getNumValues())
5101 return false;
5102 EVT VT = Op.getValueType();
5103 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5104 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5105 // vmrs are very slow, e.g. cortex-a8.
5106 return false;
5107
5108 if (isFloatingPointZero(Op)) {
5109 SeenZero = true;
5110 return true;
5111 }
5112 return ISD::isNormalLoad(N);
5113 }
5114
bitcastf32Toi32(SDValue Op,SelectionDAG & DAG)5115 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5116 if (isFloatingPointZero(Op))
5117 return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5118
5119 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5120 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5121 Ld->getPointerInfo(), Ld->getAlignment(),
5122 Ld->getMemOperand()->getFlags());
5123
5124 llvm_unreachable("Unknown VFP cmp argument!");
5125 }
5126
expandf64Toi32(SDValue Op,SelectionDAG & DAG,SDValue & RetVal1,SDValue & RetVal2)5127 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5128 SDValue &RetVal1, SDValue &RetVal2) {
5129 SDLoc dl(Op);
5130
5131 if (isFloatingPointZero(Op)) {
5132 RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5133 RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5134 return;
5135 }
5136
5137 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5138 SDValue Ptr = Ld->getBasePtr();
5139 RetVal1 =
5140 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5141 Ld->getAlignment(), Ld->getMemOperand()->getFlags());
5142
5143 EVT PtrType = Ptr.getValueType();
5144 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
5145 SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5146 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5147 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5148 Ld->getPointerInfo().getWithOffset(4), NewAlign,
5149 Ld->getMemOperand()->getFlags());
5150 return;
5151 }
5152
5153 llvm_unreachable("Unknown VFP cmp argument!");
5154 }
5155
5156 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5157 /// f32 and even f64 comparisons to integer ones.
5158 SDValue
OptimizeVFPBrcond(SDValue Op,SelectionDAG & DAG) const5159 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5160 SDValue Chain = Op.getOperand(0);
5161 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5162 SDValue LHS = Op.getOperand(2);
5163 SDValue RHS = Op.getOperand(3);
5164 SDValue Dest = Op.getOperand(4);
5165 SDLoc dl(Op);
5166
5167 bool LHSSeenZero = false;
5168 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5169 bool RHSSeenZero = false;
5170 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5171 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5172 // If unsafe fp math optimization is enabled and there are no other uses of
5173 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5174 // to an integer comparison.
5175 if (CC == ISD::SETOEQ)
5176 CC = ISD::SETEQ;
5177 else if (CC == ISD::SETUNE)
5178 CC = ISD::SETNE;
5179
5180 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5181 SDValue ARMcc;
5182 if (LHS.getValueType() == MVT::f32) {
5183 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5184 bitcastf32Toi32(LHS, DAG), Mask);
5185 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5186 bitcastf32Toi32(RHS, DAG), Mask);
5187 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5188 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5189 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5190 Chain, Dest, ARMcc, CCR, Cmp);
5191 }
5192
5193 SDValue LHS1, LHS2;
5194 SDValue RHS1, RHS2;
5195 expandf64Toi32(LHS, DAG, LHS1, LHS2);
5196 expandf64Toi32(RHS, DAG, RHS1, RHS2);
5197 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5198 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5199 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5200 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5201 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5202 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5203 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5204 }
5205
5206 return SDValue();
5207 }
5208
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const5209 SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5210 SDValue Chain = Op.getOperand(0);
5211 SDValue Cond = Op.getOperand(1);
5212 SDValue Dest = Op.getOperand(2);
5213 SDLoc dl(Op);
5214
5215 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5216 // instruction.
5217 unsigned Opc = Cond.getOpcode();
5218 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5219 !Subtarget->isThumb1Only();
5220 if (Cond.getResNo() == 1 &&
5221 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5222 Opc == ISD::USUBO || OptimizeMul)) {
5223 // Only lower legal XALUO ops.
5224 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5225 return SDValue();
5226
5227 // The actual operation with overflow check.
5228 SDValue Value, OverflowCmp;
5229 SDValue ARMcc;
5230 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5231
5232 // Reverse the condition code.
5233 ARMCC::CondCodes CondCode =
5234 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5235 CondCode = ARMCC::getOppositeCondition(CondCode);
5236 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5237 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5238
5239 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5240 OverflowCmp);
5241 }
5242
5243 return SDValue();
5244 }
5245
LowerBR_CC(SDValue Op,SelectionDAG & DAG) const5246 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5247 SDValue Chain = Op.getOperand(0);
5248 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5249 SDValue LHS = Op.getOperand(2);
5250 SDValue RHS = Op.getOperand(3);
5251 SDValue Dest = Op.getOperand(4);
5252 SDLoc dl(Op);
5253
5254 if (isUnsupportedFloatingType(LHS.getValueType())) {
5255 DAG.getTargetLoweringInfo().softenSetCCOperands(
5256 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5257
5258 // If softenSetCCOperands only returned one value, we should compare it to
5259 // zero.
5260 if (!RHS.getNode()) {
5261 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5262 CC = ISD::SETNE;
5263 }
5264 }
5265
5266 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5267 // instruction.
5268 unsigned Opc = LHS.getOpcode();
5269 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5270 !Subtarget->isThumb1Only();
5271 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5272 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5273 Opc == ISD::USUBO || OptimizeMul) &&
5274 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5275 // Only lower legal XALUO ops.
5276 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5277 return SDValue();
5278
5279 // The actual operation with overflow check.
5280 SDValue Value, OverflowCmp;
5281 SDValue ARMcc;
5282 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5283
5284 if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5285 // Reverse the condition code.
5286 ARMCC::CondCodes CondCode =
5287 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5288 CondCode = ARMCC::getOppositeCondition(CondCode);
5289 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5290 }
5291 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5292
5293 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5294 OverflowCmp);
5295 }
5296
5297 if (LHS.getValueType() == MVT::i32) {
5298 SDValue ARMcc;
5299 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5300 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5301 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5302 Chain, Dest, ARMcc, CCR, Cmp);
5303 }
5304
5305 if (getTargetMachine().Options.UnsafeFPMath &&
5306 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5307 CC == ISD::SETNE || CC == ISD::SETUNE)) {
5308 if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5309 return Result;
5310 }
5311
5312 ARMCC::CondCodes CondCode, CondCode2;
5313 FPCCToARMCC(CC, CondCode, CondCode2);
5314
5315 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5316 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5317 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5318 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5319 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5320 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5321 if (CondCode2 != ARMCC::AL) {
5322 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5323 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5324 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5325 }
5326 return Res;
5327 }
5328
LowerBR_JT(SDValue Op,SelectionDAG & DAG) const5329 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5330 SDValue Chain = Op.getOperand(0);
5331 SDValue Table = Op.getOperand(1);
5332 SDValue Index = Op.getOperand(2);
5333 SDLoc dl(Op);
5334
5335 EVT PTy = getPointerTy(DAG.getDataLayout());
5336 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5337 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5338 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5339 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5340 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5341 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5342 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5343 // which does another jump to the destination. This also makes it easier
5344 // to translate it to TBB / TBH later (Thumb2 only).
5345 // FIXME: This might not work if the function is extremely large.
5346 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5347 Addr, Op.getOperand(2), JTI);
5348 }
5349 if (isPositionIndependent() || Subtarget->isROPI()) {
5350 Addr =
5351 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5352 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5353 Chain = Addr.getValue(1);
5354 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5355 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5356 } else {
5357 Addr =
5358 DAG.getLoad(PTy, dl, Chain, Addr,
5359 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5360 Chain = Addr.getValue(1);
5361 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5362 }
5363 }
5364
LowerVectorFP_TO_INT(SDValue Op,SelectionDAG & DAG)5365 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5366 EVT VT = Op.getValueType();
5367 SDLoc dl(Op);
5368
5369 if (Op.getValueType().getVectorElementType() == MVT::i32) {
5370 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5371 return Op;
5372 return DAG.UnrollVectorOp(Op.getNode());
5373 }
5374
5375 const bool HasFullFP16 =
5376 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5377
5378 EVT NewTy;
5379 const EVT OpTy = Op.getOperand(0).getValueType();
5380 if (OpTy == MVT::v4f32)
5381 NewTy = MVT::v4i32;
5382 else if (OpTy == MVT::v4f16 && HasFullFP16)
5383 NewTy = MVT::v4i16;
5384 else if (OpTy == MVT::v8f16 && HasFullFP16)
5385 NewTy = MVT::v8i16;
5386 else
5387 llvm_unreachable("Invalid type for custom lowering!");
5388
5389 if (VT != MVT::v4i16 && VT != MVT::v8i16)
5390 return DAG.UnrollVectorOp(Op.getNode());
5391
5392 Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5393 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5394 }
5395
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG) const5396 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5397 EVT VT = Op.getValueType();
5398 if (VT.isVector())
5399 return LowerVectorFP_TO_INT(Op, DAG);
5400
5401 bool IsStrict = Op->isStrictFPOpcode();
5402 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5403
5404 if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5405 RTLIB::Libcall LC;
5406 if (Op.getOpcode() == ISD::FP_TO_SINT ||
5407 Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5408 LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5409 Op.getValueType());
5410 else
5411 LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5412 Op.getValueType());
5413 SDLoc Loc(Op);
5414 MakeLibCallOptions CallOptions;
5415 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5416 SDValue Result;
5417 std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5418 CallOptions, Loc, Chain);
5419 return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5420 }
5421
5422 // FIXME: Remove this when we have strict fp instruction selection patterns
5423 if (IsStrict) {
5424 SDLoc Loc(Op);
5425 SDValue Result =
5426 DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5427 : ISD::FP_TO_UINT,
5428 Loc, Op.getValueType(), SrcVal);
5429 return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5430 }
5431
5432 return Op;
5433 }
5434
LowerVectorINT_TO_FP(SDValue Op,SelectionDAG & DAG)5435 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5436 EVT VT = Op.getValueType();
5437 SDLoc dl(Op);
5438
5439 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5440 if (VT.getVectorElementType() == MVT::f32)
5441 return Op;
5442 return DAG.UnrollVectorOp(Op.getNode());
5443 }
5444
5445 assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||
5446 Op.getOperand(0).getValueType() == MVT::v8i16) &&
5447 "Invalid type for custom lowering!");
5448
5449 const bool HasFullFP16 =
5450 static_cast<const ARMSubtarget&>(DAG.getSubtarget()).hasFullFP16();
5451
5452 EVT DestVecType;
5453 if (VT == MVT::v4f32)
5454 DestVecType = MVT::v4i32;
5455 else if (VT == MVT::v4f16 && HasFullFP16)
5456 DestVecType = MVT::v4i16;
5457 else if (VT == MVT::v8f16 && HasFullFP16)
5458 DestVecType = MVT::v8i16;
5459 else
5460 return DAG.UnrollVectorOp(Op.getNode());
5461
5462 unsigned CastOpc;
5463 unsigned Opc;
5464 switch (Op.getOpcode()) {
5465 default: llvm_unreachable("Invalid opcode!");
5466 case ISD::SINT_TO_FP:
5467 CastOpc = ISD::SIGN_EXTEND;
5468 Opc = ISD::SINT_TO_FP;
5469 break;
5470 case ISD::UINT_TO_FP:
5471 CastOpc = ISD::ZERO_EXTEND;
5472 Opc = ISD::UINT_TO_FP;
5473 break;
5474 }
5475
5476 Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5477 return DAG.getNode(Opc, dl, VT, Op);
5478 }
5479
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const5480 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5481 EVT VT = Op.getValueType();
5482 if (VT.isVector())
5483 return LowerVectorINT_TO_FP(Op, DAG);
5484 if (isUnsupportedFloatingType(VT)) {
5485 RTLIB::Libcall LC;
5486 if (Op.getOpcode() == ISD::SINT_TO_FP)
5487 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5488 Op.getValueType());
5489 else
5490 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5491 Op.getValueType());
5492 MakeLibCallOptions CallOptions;
5493 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5494 CallOptions, SDLoc(Op)).first;
5495 }
5496
5497 return Op;
5498 }
5499
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const5500 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
5501 // Implement fcopysign with a fabs and a conditional fneg.
5502 SDValue Tmp0 = Op.getOperand(0);
5503 SDValue Tmp1 = Op.getOperand(1);
5504 SDLoc dl(Op);
5505 EVT VT = Op.getValueType();
5506 EVT SrcVT = Tmp1.getValueType();
5507 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
5508 Tmp0.getOpcode() == ARMISD::VMOVDRR;
5509 bool UseNEON = !InGPR && Subtarget->hasNEON();
5510
5511 if (UseNEON) {
5512 // Use VBSL to copy the sign bit.
5513 unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
5514 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
5515 DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
5516 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
5517 if (VT == MVT::f64)
5518 Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5519 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
5520 DAG.getConstant(32, dl, MVT::i32));
5521 else /*if (VT == MVT::f32)*/
5522 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
5523 if (SrcVT == MVT::f32) {
5524 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
5525 if (VT == MVT::f64)
5526 Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
5527 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
5528 DAG.getConstant(32, dl, MVT::i32));
5529 } else if (VT == MVT::f32)
5530 Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
5531 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
5532 DAG.getConstant(32, dl, MVT::i32));
5533 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
5534 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
5535
5536 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff),
5537 dl, MVT::i32);
5538 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
5539 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
5540 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
5541
5542 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
5543 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
5544 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
5545 if (VT == MVT::f32) {
5546 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
5547 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
5548 DAG.getConstant(0, dl, MVT::i32));
5549 } else {
5550 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
5551 }
5552
5553 return Res;
5554 }
5555
5556 // Bitcast operand 1 to i32.
5557 if (SrcVT == MVT::f64)
5558 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5559 Tmp1).getValue(1);
5560 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
5561
5562 // Or in the signbit with integer operations.
5563 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
5564 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5565 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
5566 if (VT == MVT::f32) {
5567 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
5568 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
5569 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5570 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
5571 }
5572
5573 // f64: Or the high part with signbit and then combine two parts.
5574 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
5575 Tmp0);
5576 SDValue Lo = Tmp0.getValue(0);
5577 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
5578 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
5579 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
5580 }
5581
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const5582 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
5583 MachineFunction &MF = DAG.getMachineFunction();
5584 MachineFrameInfo &MFI = MF.getFrameInfo();
5585 MFI.setReturnAddressIsTaken(true);
5586
5587 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
5588 return SDValue();
5589
5590 EVT VT = Op.getValueType();
5591 SDLoc dl(Op);
5592 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5593 if (Depth) {
5594 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5595 SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
5596 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
5597 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
5598 MachinePointerInfo());
5599 }
5600
5601 // Return LR, which contains the return address. Mark it an implicit live-in.
5602 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
5603 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
5604 }
5605
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const5606 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
5607 const ARMBaseRegisterInfo &ARI =
5608 *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
5609 MachineFunction &MF = DAG.getMachineFunction();
5610 MachineFrameInfo &MFI = MF.getFrameInfo();
5611 MFI.setFrameAddressIsTaken(true);
5612
5613 EVT VT = Op.getValueType();
5614 SDLoc dl(Op); // FIXME probably not meaningful
5615 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5616 Register FrameReg = ARI.getFrameRegister(MF);
5617 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
5618 while (Depth--)
5619 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
5620 MachinePointerInfo());
5621 return FrameAddr;
5622 }
5623
5624 // FIXME? Maybe this could be a TableGen attribute on some registers and
5625 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const5626 Register ARMTargetLowering::getRegisterByName(const char* RegName, LLT VT,
5627 const MachineFunction &MF) const {
5628 Register Reg = StringSwitch<unsigned>(RegName)
5629 .Case("sp", ARM::SP)
5630 .Default(0);
5631 if (Reg)
5632 return Reg;
5633 report_fatal_error(Twine("Invalid register name \""
5634 + StringRef(RegName) + "\"."));
5635 }
5636
5637 // Result is 64 bit value so split into two 32 bit values and return as a
5638 // pair of values.
ExpandREAD_REGISTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)5639 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
5640 SelectionDAG &DAG) {
5641 SDLoc DL(N);
5642
5643 // This function is only supposed to be called for i64 type destination.
5644 assert(N->getValueType(0) == MVT::i64
5645 && "ExpandREAD_REGISTER called for non-i64 type result.");
5646
5647 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
5648 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
5649 N->getOperand(0),
5650 N->getOperand(1));
5651
5652 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
5653 Read.getValue(1)));
5654 Results.push_back(Read.getOperand(0));
5655 }
5656
5657 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
5658 /// When \p DstVT, the destination type of \p BC, is on the vector
5659 /// register bank and the source of bitcast, \p Op, operates on the same bank,
5660 /// it might be possible to combine them, such that everything stays on the
5661 /// vector register bank.
5662 /// \p return The node that would replace \p BT, if the combine
5663 /// is possible.
CombineVMOVDRRCandidateWithVecOp(const SDNode * BC,SelectionDAG & DAG)5664 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
5665 SelectionDAG &DAG) {
5666 SDValue Op = BC->getOperand(0);
5667 EVT DstVT = BC->getValueType(0);
5668
5669 // The only vector instruction that can produce a scalar (remember,
5670 // since the bitcast was about to be turned into VMOVDRR, the source
5671 // type is i64) from a vector is EXTRACT_VECTOR_ELT.
5672 // Moreover, we can do this combine only if there is one use.
5673 // Finally, if the destination type is not a vector, there is not
5674 // much point on forcing everything on the vector bank.
5675 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
5676 !Op.hasOneUse())
5677 return SDValue();
5678
5679 // If the index is not constant, we will introduce an additional
5680 // multiply that will stick.
5681 // Give up in that case.
5682 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
5683 if (!Index)
5684 return SDValue();
5685 unsigned DstNumElt = DstVT.getVectorNumElements();
5686
5687 // Compute the new index.
5688 const APInt &APIntIndex = Index->getAPIntValue();
5689 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
5690 NewIndex *= APIntIndex;
5691 // Check if the new constant index fits into i32.
5692 if (NewIndex.getBitWidth() > 32)
5693 return SDValue();
5694
5695 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
5696 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
5697 SDLoc dl(Op);
5698 SDValue ExtractSrc = Op.getOperand(0);
5699 EVT VecVT = EVT::getVectorVT(
5700 *DAG.getContext(), DstVT.getScalarType(),
5701 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
5702 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
5703 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
5704 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
5705 }
5706
5707 /// ExpandBITCAST - If the target supports VFP, this function is called to
5708 /// expand a bit convert where either the source or destination type is i64 to
5709 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
5710 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
5711 /// vectors), since the legalizer won't know what to do with that.
ExpandBITCAST(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)5712 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG,
5713 const ARMSubtarget *Subtarget) {
5714 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5715 SDLoc dl(N);
5716 SDValue Op = N->getOperand(0);
5717
5718 // This function is only supposed to be called for i64 types, either as the
5719 // source or destination of the bit convert.
5720 EVT SrcVT = Op.getValueType();
5721 EVT DstVT = N->getValueType(0);
5722 const bool HasFullFP16 = Subtarget->hasFullFP16();
5723
5724 if (SrcVT == MVT::f32 && DstVT == MVT::i32) {
5725 // FullFP16: half values are passed in S-registers, and we don't
5726 // need any of the bitcast and moves:
5727 //
5728 // t2: f32,ch = CopyFromReg t0, Register:f32 %0
5729 // t5: i32 = bitcast t2
5730 // t18: f16 = ARMISD::VMOVhr t5
5731 if (Op.getOpcode() != ISD::CopyFromReg ||
5732 Op.getValueType() != MVT::f32)
5733 return SDValue();
5734
5735 auto Move = N->use_begin();
5736 if (Move->getOpcode() != ARMISD::VMOVhr)
5737 return SDValue();
5738
5739 SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) };
5740 SDValue Copy = DAG.getNode(ISD::CopyFromReg, SDLoc(Op), MVT::f16, Ops);
5741 DAG.ReplaceAllUsesWith(*Move, &Copy);
5742 return Copy;
5743 }
5744
5745 if (SrcVT == MVT::i16 && DstVT == MVT::f16) {
5746 if (!HasFullFP16)
5747 return SDValue();
5748 // SoftFP: read half-precision arguments:
5749 //
5750 // t2: i32,ch = ...
5751 // t7: i16 = truncate t2 <~~~~ Op
5752 // t8: f16 = bitcast t7 <~~~~ N
5753 //
5754 if (Op.getOperand(0).getValueType() == MVT::i32)
5755 return DAG.getNode(ARMISD::VMOVhr, SDLoc(Op),
5756 MVT::f16, Op.getOperand(0));
5757
5758 return SDValue();
5759 }
5760
5761 // Half-precision return values
5762 if (SrcVT == MVT::f16 && DstVT == MVT::i16) {
5763 if (!HasFullFP16)
5764 return SDValue();
5765 //
5766 // t11: f16 = fadd t8, t10
5767 // t12: i16 = bitcast t11 <~~~ SDNode N
5768 // t13: i32 = zero_extend t12
5769 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t13
5770 // t17: ch = ARMISD::RET_FLAG t16, Register:i32 %r0, t16:1
5771 //
5772 // transform this into:
5773 //
5774 // t20: i32 = ARMISD::VMOVrh t11
5775 // t16: ch,glue = CopyToReg t0, Register:i32 %r0, t20
5776 //
5777 auto ZeroExtend = N->use_begin();
5778 if (N->use_size() != 1 || ZeroExtend->getOpcode() != ISD::ZERO_EXTEND ||
5779 ZeroExtend->getValueType(0) != MVT::i32)
5780 return SDValue();
5781
5782 auto Copy = ZeroExtend->use_begin();
5783 if (Copy->getOpcode() == ISD::CopyToReg &&
5784 Copy->use_begin()->getOpcode() == ARMISD::RET_FLAG) {
5785 SDValue Cvt = DAG.getNode(ARMISD::VMOVrh, SDLoc(Op), MVT::i32, Op);
5786 DAG.ReplaceAllUsesWith(*ZeroExtend, &Cvt);
5787 return Cvt;
5788 }
5789 return SDValue();
5790 }
5791
5792 if (!(SrcVT == MVT::i64 || DstVT == MVT::i64))
5793 return SDValue();
5794
5795 // Turn i64->f64 into VMOVDRR.
5796 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
5797 // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
5798 // if we can combine the bitcast with its source.
5799 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
5800 return Val;
5801
5802 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5803 DAG.getConstant(0, dl, MVT::i32));
5804 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
5805 DAG.getConstant(1, dl, MVT::i32));
5806 return DAG.getNode(ISD::BITCAST, dl, DstVT,
5807 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
5808 }
5809
5810 // Turn f64->i64 into VMOVRRD.
5811 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
5812 SDValue Cvt;
5813 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
5814 SrcVT.getVectorNumElements() > 1)
5815 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5816 DAG.getVTList(MVT::i32, MVT::i32),
5817 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
5818 else
5819 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
5820 DAG.getVTList(MVT::i32, MVT::i32), Op);
5821 // Merge the pieces into a single i64 value.
5822 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
5823 }
5824
5825 return SDValue();
5826 }
5827
5828 /// getZeroVector - Returns a vector of specified type with all zero elements.
5829 /// Zero vectors are used to represent vector negation and in those cases
5830 /// will be implemented with the NEON VNEG instruction. However, VNEG does
5831 /// not support i64 elements, so sometimes the zero vectors will need to be
5832 /// explicitly constructed. Regardless, use a canonical VMOV to create the
5833 /// zero vector.
getZeroVector(EVT VT,SelectionDAG & DAG,const SDLoc & dl)5834 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, const SDLoc &dl) {
5835 assert(VT.isVector() && "Expected a vector type");
5836 // The canonical modified immediate encoding of a zero vector is....0!
5837 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
5838 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
5839 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
5840 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
5841 }
5842
5843 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
5844 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftRightParts(SDValue Op,SelectionDAG & DAG) const5845 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
5846 SelectionDAG &DAG) const {
5847 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5848 EVT VT = Op.getValueType();
5849 unsigned VTBits = VT.getSizeInBits();
5850 SDLoc dl(Op);
5851 SDValue ShOpLo = Op.getOperand(0);
5852 SDValue ShOpHi = Op.getOperand(1);
5853 SDValue ShAmt = Op.getOperand(2);
5854 SDValue ARMcc;
5855 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5856 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
5857
5858 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
5859
5860 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5861 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5862 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
5863 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5864 DAG.getConstant(VTBits, dl, MVT::i32));
5865 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
5866 SDValue LoSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5867 SDValue LoBigShift = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
5868 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5869 ISD::SETGE, ARMcc, DAG, dl);
5870 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift, LoBigShift,
5871 ARMcc, CCR, CmpLo);
5872
5873 SDValue HiSmallShift = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
5874 SDValue HiBigShift = Opc == ISD::SRA
5875 ? DAG.getNode(Opc, dl, VT, ShOpHi,
5876 DAG.getConstant(VTBits - 1, dl, VT))
5877 : DAG.getConstant(0, dl, VT);
5878 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5879 ISD::SETGE, ARMcc, DAG, dl);
5880 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5881 ARMcc, CCR, CmpHi);
5882
5883 SDValue Ops[2] = { Lo, Hi };
5884 return DAG.getMergeValues(Ops, dl);
5885 }
5886
5887 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
5888 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
LowerShiftLeftParts(SDValue Op,SelectionDAG & DAG) const5889 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
5890 SelectionDAG &DAG) const {
5891 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
5892 EVT VT = Op.getValueType();
5893 unsigned VTBits = VT.getSizeInBits();
5894 SDLoc dl(Op);
5895 SDValue ShOpLo = Op.getOperand(0);
5896 SDValue ShOpHi = Op.getOperand(1);
5897 SDValue ShAmt = Op.getOperand(2);
5898 SDValue ARMcc;
5899 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5900
5901 assert(Op.getOpcode() == ISD::SHL_PARTS);
5902 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
5903 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
5904 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
5905 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
5906 SDValue HiSmallShift = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
5907
5908 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
5909 DAG.getConstant(VTBits, dl, MVT::i32));
5910 SDValue HiBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
5911 SDValue CmpHi = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5912 ISD::SETGE, ARMcc, DAG, dl);
5913 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, HiSmallShift, HiBigShift,
5914 ARMcc, CCR, CmpHi);
5915
5916 SDValue CmpLo = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
5917 ISD::SETGE, ARMcc, DAG, dl);
5918 SDValue LoSmallShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
5919 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, LoSmallShift,
5920 DAG.getConstant(0, dl, VT), ARMcc, CCR, CmpLo);
5921
5922 SDValue Ops[2] = { Lo, Hi };
5923 return DAG.getMergeValues(Ops, dl);
5924 }
5925
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const5926 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
5927 SelectionDAG &DAG) const {
5928 // The rounding mode is in bits 23:22 of the FPSCR.
5929 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
5930 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
5931 // so that the shift + and get folded into a bitfield extract.
5932 SDLoc dl(Op);
5933 SDValue Ops[] = { DAG.getEntryNode(),
5934 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, MVT::i32) };
5935
5936 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_W_CHAIN, dl, MVT::i32, Ops);
5937 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
5938 DAG.getConstant(1U << 22, dl, MVT::i32));
5939 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
5940 DAG.getConstant(22, dl, MVT::i32));
5941 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
5942 DAG.getConstant(3, dl, MVT::i32));
5943 }
5944
LowerCTTZ(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)5945 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
5946 const ARMSubtarget *ST) {
5947 SDLoc dl(N);
5948 EVT VT = N->getValueType(0);
5949 if (VT.isVector() && ST->hasNEON()) {
5950
5951 // Compute the least significant set bit: LSB = X & -X
5952 SDValue X = N->getOperand(0);
5953 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
5954 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
5955
5956 EVT ElemTy = VT.getVectorElementType();
5957
5958 if (ElemTy == MVT::i8) {
5959 // Compute with: cttz(x) = ctpop(lsb - 1)
5960 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5961 DAG.getTargetConstant(1, dl, ElemTy));
5962 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5963 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5964 }
5965
5966 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
5967 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
5968 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
5969 unsigned NumBits = ElemTy.getSizeInBits();
5970 SDValue WidthMinus1 =
5971 DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5972 DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
5973 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
5974 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
5975 }
5976
5977 // Compute with: cttz(x) = ctpop(lsb - 1)
5978
5979 // Compute LSB - 1.
5980 SDValue Bits;
5981 if (ElemTy == MVT::i64) {
5982 // Load constant 0xffff'ffff'ffff'ffff to register.
5983 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5984 DAG.getTargetConstant(0x1eff, dl, MVT::i32));
5985 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
5986 } else {
5987 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
5988 DAG.getTargetConstant(1, dl, ElemTy));
5989 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
5990 }
5991 return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
5992 }
5993
5994 if (!ST->hasV6T2Ops())
5995 return SDValue();
5996
5997 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
5998 return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
5999 }
6000
LowerCTPOP(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6001 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
6002 const ARMSubtarget *ST) {
6003 EVT VT = N->getValueType(0);
6004 SDLoc DL(N);
6005
6006 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
6007 assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||
6008 VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&
6009 "Unexpected type for custom ctpop lowering");
6010
6011 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6012 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
6013 SDValue Res = DAG.getBitcast(VT8Bit, N->getOperand(0));
6014 Res = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Res);
6015
6016 // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds.
6017 unsigned EltSize = 8;
6018 unsigned NumElts = VT.is64BitVector() ? 8 : 16;
6019 while (EltSize != VT.getScalarSizeInBits()) {
6020 SmallVector<SDValue, 8> Ops;
6021 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddlu, DL,
6022 TLI.getPointerTy(DAG.getDataLayout())));
6023 Ops.push_back(Res);
6024
6025 EltSize *= 2;
6026 NumElts /= 2;
6027 MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts);
6028 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, Ops);
6029 }
6030
6031 return Res;
6032 }
6033
6034 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
6035 /// operand of a vector shift operation, where all the elements of the
6036 /// build_vector must have the same constant integer value.
getVShiftImm(SDValue Op,unsigned ElementBits,int64_t & Cnt)6037 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
6038 // Ignore bit_converts.
6039 while (Op.getOpcode() == ISD::BITCAST)
6040 Op = Op.getOperand(0);
6041 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
6042 APInt SplatBits, SplatUndef;
6043 unsigned SplatBitSize;
6044 bool HasAnyUndefs;
6045 if (!BVN ||
6046 !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs,
6047 ElementBits) ||
6048 SplatBitSize > ElementBits)
6049 return false;
6050 Cnt = SplatBits.getSExtValue();
6051 return true;
6052 }
6053
6054 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
6055 /// operand of a vector shift left operation. That value must be in the range:
6056 /// 0 <= Value < ElementBits for a left shift; or
6057 /// 0 <= Value <= ElementBits for a long left shift.
isVShiftLImm(SDValue Op,EVT VT,bool isLong,int64_t & Cnt)6058 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
6059 assert(VT.isVector() && "vector shift count is not a vector type");
6060 int64_t ElementBits = VT.getScalarSizeInBits();
6061 if (!getVShiftImm(Op, ElementBits, Cnt))
6062 return false;
6063 return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits);
6064 }
6065
6066 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
6067 /// operand of a vector shift right operation. For a shift opcode, the value
6068 /// is positive, but for an intrinsic the value count must be negative. The
6069 /// absolute value must be in the range:
6070 /// 1 <= |Value| <= ElementBits for a right shift; or
6071 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
isVShiftRImm(SDValue Op,EVT VT,bool isNarrow,bool isIntrinsic,int64_t & Cnt)6072 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
6073 int64_t &Cnt) {
6074 assert(VT.isVector() && "vector shift count is not a vector type");
6075 int64_t ElementBits = VT.getScalarSizeInBits();
6076 if (!getVShiftImm(Op, ElementBits, Cnt))
6077 return false;
6078 if (!isIntrinsic)
6079 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits));
6080 if (Cnt >= -(isNarrow ? ElementBits / 2 : ElementBits) && Cnt <= -1) {
6081 Cnt = -Cnt;
6082 return true;
6083 }
6084 return false;
6085 }
6086
LowerShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6087 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
6088 const ARMSubtarget *ST) {
6089 EVT VT = N->getValueType(0);
6090 SDLoc dl(N);
6091 int64_t Cnt;
6092
6093 if (!VT.isVector())
6094 return SDValue();
6095
6096 // We essentially have two forms here. Shift by an immediate and shift by a
6097 // vector register (there are also shift by a gpr, but that is just handled
6098 // with a tablegen pattern). We cannot easily match shift by an immediate in
6099 // tablegen so we do that here and generate a VSHLIMM/VSHRsIMM/VSHRuIMM.
6100 // For shifting by a vector, we don't have VSHR, only VSHL (which can be
6101 // signed or unsigned, and a negative shift indicates a shift right).
6102 if (N->getOpcode() == ISD::SHL) {
6103 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
6104 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
6105 DAG.getConstant(Cnt, dl, MVT::i32));
6106 return DAG.getNode(ARMISD::VSHLu, dl, VT, N->getOperand(0),
6107 N->getOperand(1));
6108 }
6109
6110 assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
6111 "unexpected vector shift opcode");
6112
6113 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
6114 unsigned VShiftOpc =
6115 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
6116 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
6117 DAG.getConstant(Cnt, dl, MVT::i32));
6118 }
6119
6120 // Other right shifts we don't have operations for (we use a shift left by a
6121 // negative number).
6122 EVT ShiftVT = N->getOperand(1).getValueType();
6123 SDValue NegatedCount = DAG.getNode(
6124 ISD::SUB, dl, ShiftVT, getZeroVector(ShiftVT, DAG, dl), N->getOperand(1));
6125 unsigned VShiftOpc =
6126 (N->getOpcode() == ISD::SRA ? ARMISD::VSHLs : ARMISD::VSHLu);
6127 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), NegatedCount);
6128 }
6129
Expand64BitShift(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)6130 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
6131 const ARMSubtarget *ST) {
6132 EVT VT = N->getValueType(0);
6133 SDLoc dl(N);
6134
6135 // We can get here for a node like i32 = ISD::SHL i32, i64
6136 if (VT != MVT::i64)
6137 return SDValue();
6138
6139 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA ||
6140 N->getOpcode() == ISD::SHL) &&
6141 "Unknown shift to lower!");
6142
6143 unsigned ShOpc = N->getOpcode();
6144 if (ST->hasMVEIntegerOps()) {
6145 SDValue ShAmt = N->getOperand(1);
6146 unsigned ShPartsOpc = ARMISD::LSLL;
6147 ConstantSDNode *Con = dyn_cast<ConstantSDNode>(ShAmt);
6148
6149 // If the shift amount is greater than 32 or has a greater bitwidth than 64
6150 // then do the default optimisation
6151 if (ShAmt->getValueType(0).getSizeInBits() > 64 ||
6152 (Con && (Con->getZExtValue() == 0 || Con->getZExtValue() >= 32)))
6153 return SDValue();
6154
6155 // Extract the lower 32 bits of the shift amount if it's not an i32
6156 if (ShAmt->getValueType(0) != MVT::i32)
6157 ShAmt = DAG.getZExtOrTrunc(ShAmt, dl, MVT::i32);
6158
6159 if (ShOpc == ISD::SRL) {
6160 if (!Con)
6161 // There is no t2LSRLr instruction so negate and perform an lsll if the
6162 // shift amount is in a register, emulating a right shift.
6163 ShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
6164 DAG.getConstant(0, dl, MVT::i32), ShAmt);
6165 else
6166 // Else generate an lsrl on the immediate shift amount
6167 ShPartsOpc = ARMISD::LSRL;
6168 } else if (ShOpc == ISD::SRA)
6169 ShPartsOpc = ARMISD::ASRL;
6170
6171 // Lower 32 bits of the destination/source
6172 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6173 DAG.getConstant(0, dl, MVT::i32));
6174 // Upper 32 bits of the destination/source
6175 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6176 DAG.getConstant(1, dl, MVT::i32));
6177
6178 // Generate the shift operation as computed above
6179 Lo = DAG.getNode(ShPartsOpc, dl, DAG.getVTList(MVT::i32, MVT::i32), Lo, Hi,
6180 ShAmt);
6181 // The upper 32 bits come from the second return value of lsll
6182 Hi = SDValue(Lo.getNode(), 1);
6183 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6184 }
6185
6186 // We only lower SRA, SRL of 1 here, all others use generic lowering.
6187 if (!isOneConstant(N->getOperand(1)) || N->getOpcode() == ISD::SHL)
6188 return SDValue();
6189
6190 // If we are in thumb mode, we don't have RRX.
6191 if (ST->isThumb1Only())
6192 return SDValue();
6193
6194 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
6195 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6196 DAG.getConstant(0, dl, MVT::i32));
6197 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
6198 DAG.getConstant(1, dl, MVT::i32));
6199
6200 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
6201 // captures the result into a carry flag.
6202 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
6203 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
6204
6205 // The low part is an ARMISD::RRX operand, which shifts the carry in.
6206 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
6207
6208 // Merge the pieces into a single i64 value.
6209 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6210 }
6211
LowerVSETCC(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)6212 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG,
6213 const ARMSubtarget *ST) {
6214 bool Invert = false;
6215 bool Swap = false;
6216 unsigned Opc = ARMCC::AL;
6217
6218 SDValue Op0 = Op.getOperand(0);
6219 SDValue Op1 = Op.getOperand(1);
6220 SDValue CC = Op.getOperand(2);
6221 EVT VT = Op.getValueType();
6222 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
6223 SDLoc dl(Op);
6224
6225 EVT CmpVT;
6226 if (ST->hasNEON())
6227 CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
6228 else {
6229 assert(ST->hasMVEIntegerOps() &&
6230 "No hardware support for integer vector comparison!");
6231
6232 if (Op.getValueType().getVectorElementType() != MVT::i1)
6233 return SDValue();
6234
6235 // Make sure we expand floating point setcc to scalar if we do not have
6236 // mve.fp, so that we can handle them from there.
6237 if (Op0.getValueType().isFloatingPoint() && !ST->hasMVEFloatOps())
6238 return SDValue();
6239
6240 CmpVT = VT;
6241 }
6242
6243 if (Op0.getValueType().getVectorElementType() == MVT::i64 &&
6244 (SetCCOpcode == ISD::SETEQ || SetCCOpcode == ISD::SETNE)) {
6245 // Special-case integer 64-bit equality comparisons. They aren't legal,
6246 // but they can be lowered with a few vector instructions.
6247 unsigned CmpElements = CmpVT.getVectorNumElements() * 2;
6248 EVT SplitVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, CmpElements);
6249 SDValue CastOp0 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op0);
6250 SDValue CastOp1 = DAG.getNode(ISD::BITCAST, dl, SplitVT, Op1);
6251 SDValue Cmp = DAG.getNode(ISD::SETCC, dl, SplitVT, CastOp0, CastOp1,
6252 DAG.getCondCode(ISD::SETEQ));
6253 SDValue Reversed = DAG.getNode(ARMISD::VREV64, dl, SplitVT, Cmp);
6254 SDValue Merged = DAG.getNode(ISD::AND, dl, SplitVT, Cmp, Reversed);
6255 Merged = DAG.getNode(ISD::BITCAST, dl, CmpVT, Merged);
6256 if (SetCCOpcode == ISD::SETNE)
6257 Merged = DAG.getNOT(dl, Merged, CmpVT);
6258 Merged = DAG.getSExtOrTrunc(Merged, dl, VT);
6259 return Merged;
6260 }
6261
6262 if (CmpVT.getVectorElementType() == MVT::i64)
6263 // 64-bit comparisons are not legal in general.
6264 return SDValue();
6265
6266 if (Op1.getValueType().isFloatingPoint()) {
6267 switch (SetCCOpcode) {
6268 default: llvm_unreachable("Illegal FP comparison");
6269 case ISD::SETUNE:
6270 case ISD::SETNE:
6271 if (ST->hasMVEFloatOps()) {
6272 Opc = ARMCC::NE; break;
6273 } else {
6274 Invert = true; LLVM_FALLTHROUGH;
6275 }
6276 case ISD::SETOEQ:
6277 case ISD::SETEQ: Opc = ARMCC::EQ; break;
6278 case ISD::SETOLT:
6279 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6280 case ISD::SETOGT:
6281 case ISD::SETGT: Opc = ARMCC::GT; break;
6282 case ISD::SETOLE:
6283 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
6284 case ISD::SETOGE:
6285 case ISD::SETGE: Opc = ARMCC::GE; break;
6286 case ISD::SETUGE: Swap = true; LLVM_FALLTHROUGH;
6287 case ISD::SETULE: Invert = true; Opc = ARMCC::GT; break;
6288 case ISD::SETUGT: Swap = true; LLVM_FALLTHROUGH;
6289 case ISD::SETULT: Invert = true; Opc = ARMCC::GE; break;
6290 case ISD::SETUEQ: Invert = true; LLVM_FALLTHROUGH;
6291 case ISD::SETONE: {
6292 // Expand this to (OLT | OGT).
6293 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6294 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6295 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6296 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6297 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6298 if (Invert)
6299 Result = DAG.getNOT(dl, Result, VT);
6300 return Result;
6301 }
6302 case ISD::SETUO: Invert = true; LLVM_FALLTHROUGH;
6303 case ISD::SETO: {
6304 // Expand this to (OLT | OGE).
6305 SDValue TmpOp0 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op1, Op0,
6306 DAG.getConstant(ARMCC::GT, dl, MVT::i32));
6307 SDValue TmpOp1 = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6308 DAG.getConstant(ARMCC::GE, dl, MVT::i32));
6309 SDValue Result = DAG.getNode(ISD::OR, dl, CmpVT, TmpOp0, TmpOp1);
6310 if (Invert)
6311 Result = DAG.getNOT(dl, Result, VT);
6312 return Result;
6313 }
6314 }
6315 } else {
6316 // Integer comparisons.
6317 switch (SetCCOpcode) {
6318 default: llvm_unreachable("Illegal integer comparison");
6319 case ISD::SETNE:
6320 if (ST->hasMVEIntegerOps()) {
6321 Opc = ARMCC::NE; break;
6322 } else {
6323 Invert = true; LLVM_FALLTHROUGH;
6324 }
6325 case ISD::SETEQ: Opc = ARMCC::EQ; break;
6326 case ISD::SETLT: Swap = true; LLVM_FALLTHROUGH;
6327 case ISD::SETGT: Opc = ARMCC::GT; break;
6328 case ISD::SETLE: Swap = true; LLVM_FALLTHROUGH;
6329 case ISD::SETGE: Opc = ARMCC::GE; break;
6330 case ISD::SETULT: Swap = true; LLVM_FALLTHROUGH;
6331 case ISD::SETUGT: Opc = ARMCC::HI; break;
6332 case ISD::SETULE: Swap = true; LLVM_FALLTHROUGH;
6333 case ISD::SETUGE: Opc = ARMCC::HS; break;
6334 }
6335
6336 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
6337 if (ST->hasNEON() && Opc == ARMCC::EQ) {
6338 SDValue AndOp;
6339 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6340 AndOp = Op0;
6341 else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
6342 AndOp = Op1;
6343
6344 // Ignore bitconvert.
6345 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
6346 AndOp = AndOp.getOperand(0);
6347
6348 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
6349 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
6350 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
6351 SDValue Result = DAG.getNode(ARMISD::VTST, dl, CmpVT, Op0, Op1);
6352 if (!Invert)
6353 Result = DAG.getNOT(dl, Result, VT);
6354 return Result;
6355 }
6356 }
6357 }
6358
6359 if (Swap)
6360 std::swap(Op0, Op1);
6361
6362 // If one of the operands is a constant vector zero, attempt to fold the
6363 // comparison to a specialized compare-against-zero form.
6364 SDValue SingleOp;
6365 if (ISD::isBuildVectorAllZeros(Op1.getNode()))
6366 SingleOp = Op0;
6367 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
6368 if (Opc == ARMCC::GE)
6369 Opc = ARMCC::LE;
6370 else if (Opc == ARMCC::GT)
6371 Opc = ARMCC::LT;
6372 SingleOp = Op1;
6373 }
6374
6375 SDValue Result;
6376 if (SingleOp.getNode()) {
6377 Result = DAG.getNode(ARMISD::VCMPZ, dl, CmpVT, SingleOp,
6378 DAG.getConstant(Opc, dl, MVT::i32));
6379 } else {
6380 Result = DAG.getNode(ARMISD::VCMP, dl, CmpVT, Op0, Op1,
6381 DAG.getConstant(Opc, dl, MVT::i32));
6382 }
6383
6384 Result = DAG.getSExtOrTrunc(Result, dl, VT);
6385
6386 if (Invert)
6387 Result = DAG.getNOT(dl, Result, VT);
6388
6389 return Result;
6390 }
6391
LowerSETCCCARRY(SDValue Op,SelectionDAG & DAG)6392 static SDValue LowerSETCCCARRY(SDValue Op, SelectionDAG &DAG) {
6393 SDValue LHS = Op.getOperand(0);
6394 SDValue RHS = Op.getOperand(1);
6395 SDValue Carry = Op.getOperand(2);
6396 SDValue Cond = Op.getOperand(3);
6397 SDLoc DL(Op);
6398
6399 assert(LHS.getSimpleValueType().isInteger() && "SETCCCARRY is integer only.");
6400
6401 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
6402 // have to invert the carry first.
6403 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
6404 DAG.getConstant(1, DL, MVT::i32), Carry);
6405 // This converts the boolean value carry into the carry flag.
6406 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
6407
6408 SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
6409 SDValue Cmp = DAG.getNode(ARMISD::SUBE, DL, VTs, LHS, RHS, Carry);
6410
6411 SDValue FVal = DAG.getConstant(0, DL, MVT::i32);
6412 SDValue TVal = DAG.getConstant(1, DL, MVT::i32);
6413 SDValue ARMcc = DAG.getConstant(
6414 IntCCToARMCC(cast<CondCodeSDNode>(Cond)->get()), DL, MVT::i32);
6415 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
6416 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), DL, ARM::CPSR,
6417 Cmp.getValue(1), SDValue());
6418 return DAG.getNode(ARMISD::CMOV, DL, Op.getValueType(), FVal, TVal, ARMcc,
6419 CCR, Chain.getValue(1));
6420 }
6421
6422 /// isVMOVModifiedImm - Check if the specified splat value corresponds to a
6423 /// valid vector constant for a NEON or MVE instruction with a "modified
6424 /// immediate" operand (e.g., VMOV). If so, return the encoded value.
isVMOVModifiedImm(uint64_t SplatBits,uint64_t SplatUndef,unsigned SplatBitSize,SelectionDAG & DAG,const SDLoc & dl,EVT & VT,bool is128Bits,VMOVModImmType type)6425 static SDValue isVMOVModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
6426 unsigned SplatBitSize, SelectionDAG &DAG,
6427 const SDLoc &dl, EVT &VT, bool is128Bits,
6428 VMOVModImmType type) {
6429 unsigned OpCmode, Imm;
6430
6431 // SplatBitSize is set to the smallest size that splats the vector, so a
6432 // zero vector will always have SplatBitSize == 8. However, NEON modified
6433 // immediate instructions others than VMOV do not support the 8-bit encoding
6434 // of a zero vector, and the default encoding of zero is supposed to be the
6435 // 32-bit version.
6436 if (SplatBits == 0)
6437 SplatBitSize = 32;
6438
6439 switch (SplatBitSize) {
6440 case 8:
6441 if (type != VMOVModImm)
6442 return SDValue();
6443 // Any 1-byte value is OK. Op=0, Cmode=1110.
6444 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
6445 OpCmode = 0xe;
6446 Imm = SplatBits;
6447 VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
6448 break;
6449
6450 case 16:
6451 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
6452 VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
6453 if ((SplatBits & ~0xff) == 0) {
6454 // Value = 0x00nn: Op=x, Cmode=100x.
6455 OpCmode = 0x8;
6456 Imm = SplatBits;
6457 break;
6458 }
6459 if ((SplatBits & ~0xff00) == 0) {
6460 // Value = 0xnn00: Op=x, Cmode=101x.
6461 OpCmode = 0xa;
6462 Imm = SplatBits >> 8;
6463 break;
6464 }
6465 return SDValue();
6466
6467 case 32:
6468 // NEON's 32-bit VMOV supports splat values where:
6469 // * only one byte is nonzero, or
6470 // * the least significant byte is 0xff and the second byte is nonzero, or
6471 // * the least significant 2 bytes are 0xff and the third is nonzero.
6472 VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
6473 if ((SplatBits & ~0xff) == 0) {
6474 // Value = 0x000000nn: Op=x, Cmode=000x.
6475 OpCmode = 0;
6476 Imm = SplatBits;
6477 break;
6478 }
6479 if ((SplatBits & ~0xff00) == 0) {
6480 // Value = 0x0000nn00: Op=x, Cmode=001x.
6481 OpCmode = 0x2;
6482 Imm = SplatBits >> 8;
6483 break;
6484 }
6485 if ((SplatBits & ~0xff0000) == 0) {
6486 // Value = 0x00nn0000: Op=x, Cmode=010x.
6487 OpCmode = 0x4;
6488 Imm = SplatBits >> 16;
6489 break;
6490 }
6491 if ((SplatBits & ~0xff000000) == 0) {
6492 // Value = 0xnn000000: Op=x, Cmode=011x.
6493 OpCmode = 0x6;
6494 Imm = SplatBits >> 24;
6495 break;
6496 }
6497
6498 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
6499 if (type == OtherModImm) return SDValue();
6500
6501 if ((SplatBits & ~0xffff) == 0 &&
6502 ((SplatBits | SplatUndef) & 0xff) == 0xff) {
6503 // Value = 0x0000nnff: Op=x, Cmode=1100.
6504 OpCmode = 0xc;
6505 Imm = SplatBits >> 8;
6506 break;
6507 }
6508
6509 // cmode == 0b1101 is not supported for MVE VMVN
6510 if (type == MVEVMVNModImm)
6511 return SDValue();
6512
6513 if ((SplatBits & ~0xffffff) == 0 &&
6514 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
6515 // Value = 0x00nnffff: Op=x, Cmode=1101.
6516 OpCmode = 0xd;
6517 Imm = SplatBits >> 16;
6518 break;
6519 }
6520
6521 // Note: there are a few 32-bit splat values (specifically: 00ffff00,
6522 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
6523 // VMOV.I32. A (very) minor optimization would be to replicate the value
6524 // and fall through here to test for a valid 64-bit splat. But, then the
6525 // caller would also need to check and handle the change in size.
6526 return SDValue();
6527
6528 case 64: {
6529 if (type != VMOVModImm)
6530 return SDValue();
6531 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
6532 uint64_t BitMask = 0xff;
6533 unsigned ImmMask = 1;
6534 Imm = 0;
6535 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
6536 if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
6537 Imm |= ImmMask;
6538 } else if ((SplatBits & BitMask) != 0) {
6539 return SDValue();
6540 }
6541 BitMask <<= 8;
6542 ImmMask <<= 1;
6543 }
6544
6545 if (DAG.getDataLayout().isBigEndian())
6546 // swap higher and lower 32 bit word
6547 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
6548
6549 // Op=1, Cmode=1110.
6550 OpCmode = 0x1e;
6551 VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
6552 break;
6553 }
6554
6555 default:
6556 llvm_unreachable("unexpected size for isVMOVModifiedImm");
6557 }
6558
6559 unsigned EncodedVal = ARM_AM::createVMOVModImm(OpCmode, Imm);
6560 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
6561 }
6562
LowerConstantFP(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const6563 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
6564 const ARMSubtarget *ST) const {
6565 EVT VT = Op.getValueType();
6566 bool IsDouble = (VT == MVT::f64);
6567 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
6568 const APFloat &FPVal = CFP->getValueAPF();
6569
6570 // Prevent floating-point constants from using literal loads
6571 // when execute-only is enabled.
6572 if (ST->genExecuteOnly()) {
6573 // If we can represent the constant as an immediate, don't lower it
6574 if (isFPImmLegal(FPVal, VT))
6575 return Op;
6576 // Otherwise, construct as integer, and move to float register
6577 APInt INTVal = FPVal.bitcastToAPInt();
6578 SDLoc DL(CFP);
6579 switch (VT.getSimpleVT().SimpleTy) {
6580 default:
6581 llvm_unreachable("Unknown floating point type!");
6582 break;
6583 case MVT::f64: {
6584 SDValue Lo = DAG.getConstant(INTVal.trunc(32), DL, MVT::i32);
6585 SDValue Hi = DAG.getConstant(INTVal.lshr(32).trunc(32), DL, MVT::i32);
6586 if (!ST->isLittle())
6587 std::swap(Lo, Hi);
6588 return DAG.getNode(ARMISD::VMOVDRR, DL, MVT::f64, Lo, Hi);
6589 }
6590 case MVT::f32:
6591 return DAG.getNode(ARMISD::VMOVSR, DL, VT,
6592 DAG.getConstant(INTVal, DL, MVT::i32));
6593 }
6594 }
6595
6596 if (!ST->hasVFP3Base())
6597 return SDValue();
6598
6599 // Use the default (constant pool) lowering for double constants when we have
6600 // an SP-only FPU
6601 if (IsDouble && !Subtarget->hasFP64())
6602 return SDValue();
6603
6604 // Try splatting with a VMOV.f32...
6605 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
6606
6607 if (ImmVal != -1) {
6608 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
6609 // We have code in place to select a valid ConstantFP already, no need to
6610 // do any mangling.
6611 return Op;
6612 }
6613
6614 // It's a float and we are trying to use NEON operations where
6615 // possible. Lower it to a splat followed by an extract.
6616 SDLoc DL(Op);
6617 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
6618 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
6619 NewVal);
6620 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
6621 DAG.getConstant(0, DL, MVT::i32));
6622 }
6623
6624 // The rest of our options are NEON only, make sure that's allowed before
6625 // proceeding..
6626 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
6627 return SDValue();
6628
6629 EVT VMovVT;
6630 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
6631
6632 // It wouldn't really be worth bothering for doubles except for one very
6633 // important value, which does happen to match: 0.0. So make sure we don't do
6634 // anything stupid.
6635 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
6636 return SDValue();
6637
6638 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
6639 SDValue NewVal = isVMOVModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
6640 VMovVT, false, VMOVModImm);
6641 if (NewVal != SDValue()) {
6642 SDLoc DL(Op);
6643 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
6644 NewVal);
6645 if (IsDouble)
6646 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6647
6648 // It's a float: cast and extract a vector element.
6649 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6650 VecConstant);
6651 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6652 DAG.getConstant(0, DL, MVT::i32));
6653 }
6654
6655 // Finally, try a VMVN.i32
6656 NewVal = isVMOVModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
6657 false, VMVNModImm);
6658 if (NewVal != SDValue()) {
6659 SDLoc DL(Op);
6660 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
6661
6662 if (IsDouble)
6663 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
6664
6665 // It's a float: cast and extract a vector element.
6666 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
6667 VecConstant);
6668 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
6669 DAG.getConstant(0, DL, MVT::i32));
6670 }
6671
6672 return SDValue();
6673 }
6674
6675 // check if an VEXT instruction can handle the shuffle mask when the
6676 // vector sources of the shuffle are the same.
isSingletonVEXTMask(ArrayRef<int> M,EVT VT,unsigned & Imm)6677 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
6678 unsigned NumElts = VT.getVectorNumElements();
6679
6680 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6681 if (M[0] < 0)
6682 return false;
6683
6684 Imm = M[0];
6685
6686 // If this is a VEXT shuffle, the immediate value is the index of the first
6687 // element. The other shuffle indices must be the successive elements after
6688 // the first one.
6689 unsigned ExpectedElt = Imm;
6690 for (unsigned i = 1; i < NumElts; ++i) {
6691 // Increment the expected index. If it wraps around, just follow it
6692 // back to index zero and keep going.
6693 ++ExpectedElt;
6694 if (ExpectedElt == NumElts)
6695 ExpectedElt = 0;
6696
6697 if (M[i] < 0) continue; // ignore UNDEF indices
6698 if (ExpectedElt != static_cast<unsigned>(M[i]))
6699 return false;
6700 }
6701
6702 return true;
6703 }
6704
isVEXTMask(ArrayRef<int> M,EVT VT,bool & ReverseVEXT,unsigned & Imm)6705 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
6706 bool &ReverseVEXT, unsigned &Imm) {
6707 unsigned NumElts = VT.getVectorNumElements();
6708 ReverseVEXT = false;
6709
6710 // Assume that the first shuffle index is not UNDEF. Fail if it is.
6711 if (M[0] < 0)
6712 return false;
6713
6714 Imm = M[0];
6715
6716 // If this is a VEXT shuffle, the immediate value is the index of the first
6717 // element. The other shuffle indices must be the successive elements after
6718 // the first one.
6719 unsigned ExpectedElt = Imm;
6720 for (unsigned i = 1; i < NumElts; ++i) {
6721 // Increment the expected index. If it wraps around, it may still be
6722 // a VEXT but the source vectors must be swapped.
6723 ExpectedElt += 1;
6724 if (ExpectedElt == NumElts * 2) {
6725 ExpectedElt = 0;
6726 ReverseVEXT = true;
6727 }
6728
6729 if (M[i] < 0) continue; // ignore UNDEF indices
6730 if (ExpectedElt != static_cast<unsigned>(M[i]))
6731 return false;
6732 }
6733
6734 // Adjust the index value if the source operands will be swapped.
6735 if (ReverseVEXT)
6736 Imm -= NumElts;
6737
6738 return true;
6739 }
6740
6741 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
6742 /// instruction with the specified blocksize. (The order of the elements
6743 /// within each block of the vector is reversed.)
isVREVMask(ArrayRef<int> M,EVT VT,unsigned BlockSize)6744 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
6745 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
6746 "Only possible block sizes for VREV are: 16, 32, 64");
6747
6748 unsigned EltSz = VT.getScalarSizeInBits();
6749 if (EltSz == 64)
6750 return false;
6751
6752 unsigned NumElts = VT.getVectorNumElements();
6753 unsigned BlockElts = M[0] + 1;
6754 // If the first shuffle index is UNDEF, be optimistic.
6755 if (M[0] < 0)
6756 BlockElts = BlockSize / EltSz;
6757
6758 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
6759 return false;
6760
6761 for (unsigned i = 0; i < NumElts; ++i) {
6762 if (M[i] < 0) continue; // ignore UNDEF indices
6763 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
6764 return false;
6765 }
6766
6767 return true;
6768 }
6769
isVTBLMask(ArrayRef<int> M,EVT VT)6770 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
6771 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
6772 // range, then 0 is placed into the resulting vector. So pretty much any mask
6773 // of 8 elements can work here.
6774 return VT == MVT::v8i8 && M.size() == 8;
6775 }
6776
SelectPairHalf(unsigned Elements,ArrayRef<int> Mask,unsigned Index)6777 static unsigned SelectPairHalf(unsigned Elements, ArrayRef<int> Mask,
6778 unsigned Index) {
6779 if (Mask.size() == Elements * 2)
6780 return Index / Elements;
6781 return Mask[Index] == 0 ? 0 : 1;
6782 }
6783
6784 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
6785 // checking that pairs of elements in the shuffle mask represent the same index
6786 // in each vector, incrementing the expected index by 2 at each step.
6787 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
6788 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
6789 // v2={e,f,g,h}
6790 // WhichResult gives the offset for each element in the mask based on which
6791 // of the two results it belongs to.
6792 //
6793 // The transpose can be represented either as:
6794 // result1 = shufflevector v1, v2, result1_shuffle_mask
6795 // result2 = shufflevector v1, v2, result2_shuffle_mask
6796 // where v1/v2 and the shuffle masks have the same number of elements
6797 // (here WhichResult (see below) indicates which result is being checked)
6798 //
6799 // or as:
6800 // results = shufflevector v1, v2, shuffle_mask
6801 // where both results are returned in one vector and the shuffle mask has twice
6802 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
6803 // want to check the low half and high half of the shuffle mask as if it were
6804 // the other case
isVTRNMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6805 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6806 unsigned EltSz = VT.getScalarSizeInBits();
6807 if (EltSz == 64)
6808 return false;
6809
6810 unsigned NumElts = VT.getVectorNumElements();
6811 if (M.size() != NumElts && M.size() != NumElts*2)
6812 return false;
6813
6814 // If the mask is twice as long as the input vector then we need to check the
6815 // upper and lower parts of the mask with a matching value for WhichResult
6816 // FIXME: A mask with only even values will be rejected in case the first
6817 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
6818 // M[0] is used to determine WhichResult
6819 for (unsigned i = 0; i < M.size(); i += NumElts) {
6820 WhichResult = SelectPairHalf(NumElts, M, i);
6821 for (unsigned j = 0; j < NumElts; j += 2) {
6822 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6823 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
6824 return false;
6825 }
6826 }
6827
6828 if (M.size() == NumElts*2)
6829 WhichResult = 0;
6830
6831 return true;
6832 }
6833
6834 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
6835 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6836 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
isVTRN_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6837 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6838 unsigned EltSz = VT.getScalarSizeInBits();
6839 if (EltSz == 64)
6840 return false;
6841
6842 unsigned NumElts = VT.getVectorNumElements();
6843 if (M.size() != NumElts && M.size() != NumElts*2)
6844 return false;
6845
6846 for (unsigned i = 0; i < M.size(); i += NumElts) {
6847 WhichResult = SelectPairHalf(NumElts, M, i);
6848 for (unsigned j = 0; j < NumElts; j += 2) {
6849 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
6850 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
6851 return false;
6852 }
6853 }
6854
6855 if (M.size() == NumElts*2)
6856 WhichResult = 0;
6857
6858 return true;
6859 }
6860
6861 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
6862 // that the mask elements are either all even and in steps of size 2 or all odd
6863 // and in steps of size 2.
6864 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
6865 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
6866 // v2={e,f,g,h}
6867 // Requires similar checks to that of isVTRNMask with
6868 // respect the how results are returned.
isVUZPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6869 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6870 unsigned EltSz = VT.getScalarSizeInBits();
6871 if (EltSz == 64)
6872 return false;
6873
6874 unsigned NumElts = VT.getVectorNumElements();
6875 if (M.size() != NumElts && M.size() != NumElts*2)
6876 return false;
6877
6878 for (unsigned i = 0; i < M.size(); i += NumElts) {
6879 WhichResult = SelectPairHalf(NumElts, M, i);
6880 for (unsigned j = 0; j < NumElts; ++j) {
6881 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
6882 return false;
6883 }
6884 }
6885
6886 if (M.size() == NumElts*2)
6887 WhichResult = 0;
6888
6889 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6890 if (VT.is64BitVector() && EltSz == 32)
6891 return false;
6892
6893 return true;
6894 }
6895
6896 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
6897 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6898 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
isVUZP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6899 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6900 unsigned EltSz = VT.getScalarSizeInBits();
6901 if (EltSz == 64)
6902 return false;
6903
6904 unsigned NumElts = VT.getVectorNumElements();
6905 if (M.size() != NumElts && M.size() != NumElts*2)
6906 return false;
6907
6908 unsigned Half = NumElts / 2;
6909 for (unsigned i = 0; i < M.size(); i += NumElts) {
6910 WhichResult = SelectPairHalf(NumElts, M, i);
6911 for (unsigned j = 0; j < NumElts; j += Half) {
6912 unsigned Idx = WhichResult;
6913 for (unsigned k = 0; k < Half; ++k) {
6914 int MIdx = M[i + j + k];
6915 if (MIdx >= 0 && (unsigned) MIdx != Idx)
6916 return false;
6917 Idx += 2;
6918 }
6919 }
6920 }
6921
6922 if (M.size() == NumElts*2)
6923 WhichResult = 0;
6924
6925 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6926 if (VT.is64BitVector() && EltSz == 32)
6927 return false;
6928
6929 return true;
6930 }
6931
6932 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
6933 // that pairs of elements of the shufflemask represent the same index in each
6934 // vector incrementing sequentially through the vectors.
6935 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
6936 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
6937 // v2={e,f,g,h}
6938 // Requires similar checks to that of isVTRNMask with respect the how results
6939 // are returned.
isVZIPMask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6940 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
6941 unsigned EltSz = VT.getScalarSizeInBits();
6942 if (EltSz == 64)
6943 return false;
6944
6945 unsigned NumElts = VT.getVectorNumElements();
6946 if (M.size() != NumElts && M.size() != NumElts*2)
6947 return false;
6948
6949 for (unsigned i = 0; i < M.size(); i += NumElts) {
6950 WhichResult = SelectPairHalf(NumElts, M, i);
6951 unsigned Idx = WhichResult * NumElts / 2;
6952 for (unsigned j = 0; j < NumElts; j += 2) {
6953 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6954 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
6955 return false;
6956 Idx += 1;
6957 }
6958 }
6959
6960 if (M.size() == NumElts*2)
6961 WhichResult = 0;
6962
6963 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6964 if (VT.is64BitVector() && EltSz == 32)
6965 return false;
6966
6967 return true;
6968 }
6969
6970 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
6971 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
6972 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
isVZIP_v_undef_Mask(ArrayRef<int> M,EVT VT,unsigned & WhichResult)6973 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
6974 unsigned EltSz = VT.getScalarSizeInBits();
6975 if (EltSz == 64)
6976 return false;
6977
6978 unsigned NumElts = VT.getVectorNumElements();
6979 if (M.size() != NumElts && M.size() != NumElts*2)
6980 return false;
6981
6982 for (unsigned i = 0; i < M.size(); i += NumElts) {
6983 WhichResult = SelectPairHalf(NumElts, M, i);
6984 unsigned Idx = WhichResult * NumElts / 2;
6985 for (unsigned j = 0; j < NumElts; j += 2) {
6986 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
6987 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
6988 return false;
6989 Idx += 1;
6990 }
6991 }
6992
6993 if (M.size() == NumElts*2)
6994 WhichResult = 0;
6995
6996 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
6997 if (VT.is64BitVector() && EltSz == 32)
6998 return false;
6999
7000 return true;
7001 }
7002
7003 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
7004 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask,EVT VT,unsigned & WhichResult,bool & isV_UNDEF)7005 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
7006 unsigned &WhichResult,
7007 bool &isV_UNDEF) {
7008 isV_UNDEF = false;
7009 if (isVTRNMask(ShuffleMask, VT, WhichResult))
7010 return ARMISD::VTRN;
7011 if (isVUZPMask(ShuffleMask, VT, WhichResult))
7012 return ARMISD::VUZP;
7013 if (isVZIPMask(ShuffleMask, VT, WhichResult))
7014 return ARMISD::VZIP;
7015
7016 isV_UNDEF = true;
7017 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
7018 return ARMISD::VTRN;
7019 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7020 return ARMISD::VUZP;
7021 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
7022 return ARMISD::VZIP;
7023
7024 return 0;
7025 }
7026
7027 /// \return true if this is a reverse operation on an vector.
isReverseMask(ArrayRef<int> M,EVT VT)7028 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
7029 unsigned NumElts = VT.getVectorNumElements();
7030 // Make sure the mask has the right size.
7031 if (NumElts != M.size())
7032 return false;
7033
7034 // Look for <15, ..., 3, -1, 1, 0>.
7035 for (unsigned i = 0; i != NumElts; ++i)
7036 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
7037 return false;
7038
7039 return true;
7040 }
7041
isVMOVNMask(ArrayRef<int> M,EVT VT,bool Top)7042 static bool isVMOVNMask(ArrayRef<int> M, EVT VT, bool Top) {
7043 unsigned NumElts = VT.getVectorNumElements();
7044 // Make sure the mask has the right size.
7045 if (NumElts != M.size() || (VT != MVT::v8i16 && VT != MVT::v16i8))
7046 return false;
7047
7048 // If Top
7049 // Look for <0, N, 2, N+2, 4, N+4, ..>.
7050 // This inserts Input2 into Input1
7051 // else if not Top
7052 // Look for <0, N+1, 2, N+3, 4, N+5, ..>
7053 // This inserts Input1 into Input2
7054 unsigned Offset = Top ? 0 : 1;
7055 for (unsigned i = 0; i < NumElts; i+=2) {
7056 if (M[i] >= 0 && M[i] != (int)i)
7057 return false;
7058 if (M[i+1] >= 0 && M[i+1] != (int)(NumElts + i + Offset))
7059 return false;
7060 }
7061
7062 return true;
7063 }
7064
7065 // If N is an integer constant that can be moved into a register in one
7066 // instruction, return an SDValue of such a constant (will become a MOV
7067 // instruction). Otherwise return null.
IsSingleInstrConstant(SDValue N,SelectionDAG & DAG,const ARMSubtarget * ST,const SDLoc & dl)7068 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
7069 const ARMSubtarget *ST, const SDLoc &dl) {
7070 uint64_t Val;
7071 if (!isa<ConstantSDNode>(N))
7072 return SDValue();
7073 Val = cast<ConstantSDNode>(N)->getZExtValue();
7074
7075 if (ST->isThumb1Only()) {
7076 if (Val <= 255 || ~Val <= 255)
7077 return DAG.getConstant(Val, dl, MVT::i32);
7078 } else {
7079 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
7080 return DAG.getConstant(Val, dl, MVT::i32);
7081 }
7082 return SDValue();
7083 }
7084
LowerBUILD_VECTOR_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)7085 static SDValue LowerBUILD_VECTOR_i1(SDValue Op, SelectionDAG &DAG,
7086 const ARMSubtarget *ST) {
7087 SDLoc dl(Op);
7088 EVT VT = Op.getValueType();
7089
7090 assert(ST->hasMVEIntegerOps() && "LowerBUILD_VECTOR_i1 called without MVE!");
7091
7092 unsigned NumElts = VT.getVectorNumElements();
7093 unsigned BoolMask;
7094 unsigned BitsPerBool;
7095 if (NumElts == 4) {
7096 BitsPerBool = 4;
7097 BoolMask = 0xf;
7098 } else if (NumElts == 8) {
7099 BitsPerBool = 2;
7100 BoolMask = 0x3;
7101 } else if (NumElts == 16) {
7102 BitsPerBool = 1;
7103 BoolMask = 0x1;
7104 } else
7105 return SDValue();
7106
7107 // If this is a single value copied into all lanes (a splat), we can just sign
7108 // extend that single value
7109 SDValue FirstOp = Op.getOperand(0);
7110 if (!isa<ConstantSDNode>(FirstOp) &&
7111 std::all_of(std::next(Op->op_begin()), Op->op_end(),
7112 [&FirstOp](SDUse &U) {
7113 return U.get().isUndef() || U.get() == FirstOp;
7114 })) {
7115 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32, FirstOp,
7116 DAG.getValueType(MVT::i1));
7117 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), Ext);
7118 }
7119
7120 // First create base with bits set where known
7121 unsigned Bits32 = 0;
7122 for (unsigned i = 0; i < NumElts; ++i) {
7123 SDValue V = Op.getOperand(i);
7124 if (!isa<ConstantSDNode>(V) && !V.isUndef())
7125 continue;
7126 bool BitSet = V.isUndef() ? false : cast<ConstantSDNode>(V)->getZExtValue();
7127 if (BitSet)
7128 Bits32 |= BoolMask << (i * BitsPerBool);
7129 }
7130
7131 // Add in unknown nodes
7132 SDValue Base = DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT,
7133 DAG.getConstant(Bits32, dl, MVT::i32));
7134 for (unsigned i = 0; i < NumElts; ++i) {
7135 SDValue V = Op.getOperand(i);
7136 if (isa<ConstantSDNode>(V) || V.isUndef())
7137 continue;
7138 Base = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Base, V,
7139 DAG.getConstant(i, dl, MVT::i32));
7140 }
7141
7142 return Base;
7143 }
7144
7145 // If this is a case we can't handle, return null and let the default
7146 // expansion code take care of it.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST) const7147 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
7148 const ARMSubtarget *ST) const {
7149 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
7150 SDLoc dl(Op);
7151 EVT VT = Op.getValueType();
7152
7153 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
7154 return LowerBUILD_VECTOR_i1(Op, DAG, ST);
7155
7156 APInt SplatBits, SplatUndef;
7157 unsigned SplatBitSize;
7158 bool HasAnyUndefs;
7159 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
7160 if (SplatUndef.isAllOnesValue())
7161 return DAG.getUNDEF(VT);
7162
7163 if ((ST->hasNEON() && SplatBitSize <= 64) ||
7164 (ST->hasMVEIntegerOps() && SplatBitSize <= 32)) {
7165 // Check if an immediate VMOV works.
7166 EVT VmovVT;
7167 SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
7168 SplatUndef.getZExtValue(), SplatBitSize,
7169 DAG, dl, VmovVT, VT.is128BitVector(),
7170 VMOVModImm);
7171
7172 if (Val.getNode()) {
7173 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
7174 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7175 }
7176
7177 // Try an immediate VMVN.
7178 uint64_t NegatedImm = (~SplatBits).getZExtValue();
7179 Val = isVMOVModifiedImm(
7180 NegatedImm, SplatUndef.getZExtValue(), SplatBitSize,
7181 DAG, dl, VmovVT, VT.is128BitVector(),
7182 ST->hasMVEIntegerOps() ? MVEVMVNModImm : VMVNModImm);
7183 if (Val.getNode()) {
7184 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
7185 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
7186 }
7187
7188 // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
7189 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
7190 int ImmVal = ARM_AM::getFP32Imm(SplatBits);
7191 if (ImmVal != -1) {
7192 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
7193 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
7194 }
7195 }
7196 }
7197 }
7198
7199 // Scan through the operands to see if only one value is used.
7200 //
7201 // As an optimisation, even if more than one value is used it may be more
7202 // profitable to splat with one value then change some lanes.
7203 //
7204 // Heuristically we decide to do this if the vector has a "dominant" value,
7205 // defined as splatted to more than half of the lanes.
7206 unsigned NumElts = VT.getVectorNumElements();
7207 bool isOnlyLowElement = true;
7208 bool usesOnlyOneValue = true;
7209 bool hasDominantValue = false;
7210 bool isConstant = true;
7211
7212 // Map of the number of times a particular SDValue appears in the
7213 // element list.
7214 DenseMap<SDValue, unsigned> ValueCounts;
7215 SDValue Value;
7216 for (unsigned i = 0; i < NumElts; ++i) {
7217 SDValue V = Op.getOperand(i);
7218 if (V.isUndef())
7219 continue;
7220 if (i > 0)
7221 isOnlyLowElement = false;
7222 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
7223 isConstant = false;
7224
7225 ValueCounts.insert(std::make_pair(V, 0));
7226 unsigned &Count = ValueCounts[V];
7227
7228 // Is this value dominant? (takes up more than half of the lanes)
7229 if (++Count > (NumElts / 2)) {
7230 hasDominantValue = true;
7231 Value = V;
7232 }
7233 }
7234 if (ValueCounts.size() != 1)
7235 usesOnlyOneValue = false;
7236 if (!Value.getNode() && !ValueCounts.empty())
7237 Value = ValueCounts.begin()->first;
7238
7239 if (ValueCounts.empty())
7240 return DAG.getUNDEF(VT);
7241
7242 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
7243 // Keep going if we are hitting this case.
7244 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
7245 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
7246
7247 unsigned EltSize = VT.getScalarSizeInBits();
7248
7249 // Use VDUP for non-constant splats. For f32 constant splats, reduce to
7250 // i32 and try again.
7251 if (hasDominantValue && EltSize <= 32) {
7252 if (!isConstant) {
7253 SDValue N;
7254
7255 // If we are VDUPing a value that comes directly from a vector, that will
7256 // cause an unnecessary move to and from a GPR, where instead we could
7257 // just use VDUPLANE. We can only do this if the lane being extracted
7258 // is at a constant index, as the VDUP from lane instructions only have
7259 // constant-index forms.
7260 ConstantSDNode *constIndex;
7261 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
7262 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
7263 // We need to create a new undef vector to use for the VDUPLANE if the
7264 // size of the vector from which we get the value is different than the
7265 // size of the vector that we need to create. We will insert the element
7266 // such that the register coalescer will remove unnecessary copies.
7267 if (VT != Value->getOperand(0).getValueType()) {
7268 unsigned index = constIndex->getAPIntValue().getLimitedValue() %
7269 VT.getVectorNumElements();
7270 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7271 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
7272 Value, DAG.getConstant(index, dl, MVT::i32)),
7273 DAG.getConstant(index, dl, MVT::i32));
7274 } else
7275 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7276 Value->getOperand(0), Value->getOperand(1));
7277 } else
7278 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
7279
7280 if (!usesOnlyOneValue) {
7281 // The dominant value was splatted as 'N', but we now have to insert
7282 // all differing elements.
7283 for (unsigned I = 0; I < NumElts; ++I) {
7284 if (Op.getOperand(I) == Value)
7285 continue;
7286 SmallVector<SDValue, 3> Ops;
7287 Ops.push_back(N);
7288 Ops.push_back(Op.getOperand(I));
7289 Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
7290 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
7291 }
7292 }
7293 return N;
7294 }
7295 if (VT.getVectorElementType().isFloatingPoint()) {
7296 SmallVector<SDValue, 8> Ops;
7297 MVT FVT = VT.getVectorElementType().getSimpleVT();
7298 assert(FVT == MVT::f32 || FVT == MVT::f16);
7299 MVT IVT = (FVT == MVT::f32) ? MVT::i32 : MVT::i16;
7300 for (unsigned i = 0; i < NumElts; ++i)
7301 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, IVT,
7302 Op.getOperand(i)));
7303 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), IVT, NumElts);
7304 SDValue Val = DAG.getBuildVector(VecVT, dl, Ops);
7305 Val = LowerBUILD_VECTOR(Val, DAG, ST);
7306 if (Val.getNode())
7307 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7308 }
7309 if (usesOnlyOneValue) {
7310 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
7311 if (isConstant && Val.getNode())
7312 return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
7313 }
7314 }
7315
7316 // If all elements are constants and the case above didn't get hit, fall back
7317 // to the default expansion, which will generate a load from the constant
7318 // pool.
7319 if (isConstant)
7320 return SDValue();
7321
7322 // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
7323 if (NumElts >= 4) {
7324 SDValue shuffle = ReconstructShuffle(Op, DAG);
7325 if (shuffle != SDValue())
7326 return shuffle;
7327 }
7328
7329 if (ST->hasNEON() && VT.is128BitVector() && VT != MVT::v2f64 && VT != MVT::v4f32) {
7330 // If we haven't found an efficient lowering, try splitting a 128-bit vector
7331 // into two 64-bit vectors; we might discover a better way to lower it.
7332 SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElts);
7333 EVT ExtVT = VT.getVectorElementType();
7334 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElts / 2);
7335 SDValue Lower =
7336 DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElts / 2));
7337 if (Lower.getOpcode() == ISD::BUILD_VECTOR)
7338 Lower = LowerBUILD_VECTOR(Lower, DAG, ST);
7339 SDValue Upper = DAG.getBuildVector(
7340 HVT, dl, makeArrayRef(&Ops[NumElts / 2], NumElts / 2));
7341 if (Upper.getOpcode() == ISD::BUILD_VECTOR)
7342 Upper = LowerBUILD_VECTOR(Upper, DAG, ST);
7343 if (Lower && Upper)
7344 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lower, Upper);
7345 }
7346
7347 // Vectors with 32- or 64-bit elements can be built by directly assigning
7348 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
7349 // will be legalized.
7350 if (EltSize >= 32) {
7351 // Do the expansion with floating-point types, since that is what the VFP
7352 // registers are defined to use, and since i64 is not legal.
7353 EVT EltVT = EVT::getFloatingPointVT(EltSize);
7354 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
7355 SmallVector<SDValue, 8> Ops;
7356 for (unsigned i = 0; i < NumElts; ++i)
7357 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
7358 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
7359 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
7360 }
7361
7362 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
7363 // know the default expansion would otherwise fall back on something even
7364 // worse. For a vector with one or two non-undef values, that's
7365 // scalar_to_vector for the elements followed by a shuffle (provided the
7366 // shuffle is valid for the target) and materialization element by element
7367 // on the stack followed by a load for everything else.
7368 if (!isConstant && !usesOnlyOneValue) {
7369 SDValue Vec = DAG.getUNDEF(VT);
7370 for (unsigned i = 0 ; i < NumElts; ++i) {
7371 SDValue V = Op.getOperand(i);
7372 if (V.isUndef())
7373 continue;
7374 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
7375 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
7376 }
7377 return Vec;
7378 }
7379
7380 return SDValue();
7381 }
7382
7383 // Gather data to see if the operation can be modelled as a
7384 // shuffle in combination with VEXTs.
ReconstructShuffle(SDValue Op,SelectionDAG & DAG) const7385 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
7386 SelectionDAG &DAG) const {
7387 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
7388 SDLoc dl(Op);
7389 EVT VT = Op.getValueType();
7390 unsigned NumElts = VT.getVectorNumElements();
7391
7392 struct ShuffleSourceInfo {
7393 SDValue Vec;
7394 unsigned MinElt = std::numeric_limits<unsigned>::max();
7395 unsigned MaxElt = 0;
7396
7397 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
7398 // be compatible with the shuffle we intend to construct. As a result
7399 // ShuffleVec will be some sliding window into the original Vec.
7400 SDValue ShuffleVec;
7401
7402 // Code should guarantee that element i in Vec starts at element "WindowBase
7403 // + i * WindowScale in ShuffleVec".
7404 int WindowBase = 0;
7405 int WindowScale = 1;
7406
7407 ShuffleSourceInfo(SDValue Vec) : Vec(Vec), ShuffleVec(Vec) {}
7408
7409 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
7410 };
7411
7412 // First gather all vectors used as an immediate source for this BUILD_VECTOR
7413 // node.
7414 SmallVector<ShuffleSourceInfo, 2> Sources;
7415 for (unsigned i = 0; i < NumElts; ++i) {
7416 SDValue V = Op.getOperand(i);
7417 if (V.isUndef())
7418 continue;
7419 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
7420 // A shuffle can only come from building a vector from various
7421 // elements of other vectors.
7422 return SDValue();
7423 } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
7424 // Furthermore, shuffles require a constant mask, whereas extractelts
7425 // accept variable indices.
7426 return SDValue();
7427 }
7428
7429 // Add this element source to the list if it's not already there.
7430 SDValue SourceVec = V.getOperand(0);
7431 auto Source = llvm::find(Sources, SourceVec);
7432 if (Source == Sources.end())
7433 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
7434
7435 // Update the minimum and maximum lane number seen.
7436 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
7437 Source->MinElt = std::min(Source->MinElt, EltNo);
7438 Source->MaxElt = std::max(Source->MaxElt, EltNo);
7439 }
7440
7441 // Currently only do something sane when at most two source vectors
7442 // are involved.
7443 if (Sources.size() > 2)
7444 return SDValue();
7445
7446 // Find out the smallest element size among result and two sources, and use
7447 // it as element size to build the shuffle_vector.
7448 EVT SmallestEltTy = VT.getVectorElementType();
7449 for (auto &Source : Sources) {
7450 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
7451 if (SrcEltTy.bitsLT(SmallestEltTy))
7452 SmallestEltTy = SrcEltTy;
7453 }
7454 unsigned ResMultiplier =
7455 VT.getScalarSizeInBits() / SmallestEltTy.getSizeInBits();
7456 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
7457 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
7458
7459 // If the source vector is too wide or too narrow, we may nevertheless be able
7460 // to construct a compatible shuffle either by concatenating it with UNDEF or
7461 // extracting a suitable range of elements.
7462 for (auto &Src : Sources) {
7463 EVT SrcVT = Src.ShuffleVec.getValueType();
7464
7465 if (SrcVT.getSizeInBits() == VT.getSizeInBits())
7466 continue;
7467
7468 // This stage of the search produces a source with the same element type as
7469 // the original, but with a total width matching the BUILD_VECTOR output.
7470 EVT EltVT = SrcVT.getVectorElementType();
7471 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
7472 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
7473
7474 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
7475 if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
7476 return SDValue();
7477 // We can pad out the smaller vector for free, so if it's part of a
7478 // shuffle...
7479 Src.ShuffleVec =
7480 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
7481 DAG.getUNDEF(Src.ShuffleVec.getValueType()));
7482 continue;
7483 }
7484
7485 if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
7486 return SDValue();
7487
7488 if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
7489 // Span too large for a VEXT to cope
7490 return SDValue();
7491 }
7492
7493 if (Src.MinElt >= NumSrcElts) {
7494 // The extraction can just take the second half
7495 Src.ShuffleVec =
7496 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7497 DAG.getConstant(NumSrcElts, dl, MVT::i32));
7498 Src.WindowBase = -NumSrcElts;
7499 } else if (Src.MaxElt < NumSrcElts) {
7500 // The extraction can just take the first half
7501 Src.ShuffleVec =
7502 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7503 DAG.getConstant(0, dl, MVT::i32));
7504 } else {
7505 // An actual VEXT is needed
7506 SDValue VEXTSrc1 =
7507 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7508 DAG.getConstant(0, dl, MVT::i32));
7509 SDValue VEXTSrc2 =
7510 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
7511 DAG.getConstant(NumSrcElts, dl, MVT::i32));
7512
7513 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
7514 VEXTSrc2,
7515 DAG.getConstant(Src.MinElt, dl, MVT::i32));
7516 Src.WindowBase = -Src.MinElt;
7517 }
7518 }
7519
7520 // Another possible incompatibility occurs from the vector element types. We
7521 // can fix this by bitcasting the source vectors to the same type we intend
7522 // for the shuffle.
7523 for (auto &Src : Sources) {
7524 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
7525 if (SrcEltTy == SmallestEltTy)
7526 continue;
7527 assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
7528 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
7529 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
7530 Src.WindowBase *= Src.WindowScale;
7531 }
7532
7533 // Final sanity check before we try to actually produce a shuffle.
7534 LLVM_DEBUG(for (auto Src
7535 : Sources)
7536 assert(Src.ShuffleVec.getValueType() == ShuffleVT););
7537
7538 // The stars all align, our next step is to produce the mask for the shuffle.
7539 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
7540 int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits();
7541 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
7542 SDValue Entry = Op.getOperand(i);
7543 if (Entry.isUndef())
7544 continue;
7545
7546 auto Src = llvm::find(Sources, Entry.getOperand(0));
7547 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
7548
7549 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
7550 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
7551 // segment.
7552 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
7553 int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
7554 VT.getScalarSizeInBits());
7555 int LanesDefined = BitsDefined / BitsPerShuffleLane;
7556
7557 // This source is expected to fill ResMultiplier lanes of the final shuffle,
7558 // starting at the appropriate offset.
7559 int *LaneMask = &Mask[i * ResMultiplier];
7560
7561 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
7562 ExtractBase += NumElts * (Src - Sources.begin());
7563 for (int j = 0; j < LanesDefined; ++j)
7564 LaneMask[j] = ExtractBase + j;
7565 }
7566
7567
7568 // We can't handle more than two sources. This should have already
7569 // been checked before this point.
7570 assert(Sources.size() <= 2 && "Too many sources!");
7571
7572 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
7573 for (unsigned i = 0; i < Sources.size(); ++i)
7574 ShuffleOps[i] = Sources[i].ShuffleVec;
7575
7576 SDValue Shuffle = buildLegalVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
7577 ShuffleOps[1], Mask, DAG);
7578 if (!Shuffle)
7579 return SDValue();
7580 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
7581 }
7582
7583 enum ShuffleOpCodes {
7584 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
7585 OP_VREV,
7586 OP_VDUP0,
7587 OP_VDUP1,
7588 OP_VDUP2,
7589 OP_VDUP3,
7590 OP_VEXT1,
7591 OP_VEXT2,
7592 OP_VEXT3,
7593 OP_VUZPL, // VUZP, left result
7594 OP_VUZPR, // VUZP, right result
7595 OP_VZIPL, // VZIP, left result
7596 OP_VZIPR, // VZIP, right result
7597 OP_VTRNL, // VTRN, left result
7598 OP_VTRNR // VTRN, right result
7599 };
7600
isLegalMVEShuffleOp(unsigned PFEntry)7601 static bool isLegalMVEShuffleOp(unsigned PFEntry) {
7602 unsigned OpNum = (PFEntry >> 26) & 0x0F;
7603 switch (OpNum) {
7604 case OP_COPY:
7605 case OP_VREV:
7606 case OP_VDUP0:
7607 case OP_VDUP1:
7608 case OP_VDUP2:
7609 case OP_VDUP3:
7610 return true;
7611 }
7612 return false;
7613 }
7614
7615 /// isShuffleMaskLegal - Targets can use this to indicate that they only
7616 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
7617 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
7618 /// are assumed to be legal.
isShuffleMaskLegal(ArrayRef<int> M,EVT VT) const7619 bool ARMTargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const {
7620 if (VT.getVectorNumElements() == 4 &&
7621 (VT.is128BitVector() || VT.is64BitVector())) {
7622 unsigned PFIndexes[4];
7623 for (unsigned i = 0; i != 4; ++i) {
7624 if (M[i] < 0)
7625 PFIndexes[i] = 8;
7626 else
7627 PFIndexes[i] = M[i];
7628 }
7629
7630 // Compute the index in the perfect shuffle table.
7631 unsigned PFTableIndex =
7632 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
7633 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
7634 unsigned Cost = (PFEntry >> 30);
7635
7636 if (Cost <= 4 && (Subtarget->hasNEON() || isLegalMVEShuffleOp(PFEntry)))
7637 return true;
7638 }
7639
7640 bool ReverseVEXT, isV_UNDEF;
7641 unsigned Imm, WhichResult;
7642
7643 unsigned EltSize = VT.getScalarSizeInBits();
7644 if (EltSize >= 32 ||
7645 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
7646 ShuffleVectorInst::isIdentityMask(M) ||
7647 isVREVMask(M, VT, 64) ||
7648 isVREVMask(M, VT, 32) ||
7649 isVREVMask(M, VT, 16))
7650 return true;
7651 else if (Subtarget->hasNEON() &&
7652 (isVEXTMask(M, VT, ReverseVEXT, Imm) ||
7653 isVTBLMask(M, VT) ||
7654 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF)))
7655 return true;
7656 else if (Subtarget->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) &&
7657 isReverseMask(M, VT))
7658 return true;
7659 else if (Subtarget->hasMVEIntegerOps() &&
7660 (isVMOVNMask(M, VT, 0) || isVMOVNMask(M, VT, 1)))
7661 return true;
7662 else
7663 return false;
7664 }
7665
7666 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
7667 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)7668 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
7669 SDValue RHS, SelectionDAG &DAG,
7670 const SDLoc &dl) {
7671 unsigned OpNum = (PFEntry >> 26) & 0x0F;
7672 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
7673 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
7674
7675 if (OpNum == OP_COPY) {
7676 if (LHSID == (1*9+2)*9+3) return LHS;
7677 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
7678 return RHS;
7679 }
7680
7681 SDValue OpLHS, OpRHS;
7682 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
7683 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
7684 EVT VT = OpLHS.getValueType();
7685
7686 switch (OpNum) {
7687 default: llvm_unreachable("Unknown shuffle opcode!");
7688 case OP_VREV:
7689 // VREV divides the vector in half and swaps within the half.
7690 if (VT.getVectorElementType() == MVT::i32 ||
7691 VT.getVectorElementType() == MVT::f32)
7692 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
7693 // vrev <4 x i16> -> VREV32
7694 if (VT.getVectorElementType() == MVT::i16)
7695 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
7696 // vrev <4 x i8> -> VREV16
7697 assert(VT.getVectorElementType() == MVT::i8);
7698 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
7699 case OP_VDUP0:
7700 case OP_VDUP1:
7701 case OP_VDUP2:
7702 case OP_VDUP3:
7703 return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
7704 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
7705 case OP_VEXT1:
7706 case OP_VEXT2:
7707 case OP_VEXT3:
7708 return DAG.getNode(ARMISD::VEXT, dl, VT,
7709 OpLHS, OpRHS,
7710 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
7711 case OP_VUZPL:
7712 case OP_VUZPR:
7713 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
7714 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
7715 case OP_VZIPL:
7716 case OP_VZIPR:
7717 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
7718 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
7719 case OP_VTRNL:
7720 case OP_VTRNR:
7721 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
7722 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
7723 }
7724 }
7725
LowerVECTOR_SHUFFLEv8i8(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)7726 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
7727 ArrayRef<int> ShuffleMask,
7728 SelectionDAG &DAG) {
7729 // Check to see if we can use the VTBL instruction.
7730 SDValue V1 = Op.getOperand(0);
7731 SDValue V2 = Op.getOperand(1);
7732 SDLoc DL(Op);
7733
7734 SmallVector<SDValue, 8> VTBLMask;
7735 for (ArrayRef<int>::iterator
7736 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
7737 VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
7738
7739 if (V2.getNode()->isUndef())
7740 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
7741 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7742
7743 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
7744 DAG.getBuildVector(MVT::v8i8, DL, VTBLMask));
7745 }
7746
LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,SelectionDAG & DAG)7747 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
7748 SelectionDAG &DAG) {
7749 SDLoc DL(Op);
7750 SDValue OpLHS = Op.getOperand(0);
7751 EVT VT = OpLHS.getValueType();
7752
7753 assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
7754 "Expect an v8i16/v16i8 type");
7755 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
7756 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
7757 // extract the first 8 bytes into the top double word and the last 8 bytes
7758 // into the bottom double word. The v8i16 case is similar.
7759 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
7760 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
7761 DAG.getConstant(ExtractNum, DL, MVT::i32));
7762 }
7763
getVectorTyFromPredicateVector(EVT VT)7764 static EVT getVectorTyFromPredicateVector(EVT VT) {
7765 switch (VT.getSimpleVT().SimpleTy) {
7766 case MVT::v4i1:
7767 return MVT::v4i32;
7768 case MVT::v8i1:
7769 return MVT::v8i16;
7770 case MVT::v16i1:
7771 return MVT::v16i8;
7772 default:
7773 llvm_unreachable("Unexpected vector predicate type");
7774 }
7775 }
7776
PromoteMVEPredVector(SDLoc dl,SDValue Pred,EVT VT,SelectionDAG & DAG)7777 static SDValue PromoteMVEPredVector(SDLoc dl, SDValue Pred, EVT VT,
7778 SelectionDAG &DAG) {
7779 // Converting from boolean predicates to integers involves creating a vector
7780 // of all ones or all zeroes and selecting the lanes based upon the real
7781 // predicate.
7782 SDValue AllOnes =
7783 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0xff), dl, MVT::i32);
7784 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllOnes);
7785
7786 SDValue AllZeroes =
7787 DAG.getTargetConstant(ARM_AM::createVMOVModImm(0xe, 0x0), dl, MVT::i32);
7788 AllZeroes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v16i8, AllZeroes);
7789
7790 // Get full vector type from predicate type
7791 EVT NewVT = getVectorTyFromPredicateVector(VT);
7792
7793 SDValue RecastV1;
7794 // If the real predicate is an v8i1 or v4i1 (not v16i1) then we need to recast
7795 // this to a v16i1. This cannot be done with an ordinary bitcast because the
7796 // sizes are not the same. We have to use a MVE specific PREDICATE_CAST node,
7797 // since we know in hardware the sizes are really the same.
7798 if (VT != MVT::v16i1)
7799 RecastV1 = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Pred);
7800 else
7801 RecastV1 = Pred;
7802
7803 // Select either all ones or zeroes depending upon the real predicate bits.
7804 SDValue PredAsVector =
7805 DAG.getNode(ISD::VSELECT, dl, MVT::v16i8, RecastV1, AllOnes, AllZeroes);
7806
7807 // Recast our new predicate-as-integer v16i8 vector into something
7808 // appropriate for the shuffle, i.e. v4i32 for a real v4i1 predicate.
7809 return DAG.getNode(ISD::BITCAST, dl, NewVT, PredAsVector);
7810 }
7811
LowerVECTOR_SHUFFLE_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)7812 static SDValue LowerVECTOR_SHUFFLE_i1(SDValue Op, SelectionDAG &DAG,
7813 const ARMSubtarget *ST) {
7814 EVT VT = Op.getValueType();
7815 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7816 ArrayRef<int> ShuffleMask = SVN->getMask();
7817
7818 assert(ST->hasMVEIntegerOps() &&
7819 "No support for vector shuffle of boolean predicates");
7820
7821 SDValue V1 = Op.getOperand(0);
7822 SDLoc dl(Op);
7823 if (isReverseMask(ShuffleMask, VT)) {
7824 SDValue cast = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, V1);
7825 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, cast);
7826 SDValue srl = DAG.getNode(ISD::SRL, dl, MVT::i32, rbit,
7827 DAG.getConstant(16, dl, MVT::i32));
7828 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, VT, srl);
7829 }
7830
7831 // Until we can come up with optimised cases for every single vector
7832 // shuffle in existence we have chosen the least painful strategy. This is
7833 // to essentially promote the boolean predicate to a 8-bit integer, where
7834 // each predicate represents a byte. Then we fall back on a normal integer
7835 // vector shuffle and convert the result back into a predicate vector. In
7836 // many cases the generated code might be even better than scalar code
7837 // operating on bits. Just imagine trying to shuffle 8 arbitrary 2-bit
7838 // fields in a register into 8 other arbitrary 2-bit fields!
7839 SDValue PredAsVector = PromoteMVEPredVector(dl, V1, VT, DAG);
7840 EVT NewVT = PredAsVector.getValueType();
7841
7842 // Do the shuffle!
7843 SDValue Shuffled = DAG.getVectorShuffle(NewVT, dl, PredAsVector,
7844 DAG.getUNDEF(NewVT), ShuffleMask);
7845
7846 // Now return the result of comparing the shuffled vector with zero,
7847 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
7848 return DAG.getNode(ARMISD::VCMPZ, dl, VT, Shuffled,
7849 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
7850 }
7851
LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,ArrayRef<int> ShuffleMask,SelectionDAG & DAG)7852 static SDValue LowerVECTOR_SHUFFLEUsingMovs(SDValue Op,
7853 ArrayRef<int> ShuffleMask,
7854 SelectionDAG &DAG) {
7855 // Attempt to lower the vector shuffle using as many whole register movs as
7856 // possible. This is useful for types smaller than 32bits, which would
7857 // often otherwise become a series for grp movs.
7858 SDLoc dl(Op);
7859 EVT VT = Op.getValueType();
7860 if (VT.getScalarSizeInBits() >= 32)
7861 return SDValue();
7862
7863 assert((VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v16i8) &&
7864 "Unexpected vector type");
7865 int NumElts = VT.getVectorNumElements();
7866 int QuarterSize = NumElts / 4;
7867 // The four final parts of the vector, as i32's
7868 SDValue Parts[4];
7869
7870 // Look for full lane vmovs like <0,1,2,3> or <u,5,6,7> etc, (but not
7871 // <u,u,u,u>), returning the vmov lane index
7872 auto getMovIdx = [](ArrayRef<int> ShuffleMask, int Start, int Length) {
7873 // Detect which mov lane this would be from the first non-undef element.
7874 int MovIdx = -1;
7875 for (int i = 0; i < Length; i++) {
7876 if (ShuffleMask[Start + i] >= 0) {
7877 if (ShuffleMask[Start + i] % Length != i)
7878 return -1;
7879 MovIdx = ShuffleMask[Start + i] / Length;
7880 break;
7881 }
7882 }
7883 // If all items are undef, leave this for other combines
7884 if (MovIdx == -1)
7885 return -1;
7886 // Check the remaining values are the correct part of the same mov
7887 for (int i = 1; i < Length; i++) {
7888 if (ShuffleMask[Start + i] >= 0 &&
7889 (ShuffleMask[Start + i] / Length != MovIdx ||
7890 ShuffleMask[Start + i] % Length != i))
7891 return -1;
7892 }
7893 return MovIdx;
7894 };
7895
7896 for (int Part = 0; Part < 4; ++Part) {
7897 // Does this part look like a mov
7898 int Elt = getMovIdx(ShuffleMask, Part * QuarterSize, QuarterSize);
7899 if (Elt != -1) {
7900 SDValue Input = Op->getOperand(0);
7901 if (Elt >= 4) {
7902 Input = Op->getOperand(1);
7903 Elt -= 4;
7904 }
7905 SDValue BitCast = DAG.getBitcast(MVT::v4i32, Input);
7906 Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, BitCast,
7907 DAG.getConstant(Elt, dl, MVT::i32));
7908 }
7909 }
7910
7911 // Nothing interesting found, just return
7912 if (!Parts[0] && !Parts[1] && !Parts[2] && !Parts[3])
7913 return SDValue();
7914
7915 // The other parts need to be built with the old shuffle vector, cast to a
7916 // v4i32 and extract_vector_elts
7917 if (!Parts[0] || !Parts[1] || !Parts[2] || !Parts[3]) {
7918 SmallVector<int, 16> NewShuffleMask;
7919 for (int Part = 0; Part < 4; ++Part)
7920 for (int i = 0; i < QuarterSize; i++)
7921 NewShuffleMask.push_back(
7922 Parts[Part] ? -1 : ShuffleMask[Part * QuarterSize + i]);
7923 SDValue NewShuffle = DAG.getVectorShuffle(
7924 VT, dl, Op->getOperand(0), Op->getOperand(1), NewShuffleMask);
7925 SDValue BitCast = DAG.getBitcast(MVT::v4i32, NewShuffle);
7926
7927 for (int Part = 0; Part < 4; ++Part)
7928 if (!Parts[Part])
7929 Parts[Part] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
7930 BitCast, DAG.getConstant(Part, dl, MVT::i32));
7931 }
7932 // Build a vector out of the various parts and bitcast it back to the original
7933 // type.
7934 SDValue NewVec = DAG.getBuildVector(MVT::v4i32, dl, Parts);
7935 return DAG.getBitcast(VT, NewVec);
7936 }
7937
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)7938 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG,
7939 const ARMSubtarget *ST) {
7940 SDValue V1 = Op.getOperand(0);
7941 SDValue V2 = Op.getOperand(1);
7942 SDLoc dl(Op);
7943 EVT VT = Op.getValueType();
7944 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
7945 unsigned EltSize = VT.getScalarSizeInBits();
7946
7947 if (ST->hasMVEIntegerOps() && EltSize == 1)
7948 return LowerVECTOR_SHUFFLE_i1(Op, DAG, ST);
7949
7950 // Convert shuffles that are directly supported on NEON to target-specific
7951 // DAG nodes, instead of keeping them as shuffles and matching them again
7952 // during code selection. This is more efficient and avoids the possibility
7953 // of inconsistencies between legalization and selection.
7954 // FIXME: floating-point vectors should be canonicalized to integer vectors
7955 // of the same time so that they get CSEd properly.
7956 ArrayRef<int> ShuffleMask = SVN->getMask();
7957
7958 if (EltSize <= 32) {
7959 if (SVN->isSplat()) {
7960 int Lane = SVN->getSplatIndex();
7961 // If this is undef splat, generate it via "just" vdup, if possible.
7962 if (Lane == -1) Lane = 0;
7963
7964 // Test if V1 is a SCALAR_TO_VECTOR.
7965 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
7966 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7967 }
7968 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
7969 // (and probably will turn into a SCALAR_TO_VECTOR once legalization
7970 // reaches it).
7971 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
7972 !isa<ConstantSDNode>(V1.getOperand(0))) {
7973 bool IsScalarToVector = true;
7974 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
7975 if (!V1.getOperand(i).isUndef()) {
7976 IsScalarToVector = false;
7977 break;
7978 }
7979 if (IsScalarToVector)
7980 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
7981 }
7982 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
7983 DAG.getConstant(Lane, dl, MVT::i32));
7984 }
7985
7986 bool ReverseVEXT = false;
7987 unsigned Imm = 0;
7988 if (ST->hasNEON() && isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
7989 if (ReverseVEXT)
7990 std::swap(V1, V2);
7991 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
7992 DAG.getConstant(Imm, dl, MVT::i32));
7993 }
7994
7995 if (isVREVMask(ShuffleMask, VT, 64))
7996 return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
7997 if (isVREVMask(ShuffleMask, VT, 32))
7998 return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
7999 if (isVREVMask(ShuffleMask, VT, 16))
8000 return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
8001
8002 if (ST->hasNEON() && V2->isUndef() && isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
8003 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
8004 DAG.getConstant(Imm, dl, MVT::i32));
8005 }
8006
8007 // Check for Neon shuffles that modify both input vectors in place.
8008 // If both results are used, i.e., if there are two shuffles with the same
8009 // source operands and with masks corresponding to both results of one of
8010 // these operations, DAG memoization will ensure that a single node is
8011 // used for both shuffles.
8012 unsigned WhichResult = 0;
8013 bool isV_UNDEF = false;
8014 if (ST->hasNEON()) {
8015 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8016 ShuffleMask, VT, WhichResult, isV_UNDEF)) {
8017 if (isV_UNDEF)
8018 V2 = V1;
8019 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
8020 .getValue(WhichResult);
8021 }
8022 }
8023 if (ST->hasMVEIntegerOps()) {
8024 if (isVMOVNMask(ShuffleMask, VT, 0))
8025 return DAG.getNode(ARMISD::VMOVN, dl, VT, V2, V1,
8026 DAG.getConstant(0, dl, MVT::i32));
8027 if (isVMOVNMask(ShuffleMask, VT, 1))
8028 return DAG.getNode(ARMISD::VMOVN, dl, VT, V1, V2,
8029 DAG.getConstant(1, dl, MVT::i32));
8030 }
8031
8032 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
8033 // shuffles that produce a result larger than their operands with:
8034 // shuffle(concat(v1, undef), concat(v2, undef))
8035 // ->
8036 // shuffle(concat(v1, v2), undef)
8037 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
8038 //
8039 // This is useful in the general case, but there are special cases where
8040 // native shuffles produce larger results: the two-result ops.
8041 //
8042 // Look through the concat when lowering them:
8043 // shuffle(concat(v1, v2), undef)
8044 // ->
8045 // concat(VZIP(v1, v2):0, :1)
8046 //
8047 if (ST->hasNEON() && V1->getOpcode() == ISD::CONCAT_VECTORS && V2->isUndef()) {
8048 SDValue SubV1 = V1->getOperand(0);
8049 SDValue SubV2 = V1->getOperand(1);
8050 EVT SubVT = SubV1.getValueType();
8051
8052 // We expect these to have been canonicalized to -1.
8053 assert(llvm::all_of(ShuffleMask, [&](int i) {
8054 return i < (int)VT.getVectorNumElements();
8055 }) && "Unexpected shuffle index into UNDEF operand!");
8056
8057 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
8058 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
8059 if (isV_UNDEF)
8060 SubV2 = SubV1;
8061 assert((WhichResult == 0) &&
8062 "In-place shuffle of concat can only have one result!");
8063 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
8064 SubV1, SubV2);
8065 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
8066 Res.getValue(1));
8067 }
8068 }
8069 }
8070
8071 // If the shuffle is not directly supported and it has 4 elements, use
8072 // the PerfectShuffle-generated table to synthesize it from other shuffles.
8073 unsigned NumElts = VT.getVectorNumElements();
8074 if (NumElts == 4) {
8075 unsigned PFIndexes[4];
8076 for (unsigned i = 0; i != 4; ++i) {
8077 if (ShuffleMask[i] < 0)
8078 PFIndexes[i] = 8;
8079 else
8080 PFIndexes[i] = ShuffleMask[i];
8081 }
8082
8083 // Compute the index in the perfect shuffle table.
8084 unsigned PFTableIndex =
8085 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
8086 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
8087 unsigned Cost = (PFEntry >> 30);
8088
8089 if (Cost <= 4) {
8090 if (ST->hasNEON())
8091 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8092 else if (isLegalMVEShuffleOp(PFEntry)) {
8093 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8094 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
8095 unsigned PFEntryLHS = PerfectShuffleTable[LHSID];
8096 unsigned PFEntryRHS = PerfectShuffleTable[RHSID];
8097 if (isLegalMVEShuffleOp(PFEntryLHS) && isLegalMVEShuffleOp(PFEntryRHS))
8098 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
8099 }
8100 }
8101 }
8102
8103 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
8104 if (EltSize >= 32) {
8105 // Do the expansion with floating-point types, since that is what the VFP
8106 // registers are defined to use, and since i64 is not legal.
8107 EVT EltVT = EVT::getFloatingPointVT(EltSize);
8108 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
8109 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
8110 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
8111 SmallVector<SDValue, 8> Ops;
8112 for (unsigned i = 0; i < NumElts; ++i) {
8113 if (ShuffleMask[i] < 0)
8114 Ops.push_back(DAG.getUNDEF(EltVT));
8115 else
8116 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
8117 ShuffleMask[i] < (int)NumElts ? V1 : V2,
8118 DAG.getConstant(ShuffleMask[i] & (NumElts-1),
8119 dl, MVT::i32)));
8120 }
8121 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
8122 return DAG.getNode(ISD::BITCAST, dl, VT, Val);
8123 }
8124
8125 if (ST->hasNEON() && (VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
8126 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
8127
8128 if (ST->hasNEON() && VT == MVT::v8i8)
8129 if (SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG))
8130 return NewOp;
8131
8132 if (ST->hasMVEIntegerOps())
8133 if (SDValue NewOp = LowerVECTOR_SHUFFLEUsingMovs(Op, ShuffleMask, DAG))
8134 return NewOp;
8135
8136 return SDValue();
8137 }
8138
LowerINSERT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8139 static SDValue LowerINSERT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8140 const ARMSubtarget *ST) {
8141 EVT VecVT = Op.getOperand(0).getValueType();
8142 SDLoc dl(Op);
8143
8144 assert(ST->hasMVEIntegerOps() &&
8145 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8146
8147 SDValue Conv =
8148 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8149 unsigned Lane = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
8150 unsigned LaneWidth =
8151 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8152 unsigned Mask = ((1 << LaneWidth) - 1) << Lane * LaneWidth;
8153 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::i32,
8154 Op.getOperand(1), DAG.getValueType(MVT::i1));
8155 SDValue BFI = DAG.getNode(ARMISD::BFI, dl, MVT::i32, Conv, Ext,
8156 DAG.getConstant(~Mask, dl, MVT::i32));
8157 return DAG.getNode(ARMISD::PREDICATE_CAST, dl, Op.getValueType(), BFI);
8158 }
8159
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const8160 SDValue ARMTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
8161 SelectionDAG &DAG) const {
8162 // INSERT_VECTOR_ELT is legal only for immediate indexes.
8163 SDValue Lane = Op.getOperand(2);
8164 if (!isa<ConstantSDNode>(Lane))
8165 return SDValue();
8166
8167 SDValue Elt = Op.getOperand(1);
8168 EVT EltVT = Elt.getValueType();
8169
8170 if (Subtarget->hasMVEIntegerOps() &&
8171 Op.getValueType().getScalarSizeInBits() == 1)
8172 return LowerINSERT_VECTOR_ELT_i1(Op, DAG, Subtarget);
8173
8174 if (getTypeAction(*DAG.getContext(), EltVT) ==
8175 TargetLowering::TypePromoteFloat) {
8176 // INSERT_VECTOR_ELT doesn't want f16 operands promoting to f32,
8177 // but the type system will try to do that if we don't intervene.
8178 // Reinterpret any such vector-element insertion as one with the
8179 // corresponding integer types.
8180
8181 SDLoc dl(Op);
8182
8183 EVT IEltVT = MVT::getIntegerVT(EltVT.getScalarSizeInBits());
8184 assert(getTypeAction(*DAG.getContext(), IEltVT) !=
8185 TargetLowering::TypePromoteFloat);
8186
8187 SDValue VecIn = Op.getOperand(0);
8188 EVT VecVT = VecIn.getValueType();
8189 EVT IVecVT = EVT::getVectorVT(*DAG.getContext(), IEltVT,
8190 VecVT.getVectorNumElements());
8191
8192 SDValue IElt = DAG.getNode(ISD::BITCAST, dl, IEltVT, Elt);
8193 SDValue IVecIn = DAG.getNode(ISD::BITCAST, dl, IVecVT, VecIn);
8194 SDValue IVecOut = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, IVecVT,
8195 IVecIn, IElt, Lane);
8196 return DAG.getNode(ISD::BITCAST, dl, VecVT, IVecOut);
8197 }
8198
8199 return Op;
8200 }
8201
LowerEXTRACT_VECTOR_ELT_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8202 static SDValue LowerEXTRACT_VECTOR_ELT_i1(SDValue Op, SelectionDAG &DAG,
8203 const ARMSubtarget *ST) {
8204 EVT VecVT = Op.getOperand(0).getValueType();
8205 SDLoc dl(Op);
8206
8207 assert(ST->hasMVEIntegerOps() &&
8208 "LowerINSERT_VECTOR_ELT_i1 called without MVE!");
8209
8210 SDValue Conv =
8211 DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Op->getOperand(0));
8212 unsigned Lane = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
8213 unsigned LaneWidth =
8214 getVectorTyFromPredicateVector(VecVT).getScalarSizeInBits() / 8;
8215 SDValue Shift = DAG.getNode(ISD::SRL, dl, MVT::i32, Conv,
8216 DAG.getConstant(Lane * LaneWidth, dl, MVT::i32));
8217 return Shift;
8218 }
8219
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8220 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG,
8221 const ARMSubtarget *ST) {
8222 // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
8223 SDValue Lane = Op.getOperand(1);
8224 if (!isa<ConstantSDNode>(Lane))
8225 return SDValue();
8226
8227 SDValue Vec = Op.getOperand(0);
8228 EVT VT = Vec.getValueType();
8229
8230 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8231 return LowerEXTRACT_VECTOR_ELT_i1(Op, DAG, ST);
8232
8233 if (Op.getValueType() == MVT::i32 && Vec.getScalarValueSizeInBits() < 32) {
8234 SDLoc dl(Op);
8235 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
8236 }
8237
8238 return Op;
8239 }
8240
LowerCONCAT_VECTORS_i1(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8241 static SDValue LowerCONCAT_VECTORS_i1(SDValue Op, SelectionDAG &DAG,
8242 const ARMSubtarget *ST) {
8243 SDValue V1 = Op.getOperand(0);
8244 SDValue V2 = Op.getOperand(1);
8245 SDLoc dl(Op);
8246 EVT VT = Op.getValueType();
8247 EVT Op1VT = V1.getValueType();
8248 EVT Op2VT = V2.getValueType();
8249 unsigned NumElts = VT.getVectorNumElements();
8250
8251 assert(Op1VT == Op2VT && "Operand types don't match!");
8252 assert(VT.getScalarSizeInBits() == 1 &&
8253 "Unexpected custom CONCAT_VECTORS lowering");
8254 assert(ST->hasMVEIntegerOps() &&
8255 "CONCAT_VECTORS lowering only supported for MVE");
8256
8257 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8258 SDValue NewV2 = PromoteMVEPredVector(dl, V2, Op2VT, DAG);
8259
8260 // We now have Op1 + Op2 promoted to vectors of integers, where v8i1 gets
8261 // promoted to v8i16, etc.
8262
8263 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8264
8265 // Extract the vector elements from Op1 and Op2 one by one and truncate them
8266 // to be the right size for the destination. For example, if Op1 is v4i1 then
8267 // the promoted vector is v4i32. The result of concatentation gives a v8i1,
8268 // which when promoted is v8i16. That means each i32 element from Op1 needs
8269 // truncating to i16 and inserting in the result.
8270 EVT ConcatVT = MVT::getVectorVT(ElType, NumElts);
8271 SDValue ConVec = DAG.getNode(ISD::UNDEF, dl, ConcatVT);
8272 auto ExractInto = [&DAG, &dl](SDValue NewV, SDValue ConVec, unsigned &j) {
8273 EVT NewVT = NewV.getValueType();
8274 EVT ConcatVT = ConVec.getValueType();
8275 for (unsigned i = 0, e = NewVT.getVectorNumElements(); i < e; i++, j++) {
8276 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV,
8277 DAG.getIntPtrConstant(i, dl));
8278 ConVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ConcatVT, ConVec, Elt,
8279 DAG.getConstant(j, dl, MVT::i32));
8280 }
8281 return ConVec;
8282 };
8283 unsigned j = 0;
8284 ConVec = ExractInto(NewV1, ConVec, j);
8285 ConVec = ExractInto(NewV2, ConVec, j);
8286
8287 // Now return the result of comparing the subvector with zero,
8288 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8289 return DAG.getNode(ARMISD::VCMPZ, dl, VT, ConVec,
8290 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8291 }
8292
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8293 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG,
8294 const ARMSubtarget *ST) {
8295 EVT VT = Op->getValueType(0);
8296 if (ST->hasMVEIntegerOps() && VT.getScalarSizeInBits() == 1)
8297 return LowerCONCAT_VECTORS_i1(Op, DAG, ST);
8298
8299 // The only time a CONCAT_VECTORS operation can have legal types is when
8300 // two 64-bit vectors are concatenated to a 128-bit vector.
8301 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
8302 "unexpected CONCAT_VECTORS");
8303 SDLoc dl(Op);
8304 SDValue Val = DAG.getUNDEF(MVT::v2f64);
8305 SDValue Op0 = Op.getOperand(0);
8306 SDValue Op1 = Op.getOperand(1);
8307 if (!Op0.isUndef())
8308 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8309 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
8310 DAG.getIntPtrConstant(0, dl));
8311 if (!Op1.isUndef())
8312 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
8313 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
8314 DAG.getIntPtrConstant(1, dl));
8315 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
8316 }
8317
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8318 static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG,
8319 const ARMSubtarget *ST) {
8320 SDValue V1 = Op.getOperand(0);
8321 SDValue V2 = Op.getOperand(1);
8322 SDLoc dl(Op);
8323 EVT VT = Op.getValueType();
8324 EVT Op1VT = V1.getValueType();
8325 unsigned NumElts = VT.getVectorNumElements();
8326 unsigned Index = cast<ConstantSDNode>(V2)->getZExtValue();
8327
8328 assert(VT.getScalarSizeInBits() == 1 &&
8329 "Unexpected custom EXTRACT_SUBVECTOR lowering");
8330 assert(ST->hasMVEIntegerOps() &&
8331 "EXTRACT_SUBVECTOR lowering only supported for MVE");
8332
8333 SDValue NewV1 = PromoteMVEPredVector(dl, V1, Op1VT, DAG);
8334
8335 // We now have Op1 promoted to a vector of integers, where v8i1 gets
8336 // promoted to v8i16, etc.
8337
8338 MVT ElType = getVectorTyFromPredicateVector(VT).getScalarType().getSimpleVT();
8339
8340 EVT SubVT = MVT::getVectorVT(ElType, NumElts);
8341 SDValue SubVec = DAG.getNode(ISD::UNDEF, dl, SubVT);
8342 for (unsigned i = Index, j = 0; i < (Index + NumElts); i++, j++) {
8343 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, NewV1,
8344 DAG.getIntPtrConstant(i, dl));
8345 SubVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, SubVT, SubVec, Elt,
8346 DAG.getConstant(j, dl, MVT::i32));
8347 }
8348
8349 // Now return the result of comparing the subvector with zero,
8350 // which will generate a real predicate, i.e. v4i1, v8i1 or v16i1.
8351 return DAG.getNode(ARMISD::VCMPZ, dl, VT, SubVec,
8352 DAG.getConstant(ARMCC::NE, dl, MVT::i32));
8353 }
8354
8355 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
8356 /// element has been zero/sign-extended, depending on the isSigned parameter,
8357 /// from an integer type half its size.
isExtendedBUILD_VECTOR(SDNode * N,SelectionDAG & DAG,bool isSigned)8358 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
8359 bool isSigned) {
8360 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
8361 EVT VT = N->getValueType(0);
8362 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
8363 SDNode *BVN = N->getOperand(0).getNode();
8364 if (BVN->getValueType(0) != MVT::v4i32 ||
8365 BVN->getOpcode() != ISD::BUILD_VECTOR)
8366 return false;
8367 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8368 unsigned HiElt = 1 - LoElt;
8369 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
8370 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
8371 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
8372 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
8373 if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
8374 return false;
8375 if (isSigned) {
8376 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
8377 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
8378 return true;
8379 } else {
8380 if (Hi0->isNullValue() && Hi1->isNullValue())
8381 return true;
8382 }
8383 return false;
8384 }
8385
8386 if (N->getOpcode() != ISD::BUILD_VECTOR)
8387 return false;
8388
8389 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
8390 SDNode *Elt = N->getOperand(i).getNode();
8391 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
8392 unsigned EltSize = VT.getScalarSizeInBits();
8393 unsigned HalfSize = EltSize / 2;
8394 if (isSigned) {
8395 if (!isIntN(HalfSize, C->getSExtValue()))
8396 return false;
8397 } else {
8398 if (!isUIntN(HalfSize, C->getZExtValue()))
8399 return false;
8400 }
8401 continue;
8402 }
8403 return false;
8404 }
8405
8406 return true;
8407 }
8408
8409 /// isSignExtended - Check if a node is a vector value that is sign-extended
8410 /// or a constant BUILD_VECTOR with sign-extended elements.
isSignExtended(SDNode * N,SelectionDAG & DAG)8411 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
8412 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
8413 return true;
8414 if (isExtendedBUILD_VECTOR(N, DAG, true))
8415 return true;
8416 return false;
8417 }
8418
8419 /// isZeroExtended - Check if a node is a vector value that is zero-extended
8420 /// or a constant BUILD_VECTOR with zero-extended elements.
isZeroExtended(SDNode * N,SelectionDAG & DAG)8421 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
8422 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
8423 return true;
8424 if (isExtendedBUILD_VECTOR(N, DAG, false))
8425 return true;
8426 return false;
8427 }
8428
getExtensionTo64Bits(const EVT & OrigVT)8429 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
8430 if (OrigVT.getSizeInBits() >= 64)
8431 return OrigVT;
8432
8433 assert(OrigVT.isSimple() && "Expecting a simple value type");
8434
8435 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
8436 switch (OrigSimpleTy) {
8437 default: llvm_unreachable("Unexpected Vector Type");
8438 case MVT::v2i8:
8439 case MVT::v2i16:
8440 return MVT::v2i32;
8441 case MVT::v4i8:
8442 return MVT::v4i16;
8443 }
8444 }
8445
8446 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
8447 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
8448 /// We insert the required extension here to get the vector to fill a D register.
AddRequiredExtensionForVMULL(SDValue N,SelectionDAG & DAG,const EVT & OrigTy,const EVT & ExtTy,unsigned ExtOpcode)8449 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
8450 const EVT &OrigTy,
8451 const EVT &ExtTy,
8452 unsigned ExtOpcode) {
8453 // The vector originally had a size of OrigTy. It was then extended to ExtTy.
8454 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
8455 // 64-bits we need to insert a new extension so that it will be 64-bits.
8456 assert(ExtTy.is128BitVector() && "Unexpected extension size");
8457 if (OrigTy.getSizeInBits() >= 64)
8458 return N;
8459
8460 // Must extend size to at least 64 bits to be used as an operand for VMULL.
8461 EVT NewVT = getExtensionTo64Bits(OrigTy);
8462
8463 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
8464 }
8465
8466 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
8467 /// does not do any sign/zero extension. If the original vector is less
8468 /// than 64 bits, an appropriate extension will be added after the load to
8469 /// reach a total size of 64 bits. We have to add the extension separately
8470 /// because ARM does not have a sign/zero extending load for vectors.
SkipLoadExtensionForVMULL(LoadSDNode * LD,SelectionDAG & DAG)8471 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
8472 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
8473
8474 // The load already has the right type.
8475 if (ExtendedTy == LD->getMemoryVT())
8476 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
8477 LD->getBasePtr(), LD->getPointerInfo(),
8478 LD->getAlignment(), LD->getMemOperand()->getFlags());
8479
8480 // We need to create a zextload/sextload. We cannot just create a load
8481 // followed by a zext/zext node because LowerMUL is also run during normal
8482 // operation legalization where we can't create illegal types.
8483 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
8484 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
8485 LD->getMemoryVT(), LD->getAlignment(),
8486 LD->getMemOperand()->getFlags());
8487 }
8488
8489 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
8490 /// extending load, or BUILD_VECTOR with extended elements, return the
8491 /// unextended value. The unextended vector should be 64 bits so that it can
8492 /// be used as an operand to a VMULL instruction. If the original vector size
8493 /// before extension is less than 64 bits we add a an extension to resize
8494 /// the vector to 64 bits.
SkipExtensionForVMULL(SDNode * N,SelectionDAG & DAG)8495 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
8496 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
8497 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
8498 N->getOperand(0)->getValueType(0),
8499 N->getValueType(0),
8500 N->getOpcode());
8501
8502 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
8503 assert((ISD::isSEXTLoad(LD) || ISD::isZEXTLoad(LD)) &&
8504 "Expected extending load");
8505
8506 SDValue newLoad = SkipLoadExtensionForVMULL(LD, DAG);
8507 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), newLoad.getValue(1));
8508 unsigned Opcode = ISD::isSEXTLoad(LD) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
8509 SDValue extLoad =
8510 DAG.getNode(Opcode, SDLoc(newLoad), LD->getValueType(0), newLoad);
8511 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 0), extLoad);
8512
8513 return newLoad;
8514 }
8515
8516 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
8517 // have been legalized as a BITCAST from v4i32.
8518 if (N->getOpcode() == ISD::BITCAST) {
8519 SDNode *BVN = N->getOperand(0).getNode();
8520 assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
8521 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
8522 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
8523 return DAG.getBuildVector(
8524 MVT::v2i32, SDLoc(N),
8525 {BVN->getOperand(LowElt), BVN->getOperand(LowElt + 2)});
8526 }
8527 // Construct a new BUILD_VECTOR with elements truncated to half the size.
8528 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
8529 EVT VT = N->getValueType(0);
8530 unsigned EltSize = VT.getScalarSizeInBits() / 2;
8531 unsigned NumElts = VT.getVectorNumElements();
8532 MVT TruncVT = MVT::getIntegerVT(EltSize);
8533 SmallVector<SDValue, 8> Ops;
8534 SDLoc dl(N);
8535 for (unsigned i = 0; i != NumElts; ++i) {
8536 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
8537 const APInt &CInt = C->getAPIntValue();
8538 // Element types smaller than 32 bits are not legal, so use i32 elements.
8539 // The values are implicitly truncated so sext vs. zext doesn't matter.
8540 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
8541 }
8542 return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops);
8543 }
8544
isAddSubSExt(SDNode * N,SelectionDAG & DAG)8545 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
8546 unsigned Opcode = N->getOpcode();
8547 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8548 SDNode *N0 = N->getOperand(0).getNode();
8549 SDNode *N1 = N->getOperand(1).getNode();
8550 return N0->hasOneUse() && N1->hasOneUse() &&
8551 isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
8552 }
8553 return false;
8554 }
8555
isAddSubZExt(SDNode * N,SelectionDAG & DAG)8556 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
8557 unsigned Opcode = N->getOpcode();
8558 if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
8559 SDNode *N0 = N->getOperand(0).getNode();
8560 SDNode *N1 = N->getOperand(1).getNode();
8561 return N0->hasOneUse() && N1->hasOneUse() &&
8562 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
8563 }
8564 return false;
8565 }
8566
LowerMUL(SDValue Op,SelectionDAG & DAG)8567 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
8568 // Multiplications are only custom-lowered for 128-bit vectors so that
8569 // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
8570 EVT VT = Op.getValueType();
8571 assert(VT.is128BitVector() && VT.isInteger() &&
8572 "unexpected type for custom-lowering ISD::MUL");
8573 SDNode *N0 = Op.getOperand(0).getNode();
8574 SDNode *N1 = Op.getOperand(1).getNode();
8575 unsigned NewOpc = 0;
8576 bool isMLA = false;
8577 bool isN0SExt = isSignExtended(N0, DAG);
8578 bool isN1SExt = isSignExtended(N1, DAG);
8579 if (isN0SExt && isN1SExt)
8580 NewOpc = ARMISD::VMULLs;
8581 else {
8582 bool isN0ZExt = isZeroExtended(N0, DAG);
8583 bool isN1ZExt = isZeroExtended(N1, DAG);
8584 if (isN0ZExt && isN1ZExt)
8585 NewOpc = ARMISD::VMULLu;
8586 else if (isN1SExt || isN1ZExt) {
8587 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
8588 // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
8589 if (isN1SExt && isAddSubSExt(N0, DAG)) {
8590 NewOpc = ARMISD::VMULLs;
8591 isMLA = true;
8592 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
8593 NewOpc = ARMISD::VMULLu;
8594 isMLA = true;
8595 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
8596 std::swap(N0, N1);
8597 NewOpc = ARMISD::VMULLu;
8598 isMLA = true;
8599 }
8600 }
8601
8602 if (!NewOpc) {
8603 if (VT == MVT::v2i64)
8604 // Fall through to expand this. It is not legal.
8605 return SDValue();
8606 else
8607 // Other vector multiplications are legal.
8608 return Op;
8609 }
8610 }
8611
8612 // Legalize to a VMULL instruction.
8613 SDLoc DL(Op);
8614 SDValue Op0;
8615 SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
8616 if (!isMLA) {
8617 Op0 = SkipExtensionForVMULL(N0, DAG);
8618 assert(Op0.getValueType().is64BitVector() &&
8619 Op1.getValueType().is64BitVector() &&
8620 "unexpected types for extended operands to VMULL");
8621 return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
8622 }
8623
8624 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
8625 // isel lowering to take advantage of no-stall back to back vmul + vmla.
8626 // vmull q0, d4, d6
8627 // vmlal q0, d5, d6
8628 // is faster than
8629 // vaddl q0, d4, d5
8630 // vmovl q1, d6
8631 // vmul q0, q0, q1
8632 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
8633 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
8634 EVT Op1VT = Op1.getValueType();
8635 return DAG.getNode(N0->getOpcode(), DL, VT,
8636 DAG.getNode(NewOpc, DL, VT,
8637 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
8638 DAG.getNode(NewOpc, DL, VT,
8639 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
8640 }
8641
LowerSDIV_v4i8(SDValue X,SDValue Y,const SDLoc & dl,SelectionDAG & DAG)8642 static SDValue LowerSDIV_v4i8(SDValue X, SDValue Y, const SDLoc &dl,
8643 SelectionDAG &DAG) {
8644 // TODO: Should this propagate fast-math-flags?
8645
8646 // Convert to float
8647 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
8648 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
8649 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
8650 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
8651 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
8652 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
8653 // Get reciprocal estimate.
8654 // float4 recip = vrecpeq_f32(yf);
8655 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8656 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8657 Y);
8658 // Because char has a smaller range than uchar, we can actually get away
8659 // without any newton steps. This requires that we use a weird bias
8660 // of 0xb000, however (again, this has been exhaustively tested).
8661 // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
8662 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
8663 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
8664 Y = DAG.getConstant(0xb000, dl, MVT::v4i32);
8665 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
8666 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
8667 // Convert back to short.
8668 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
8669 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
8670 return X;
8671 }
8672
LowerSDIV_v4i16(SDValue N0,SDValue N1,const SDLoc & dl,SelectionDAG & DAG)8673 static SDValue LowerSDIV_v4i16(SDValue N0, SDValue N1, const SDLoc &dl,
8674 SelectionDAG &DAG) {
8675 // TODO: Should this propagate fast-math-flags?
8676
8677 SDValue N2;
8678 // Convert to float.
8679 // float4 yf = vcvt_f32_s32(vmovl_s16(y));
8680 // float4 xf = vcvt_f32_s32(vmovl_s16(x));
8681 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
8682 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
8683 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8684 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8685
8686 // Use reciprocal estimate and one refinement step.
8687 // float4 recip = vrecpeq_f32(yf);
8688 // recip *= vrecpsq_f32(yf, recip);
8689 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8690 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8691 N1);
8692 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8693 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8694 N1, N2);
8695 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8696 // Because short has a smaller range than ushort, we can actually get away
8697 // with only a single newton step. This requires that we use a weird bias
8698 // of 89, however (again, this has been exhaustively tested).
8699 // float4 result = as_float4(as_int4(xf*recip) + 0x89);
8700 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8701 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8702 N1 = DAG.getConstant(0x89, dl, MVT::v4i32);
8703 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8704 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8705 // Convert back to integer and return.
8706 // return vmovn_s32(vcvt_s32_f32(result));
8707 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8708 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8709 return N0;
8710 }
8711
LowerSDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8712 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG,
8713 const ARMSubtarget *ST) {
8714 EVT VT = Op.getValueType();
8715 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8716 "unexpected type for custom-lowering ISD::SDIV");
8717
8718 SDLoc dl(Op);
8719 SDValue N0 = Op.getOperand(0);
8720 SDValue N1 = Op.getOperand(1);
8721 SDValue N2, N3;
8722
8723 if (VT == MVT::v8i8) {
8724 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
8725 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
8726
8727 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8728 DAG.getIntPtrConstant(4, dl));
8729 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8730 DAG.getIntPtrConstant(4, dl));
8731 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8732 DAG.getIntPtrConstant(0, dl));
8733 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8734 DAG.getIntPtrConstant(0, dl));
8735
8736 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
8737 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
8738
8739 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8740 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8741
8742 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
8743 return N0;
8744 }
8745 return LowerSDIV_v4i16(N0, N1, dl, DAG);
8746 }
8747
LowerUDIV(SDValue Op,SelectionDAG & DAG,const ARMSubtarget * ST)8748 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG,
8749 const ARMSubtarget *ST) {
8750 // TODO: Should this propagate fast-math-flags?
8751 EVT VT = Op.getValueType();
8752 assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
8753 "unexpected type for custom-lowering ISD::UDIV");
8754
8755 SDLoc dl(Op);
8756 SDValue N0 = Op.getOperand(0);
8757 SDValue N1 = Op.getOperand(1);
8758 SDValue N2, N3;
8759
8760 if (VT == MVT::v8i8) {
8761 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
8762 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
8763
8764 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8765 DAG.getIntPtrConstant(4, dl));
8766 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8767 DAG.getIntPtrConstant(4, dl));
8768 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
8769 DAG.getIntPtrConstant(0, dl));
8770 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
8771 DAG.getIntPtrConstant(0, dl));
8772
8773 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
8774 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
8775
8776 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
8777 N0 = LowerCONCAT_VECTORS(N0, DAG, ST);
8778
8779 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
8780 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
8781 MVT::i32),
8782 N0);
8783 return N0;
8784 }
8785
8786 // v4i16 sdiv ... Convert to float.
8787 // float4 yf = vcvt_f32_s32(vmovl_u16(y));
8788 // float4 xf = vcvt_f32_s32(vmovl_u16(x));
8789 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
8790 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
8791 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
8792 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
8793
8794 // Use reciprocal estimate and two refinement steps.
8795 // float4 recip = vrecpeq_f32(yf);
8796 // recip *= vrecpsq_f32(yf, recip);
8797 // recip *= vrecpsq_f32(yf, recip);
8798 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8799 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
8800 BN1);
8801 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8802 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8803 BN1, N2);
8804 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8805 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
8806 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
8807 BN1, N2);
8808 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
8809 // Simply multiplying by the reciprocal estimate can leave us a few ulps
8810 // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
8811 // and that it will never cause us to return an answer too large).
8812 // float4 result = as_float4(as_int4(xf*recip) + 2);
8813 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
8814 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
8815 N1 = DAG.getConstant(2, dl, MVT::v4i32);
8816 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
8817 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
8818 // Convert back to integer and return.
8819 // return vmovn_u32(vcvt_s32_f32(result));
8820 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
8821 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
8822 return N0;
8823 }
8824
LowerADDSUBCARRY(SDValue Op,SelectionDAG & DAG)8825 static SDValue LowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) {
8826 SDNode *N = Op.getNode();
8827 EVT VT = N->getValueType(0);
8828 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
8829
8830 SDValue Carry = Op.getOperand(2);
8831
8832 SDLoc DL(Op);
8833
8834 SDValue Result;
8835 if (Op.getOpcode() == ISD::ADDCARRY) {
8836 // This converts the boolean value carry into the carry flag.
8837 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8838
8839 // Do the addition proper using the carry flag we wanted.
8840 Result = DAG.getNode(ARMISD::ADDE, DL, VTs, Op.getOperand(0),
8841 Op.getOperand(1), Carry);
8842
8843 // Now convert the carry flag into a boolean value.
8844 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8845 } else {
8846 // ARMISD::SUBE expects a carry not a borrow like ISD::SUBCARRY so we
8847 // have to invert the carry first.
8848 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8849 DAG.getConstant(1, DL, MVT::i32), Carry);
8850 // This converts the boolean value carry into the carry flag.
8851 Carry = ConvertBooleanCarryToCarryFlag(Carry, DAG);
8852
8853 // Do the subtraction proper using the carry flag we wanted.
8854 Result = DAG.getNode(ARMISD::SUBE, DL, VTs, Op.getOperand(0),
8855 Op.getOperand(1), Carry);
8856
8857 // Now convert the carry flag into a boolean value.
8858 Carry = ConvertCarryFlagToBooleanCarry(Result.getValue(1), VT, DAG);
8859 // But the carry returned by ARMISD::SUBE is not a borrow as expected
8860 // by ISD::SUBCARRY, so compute 1 - C.
8861 Carry = DAG.getNode(ISD::SUB, DL, MVT::i32,
8862 DAG.getConstant(1, DL, MVT::i32), Carry);
8863 }
8864
8865 // Return both values.
8866 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Result, Carry);
8867 }
8868
LowerFSINCOS(SDValue Op,SelectionDAG & DAG) const8869 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
8870 assert(Subtarget->isTargetDarwin());
8871
8872 // For iOS, we want to call an alternative entry point: __sincos_stret,
8873 // return values are passed via sret.
8874 SDLoc dl(Op);
8875 SDValue Arg = Op.getOperand(0);
8876 EVT ArgVT = Arg.getValueType();
8877 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
8878 auto PtrVT = getPointerTy(DAG.getDataLayout());
8879
8880 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8881 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8882
8883 // Pair of floats / doubles used to pass the result.
8884 Type *RetTy = StructType::get(ArgTy, ArgTy);
8885 auto &DL = DAG.getDataLayout();
8886
8887 ArgListTy Args;
8888 bool ShouldUseSRet = Subtarget->isAPCS_ABI();
8889 SDValue SRet;
8890 if (ShouldUseSRet) {
8891 // Create stack object for sret.
8892 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
8893 const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
8894 int FrameIdx = MFI.CreateStackObject(ByteSize, StackAlign, false);
8895 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
8896
8897 ArgListEntry Entry;
8898 Entry.Node = SRet;
8899 Entry.Ty = RetTy->getPointerTo();
8900 Entry.IsSExt = false;
8901 Entry.IsZExt = false;
8902 Entry.IsSRet = true;
8903 Args.push_back(Entry);
8904 RetTy = Type::getVoidTy(*DAG.getContext());
8905 }
8906
8907 ArgListEntry Entry;
8908 Entry.Node = Arg;
8909 Entry.Ty = ArgTy;
8910 Entry.IsSExt = false;
8911 Entry.IsZExt = false;
8912 Args.push_back(Entry);
8913
8914 RTLIB::Libcall LC =
8915 (ArgVT == MVT::f64) ? RTLIB::SINCOS_STRET_F64 : RTLIB::SINCOS_STRET_F32;
8916 const char *LibcallName = getLibcallName(LC);
8917 CallingConv::ID CC = getLibcallCallingConv(LC);
8918 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
8919
8920 TargetLowering::CallLoweringInfo CLI(DAG);
8921 CLI.setDebugLoc(dl)
8922 .setChain(DAG.getEntryNode())
8923 .setCallee(CC, RetTy, Callee, std::move(Args))
8924 .setDiscardResult(ShouldUseSRet);
8925 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8926
8927 if (!ShouldUseSRet)
8928 return CallResult.first;
8929
8930 SDValue LoadSin =
8931 DAG.getLoad(ArgVT, dl, CallResult.second, SRet, MachinePointerInfo());
8932
8933 // Address of cos field.
8934 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
8935 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
8936 SDValue LoadCos =
8937 DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, MachinePointerInfo());
8938
8939 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
8940 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
8941 LoadSin.getValue(0), LoadCos.getValue(0));
8942 }
8943
LowerWindowsDIVLibCall(SDValue Op,SelectionDAG & DAG,bool Signed,SDValue & Chain) const8944 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
8945 bool Signed,
8946 SDValue &Chain) const {
8947 EVT VT = Op.getValueType();
8948 assert((VT == MVT::i32 || VT == MVT::i64) &&
8949 "unexpected type for custom lowering DIV");
8950 SDLoc dl(Op);
8951
8952 const auto &DL = DAG.getDataLayout();
8953 const auto &TLI = DAG.getTargetLoweringInfo();
8954
8955 const char *Name = nullptr;
8956 if (Signed)
8957 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
8958 else
8959 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
8960
8961 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
8962
8963 ARMTargetLowering::ArgListTy Args;
8964
8965 for (auto AI : {1, 0}) {
8966 ArgListEntry Arg;
8967 Arg.Node = Op.getOperand(AI);
8968 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
8969 Args.push_back(Arg);
8970 }
8971
8972 CallLoweringInfo CLI(DAG);
8973 CLI.setDebugLoc(dl)
8974 .setChain(Chain)
8975 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
8976 ES, std::move(Args));
8977
8978 return LowerCallTo(CLI).first;
8979 }
8980
8981 // This is a code size optimisation: return the original SDIV node to
8982 // DAGCombiner when we don't want to expand SDIV into a sequence of
8983 // instructions, and an empty node otherwise which will cause the
8984 // SDIV to be expanded in DAGCombine.
8985 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const8986 ARMTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
8987 SelectionDAG &DAG,
8988 SmallVectorImpl<SDNode *> &Created) const {
8989 // TODO: Support SREM
8990 if (N->getOpcode() != ISD::SDIV)
8991 return SDValue();
8992
8993 const auto &ST = static_cast<const ARMSubtarget&>(DAG.getSubtarget());
8994 const bool MinSize = ST.hasMinSize();
8995 const bool HasDivide = ST.isThumb() ? ST.hasDivideInThumbMode()
8996 : ST.hasDivideInARMMode();
8997
8998 // Don't touch vector types; rewriting this may lead to scalarizing
8999 // the int divs.
9000 if (N->getOperand(0).getValueType().isVector())
9001 return SDValue();
9002
9003 // Bail if MinSize is not set, and also for both ARM and Thumb mode we need
9004 // hwdiv support for this to be really profitable.
9005 if (!(MinSize && HasDivide))
9006 return SDValue();
9007
9008 // ARM mode is a bit simpler than Thumb: we can handle large power
9009 // of 2 immediates with 1 mov instruction; no further checks required,
9010 // just return the sdiv node.
9011 if (!ST.isThumb())
9012 return SDValue(N, 0);
9013
9014 // In Thumb mode, immediates larger than 128 need a wide 4-byte MOV,
9015 // and thus lose the code size benefits of a MOVS that requires only 2.
9016 // TargetTransformInfo and 'getIntImmCodeSizeCost' could be helpful here,
9017 // but as it's doing exactly this, it's not worth the trouble to get TTI.
9018 if (Divisor.sgt(128))
9019 return SDValue();
9020
9021 return SDValue(N, 0);
9022 }
9023
LowerDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed) const9024 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
9025 bool Signed) const {
9026 assert(Op.getValueType() == MVT::i32 &&
9027 "unexpected type for custom lowering DIV");
9028 SDLoc dl(Op);
9029
9030 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
9031 DAG.getEntryNode(), Op.getOperand(1));
9032
9033 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9034 }
9035
WinDBZCheckDenominator(SelectionDAG & DAG,SDNode * N,SDValue InChain)9036 static SDValue WinDBZCheckDenominator(SelectionDAG &DAG, SDNode *N, SDValue InChain) {
9037 SDLoc DL(N);
9038 SDValue Op = N->getOperand(1);
9039 if (N->getValueType(0) == MVT::i32)
9040 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain, Op);
9041 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9042 DAG.getConstant(0, DL, MVT::i32));
9043 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Op,
9044 DAG.getConstant(1, DL, MVT::i32));
9045 return DAG.getNode(ARMISD::WIN__DBZCHK, DL, MVT::Other, InChain,
9046 DAG.getNode(ISD::OR, DL, MVT::i32, Lo, Hi));
9047 }
9048
ExpandDIV_Windows(SDValue Op,SelectionDAG & DAG,bool Signed,SmallVectorImpl<SDValue> & Results) const9049 void ARMTargetLowering::ExpandDIV_Windows(
9050 SDValue Op, SelectionDAG &DAG, bool Signed,
9051 SmallVectorImpl<SDValue> &Results) const {
9052 const auto &DL = DAG.getDataLayout();
9053 const auto &TLI = DAG.getTargetLoweringInfo();
9054
9055 assert(Op.getValueType() == MVT::i64 &&
9056 "unexpected type for custom lowering DIV");
9057 SDLoc dl(Op);
9058
9059 SDValue DBZCHK = WinDBZCheckDenominator(DAG, Op.getNode(), DAG.getEntryNode());
9060
9061 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
9062
9063 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
9064 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
9065 DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
9066 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
9067
9068 Results.push_back(Lower);
9069 Results.push_back(Upper);
9070 }
9071
LowerPredicateLoad(SDValue Op,SelectionDAG & DAG)9072 static SDValue LowerPredicateLoad(SDValue Op, SelectionDAG &DAG) {
9073 LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
9074 EVT MemVT = LD->getMemoryVT();
9075 assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9076 "Expected a predicate type!");
9077 assert(MemVT == Op.getValueType());
9078 assert(LD->getExtensionType() == ISD::NON_EXTLOAD &&
9079 "Expected a non-extending load");
9080 assert(LD->isUnindexed() && "Expected a unindexed load");
9081
9082 // The basic MVE VLDR on a v4i1/v8i1 actually loads the entire 16bit
9083 // predicate, with the "v4i1" bits spread out over the 16 bits loaded. We
9084 // need to make sure that 8/4 bits are actually loaded into the correct
9085 // place, which means loading the value and then shuffling the values into
9086 // the bottom bits of the predicate.
9087 // Equally, VLDR for an v16i1 will actually load 32bits (so will be incorrect
9088 // for BE).
9089
9090 SDLoc dl(Op);
9091 SDValue Load = DAG.getExtLoad(
9092 ISD::EXTLOAD, dl, MVT::i32, LD->getChain(), LD->getBasePtr(),
9093 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9094 LD->getMemOperand());
9095 SDValue Pred = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::v16i1, Load);
9096 if (MemVT != MVT::v16i1)
9097 Pred = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MemVT, Pred,
9098 DAG.getConstant(0, dl, MVT::i32));
9099 return DAG.getMergeValues({Pred, Load.getValue(1)}, dl);
9100 }
9101
LowerPredicateStore(SDValue Op,SelectionDAG & DAG)9102 static SDValue LowerPredicateStore(SDValue Op, SelectionDAG &DAG) {
9103 StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
9104 EVT MemVT = ST->getMemoryVT();
9105 assert((MemVT == MVT::v4i1 || MemVT == MVT::v8i1 || MemVT == MVT::v16i1) &&
9106 "Expected a predicate type!");
9107 assert(MemVT == ST->getValue().getValueType());
9108 assert(!ST->isTruncatingStore() && "Expected a non-extending store");
9109 assert(ST->isUnindexed() && "Expected a unindexed store");
9110
9111 // Only store the v4i1 or v8i1 worth of bits, via a buildvector with top bits
9112 // unset and a scalar store.
9113 SDLoc dl(Op);
9114 SDValue Build = ST->getValue();
9115 if (MemVT != MVT::v16i1) {
9116 SmallVector<SDValue, 16> Ops;
9117 for (unsigned I = 0; I < MemVT.getVectorNumElements(); I++)
9118 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, Build,
9119 DAG.getConstant(I, dl, MVT::i32)));
9120 for (unsigned I = MemVT.getVectorNumElements(); I < 16; I++)
9121 Ops.push_back(DAG.getUNDEF(MVT::i32));
9122 Build = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i1, Ops);
9123 }
9124 SDValue GRP = DAG.getNode(ARMISD::PREDICATE_CAST, dl, MVT::i32, Build);
9125 return DAG.getTruncStore(
9126 ST->getChain(), dl, GRP, ST->getBasePtr(),
9127 EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits()),
9128 ST->getMemOperand());
9129 }
9130
isZeroVector(SDValue N)9131 static bool isZeroVector(SDValue N) {
9132 return (ISD::isBuildVectorAllZeros(N.getNode()) ||
9133 (N->getOpcode() == ARMISD::VMOVIMM &&
9134 isNullConstant(N->getOperand(0))));
9135 }
9136
LowerMLOAD(SDValue Op,SelectionDAG & DAG)9137 static SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) {
9138 MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
9139 MVT VT = Op.getSimpleValueType();
9140 SDValue Mask = N->getMask();
9141 SDValue PassThru = N->getPassThru();
9142 SDLoc dl(Op);
9143
9144 if (isZeroVector(PassThru))
9145 return Op;
9146
9147 // MVE Masked loads use zero as the passthru value. Here we convert undef to
9148 // zero too, and other values are lowered to a select.
9149 SDValue ZeroVec = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
9150 DAG.getTargetConstant(0, dl, MVT::i32));
9151 SDValue NewLoad = DAG.getMaskedLoad(
9152 VT, dl, N->getChain(), N->getBasePtr(), N->getOffset(), Mask, ZeroVec,
9153 N->getMemoryVT(), N->getMemOperand(), N->getAddressingMode(),
9154 N->getExtensionType(), N->isExpandingLoad());
9155 SDValue Combo = NewLoad;
9156 if (!PassThru.isUndef() &&
9157 (PassThru.getOpcode() != ISD::BITCAST ||
9158 !isZeroVector(PassThru->getOperand(0))))
9159 Combo = DAG.getNode(ISD::VSELECT, dl, VT, Mask, NewLoad, PassThru);
9160 return DAG.getMergeValues({Combo, NewLoad.getValue(1)}, dl);
9161 }
9162
LowerAtomicLoadStore(SDValue Op,SelectionDAG & DAG)9163 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
9164 if (isStrongerThanMonotonic(cast<AtomicSDNode>(Op)->getOrdering()))
9165 // Acquire/Release load/store is not legal for targets without a dmb or
9166 // equivalent available.
9167 return SDValue();
9168
9169 // Monotonic load/store is legal for all targets.
9170 return Op;
9171 }
9172
ReplaceREADCYCLECOUNTER(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,const ARMSubtarget * Subtarget)9173 static void ReplaceREADCYCLECOUNTER(SDNode *N,
9174 SmallVectorImpl<SDValue> &Results,
9175 SelectionDAG &DAG,
9176 const ARMSubtarget *Subtarget) {
9177 SDLoc DL(N);
9178 // Under Power Management extensions, the cycle-count is:
9179 // mrc p15, #0, <Rt>, c9, c13, #0
9180 SDValue Ops[] = { N->getOperand(0), // Chain
9181 DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
9182 DAG.getTargetConstant(15, DL, MVT::i32),
9183 DAG.getTargetConstant(0, DL, MVT::i32),
9184 DAG.getTargetConstant(9, DL, MVT::i32),
9185 DAG.getTargetConstant(13, DL, MVT::i32),
9186 DAG.getTargetConstant(0, DL, MVT::i32)
9187 };
9188
9189 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
9190 DAG.getVTList(MVT::i32, MVT::Other), Ops);
9191 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
9192 DAG.getConstant(0, DL, MVT::i32)));
9193 Results.push_back(Cycles32.getValue(1));
9194 }
9195
createGPRPairNode(SelectionDAG & DAG,SDValue V)9196 static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) {
9197 SDLoc dl(V.getNode());
9198 SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i32);
9199 SDValue VHi = DAG.getAnyExtOrTrunc(
9200 DAG.getNode(ISD::SRL, dl, MVT::i64, V, DAG.getConstant(32, dl, MVT::i32)),
9201 dl, MVT::i32);
9202 bool isBigEndian = DAG.getDataLayout().isBigEndian();
9203 if (isBigEndian)
9204 std::swap (VLo, VHi);
9205 SDValue RegClass =
9206 DAG.getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
9207 SDValue SubReg0 = DAG.getTargetConstant(ARM::gsub_0, dl, MVT::i32);
9208 SDValue SubReg1 = DAG.getTargetConstant(ARM::gsub_1, dl, MVT::i32);
9209 const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 };
9210 return SDValue(
9211 DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0);
9212 }
9213
ReplaceCMP_SWAP_64Results(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9214 static void ReplaceCMP_SWAP_64Results(SDNode *N,
9215 SmallVectorImpl<SDValue> & Results,
9216 SelectionDAG &DAG) {
9217 assert(N->getValueType(0) == MVT::i64 &&
9218 "AtomicCmpSwap on types less than 64 should be legal");
9219 SDValue Ops[] = {N->getOperand(1),
9220 createGPRPairNode(DAG, N->getOperand(2)),
9221 createGPRPairNode(DAG, N->getOperand(3)),
9222 N->getOperand(0)};
9223 SDNode *CmpSwap = DAG.getMachineNode(
9224 ARM::CMP_SWAP_64, SDLoc(N),
9225 DAG.getVTList(MVT::Untyped, MVT::i32, MVT::Other), Ops);
9226
9227 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
9228 DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
9229
9230 bool isBigEndian = DAG.getDataLayout().isBigEndian();
9231
9232 Results.push_back(
9233 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_1 : ARM::gsub_0,
9234 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
9235 Results.push_back(
9236 DAG.getTargetExtractSubreg(isBigEndian ? ARM::gsub_0 : ARM::gsub_1,
9237 SDLoc(N), MVT::i32, SDValue(CmpSwap, 0)));
9238 Results.push_back(SDValue(CmpSwap, 2));
9239 }
9240
LowerFSETCC(SDValue Op,SelectionDAG & DAG) const9241 SDValue ARMTargetLowering::LowerFSETCC(SDValue Op, SelectionDAG &DAG) const {
9242 SDLoc dl(Op);
9243 EVT VT = Op.getValueType();
9244 SDValue Chain = Op.getOperand(0);
9245 SDValue LHS = Op.getOperand(1);
9246 SDValue RHS = Op.getOperand(2);
9247 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(3))->get();
9248 bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS;
9249
9250 // If we don't have instructions of this float type then soften to a libcall
9251 // and use SETCC instead.
9252 if (isUnsupportedFloatingType(LHS.getValueType())) {
9253 DAG.getTargetLoweringInfo().softenSetCCOperands(
9254 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS, Chain, IsSignaling);
9255 if (!RHS.getNode()) {
9256 RHS = DAG.getConstant(0, dl, LHS.getValueType());
9257 CC = ISD::SETNE;
9258 }
9259 SDValue Result = DAG.getNode(ISD::SETCC, dl, VT, LHS, RHS,
9260 DAG.getCondCode(CC));
9261 return DAG.getMergeValues({Result, Chain}, dl);
9262 }
9263
9264 ARMCC::CondCodes CondCode, CondCode2;
9265 FPCCToARMCC(CC, CondCode, CondCode2);
9266
9267 // FIXME: Chain is not handled correctly here. Currently the FPSCR is implicit
9268 // in CMPFP and CMPFPE, but instead it should be made explicit by these
9269 // instructions using a chain instead of glue. This would also fix the problem
9270 // here (and also in LowerSELECT_CC) where we generate two comparisons when
9271 // CondCode2 != AL.
9272 SDValue True = DAG.getConstant(1, dl, VT);
9273 SDValue False = DAG.getConstant(0, dl, VT);
9274 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
9275 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
9276 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9277 SDValue Result = getCMOV(dl, VT, False, True, ARMcc, CCR, Cmp, DAG);
9278 if (CondCode2 != ARMCC::AL) {
9279 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
9280 Cmp = getVFPCmp(LHS, RHS, DAG, dl, IsSignaling);
9281 Result = getCMOV(dl, VT, Result, True, ARMcc, CCR, Cmp, DAG);
9282 }
9283 return DAG.getMergeValues({Result, Chain}, dl);
9284 }
9285
LowerOperation(SDValue Op,SelectionDAG & DAG) const9286 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9287 LLVM_DEBUG(dbgs() << "Lowering node: "; Op.dump());
9288 switch (Op.getOpcode()) {
9289 default: llvm_unreachable("Don't know how to custom lower this!");
9290 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
9291 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
9292 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
9293 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
9294 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
9295 case ISD::SELECT: return LowerSELECT(Op, DAG);
9296 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
9297 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
9298 case ISD::BR_CC: return LowerBR_CC(Op, DAG);
9299 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
9300 case ISD::VASTART: return LowerVASTART(Op, DAG);
9301 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
9302 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
9303 case ISD::SINT_TO_FP:
9304 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
9305 case ISD::STRICT_FP_TO_SINT:
9306 case ISD::STRICT_FP_TO_UINT:
9307 case ISD::FP_TO_SINT:
9308 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
9309 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
9310 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
9311 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
9312 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
9313 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
9314 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
9315 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG, Subtarget);
9316 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
9317 Subtarget);
9318 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG, Subtarget);
9319 case ISD::SHL:
9320 case ISD::SRL:
9321 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
9322 case ISD::SREM: return LowerREM(Op.getNode(), DAG);
9323 case ISD::UREM: return LowerREM(Op.getNode(), DAG);
9324 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
9325 case ISD::SRL_PARTS:
9326 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
9327 case ISD::CTTZ:
9328 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
9329 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
9330 case ISD::SETCC: return LowerVSETCC(Op, DAG, Subtarget);
9331 case ISD::SETCCCARRY: return LowerSETCCCARRY(Op, DAG);
9332 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
9333 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
9334 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG, Subtarget);
9335 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG, Subtarget);
9336 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
9337 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG, Subtarget);
9338 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG, Subtarget);
9339 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
9340 case ISD::MUL: return LowerMUL(Op, DAG);
9341 case ISD::SDIV:
9342 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9343 return LowerDIV_Windows(Op, DAG, /* Signed */ true);
9344 return LowerSDIV(Op, DAG, Subtarget);
9345 case ISD::UDIV:
9346 if (Subtarget->isTargetWindows() && !Op.getValueType().isVector())
9347 return LowerDIV_Windows(Op, DAG, /* Signed */ false);
9348 return LowerUDIV(Op, DAG, Subtarget);
9349 case ISD::ADDCARRY:
9350 case ISD::SUBCARRY: return LowerADDSUBCARRY(Op, DAG);
9351 case ISD::SADDO:
9352 case ISD::SSUBO:
9353 return LowerSignedALUO(Op, DAG);
9354 case ISD::UADDO:
9355 case ISD::USUBO:
9356 return LowerUnsignedALUO(Op, DAG);
9357 case ISD::SADDSAT:
9358 case ISD::SSUBSAT:
9359 return LowerSADDSUBSAT(Op, DAG, Subtarget);
9360 case ISD::LOAD:
9361 return LowerPredicateLoad(Op, DAG);
9362 case ISD::STORE:
9363 return LowerPredicateStore(Op, DAG);
9364 case ISD::MLOAD:
9365 return LowerMLOAD(Op, DAG);
9366 case ISD::ATOMIC_LOAD:
9367 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
9368 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
9369 case ISD::SDIVREM:
9370 case ISD::UDIVREM: return LowerDivRem(Op, DAG);
9371 case ISD::DYNAMIC_STACKALLOC:
9372 if (Subtarget->isTargetWindows())
9373 return LowerDYNAMIC_STACKALLOC(Op, DAG);
9374 llvm_unreachable("Don't know how to custom lower this!");
9375 case ISD::STRICT_FP_ROUND:
9376 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
9377 case ISD::STRICT_FP_EXTEND:
9378 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
9379 case ISD::STRICT_FSETCC:
9380 case ISD::STRICT_FSETCCS: return LowerFSETCC(Op, DAG);
9381 case ARMISD::WIN__DBZCHK: return SDValue();
9382 }
9383 }
9384
ReplaceLongIntrinsic(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)9385 static void ReplaceLongIntrinsic(SDNode *N, SmallVectorImpl<SDValue> &Results,
9386 SelectionDAG &DAG) {
9387 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
9388 unsigned Opc = 0;
9389 if (IntNo == Intrinsic::arm_smlald)
9390 Opc = ARMISD::SMLALD;
9391 else if (IntNo == Intrinsic::arm_smlaldx)
9392 Opc = ARMISD::SMLALDX;
9393 else if (IntNo == Intrinsic::arm_smlsld)
9394 Opc = ARMISD::SMLSLD;
9395 else if (IntNo == Intrinsic::arm_smlsldx)
9396 Opc = ARMISD::SMLSLDX;
9397 else
9398 return;
9399
9400 SDLoc dl(N);
9401 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9402 N->getOperand(3),
9403 DAG.getConstant(0, dl, MVT::i32));
9404 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
9405 N->getOperand(3),
9406 DAG.getConstant(1, dl, MVT::i32));
9407
9408 SDValue LongMul = DAG.getNode(Opc, dl,
9409 DAG.getVTList(MVT::i32, MVT::i32),
9410 N->getOperand(1), N->getOperand(2),
9411 Lo, Hi);
9412 Results.push_back(LongMul.getValue(0));
9413 Results.push_back(LongMul.getValue(1));
9414 }
9415
9416 /// ReplaceNodeResults - Replace the results of node with an illegal result
9417 /// type with new values built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const9418 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
9419 SmallVectorImpl<SDValue> &Results,
9420 SelectionDAG &DAG) const {
9421 SDValue Res;
9422 switch (N->getOpcode()) {
9423 default:
9424 llvm_unreachable("Don't know how to custom expand this!");
9425 case ISD::READ_REGISTER:
9426 ExpandREAD_REGISTER(N, Results, DAG);
9427 break;
9428 case ISD::BITCAST:
9429 Res = ExpandBITCAST(N, DAG, Subtarget);
9430 break;
9431 case ISD::SRL:
9432 case ISD::SRA:
9433 case ISD::SHL:
9434 Res = Expand64BitShift(N, DAG, Subtarget);
9435 break;
9436 case ISD::SREM:
9437 case ISD::UREM:
9438 Res = LowerREM(N, DAG);
9439 break;
9440 case ISD::SDIVREM:
9441 case ISD::UDIVREM:
9442 Res = LowerDivRem(SDValue(N, 0), DAG);
9443 assert(Res.getNumOperands() == 2 && "DivRem needs two values");
9444 Results.push_back(Res.getValue(0));
9445 Results.push_back(Res.getValue(1));
9446 return;
9447 case ISD::SADDSAT:
9448 case ISD::SSUBSAT:
9449 Res = LowerSADDSUBSAT(SDValue(N, 0), DAG, Subtarget);
9450 break;
9451 case ISD::READCYCLECOUNTER:
9452 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
9453 return;
9454 case ISD::UDIV:
9455 case ISD::SDIV:
9456 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
9457 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
9458 Results);
9459 case ISD::ATOMIC_CMP_SWAP:
9460 ReplaceCMP_SWAP_64Results(N, Results, DAG);
9461 return;
9462 case ISD::INTRINSIC_WO_CHAIN:
9463 return ReplaceLongIntrinsic(N, Results, DAG);
9464 case ISD::ABS:
9465 lowerABS(N, Results, DAG);
9466 return ;
9467
9468 }
9469 if (Res.getNode())
9470 Results.push_back(Res);
9471 }
9472
9473 //===----------------------------------------------------------------------===//
9474 // ARM Scheduler Hooks
9475 //===----------------------------------------------------------------------===//
9476
9477 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
9478 /// registers the function context.
SetupEntryBlockForSjLj(MachineInstr & MI,MachineBasicBlock * MBB,MachineBasicBlock * DispatchBB,int FI) const9479 void ARMTargetLowering::SetupEntryBlockForSjLj(MachineInstr &MI,
9480 MachineBasicBlock *MBB,
9481 MachineBasicBlock *DispatchBB,
9482 int FI) const {
9483 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&
9484 "ROPI/RWPI not currently supported with SjLj");
9485 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9486 DebugLoc dl = MI.getDebugLoc();
9487 MachineFunction *MF = MBB->getParent();
9488 MachineRegisterInfo *MRI = &MF->getRegInfo();
9489 MachineConstantPool *MCP = MF->getConstantPool();
9490 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
9491 const Function &F = MF->getFunction();
9492
9493 bool isThumb = Subtarget->isThumb();
9494 bool isThumb2 = Subtarget->isThumb2();
9495
9496 unsigned PCLabelId = AFI->createPICLabelUId();
9497 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
9498 ARMConstantPoolValue *CPV =
9499 ARMConstantPoolMBB::Create(F.getContext(), DispatchBB, PCLabelId, PCAdj);
9500 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
9501
9502 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
9503 : &ARM::GPRRegClass;
9504
9505 // Grab constant pool and fixed stack memory operands.
9506 MachineMemOperand *CPMMO =
9507 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
9508 MachineMemOperand::MOLoad, 4, 4);
9509
9510 MachineMemOperand *FIMMOSt =
9511 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
9512 MachineMemOperand::MOStore, 4, 4);
9513
9514 // Load the address of the dispatch MBB into the jump buffer.
9515 if (isThumb2) {
9516 // Incoming value: jbuf
9517 // ldr.n r5, LCPI1_1
9518 // orr r5, r5, #1
9519 // add r5, pc
9520 // str r5, [$jbuf, #+4] ; &jbuf[1]
9521 Register NewVReg1 = MRI->createVirtualRegister(TRC);
9522 BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
9523 .addConstantPoolIndex(CPI)
9524 .addMemOperand(CPMMO)
9525 .add(predOps(ARMCC::AL));
9526 // Set the low bit because of thumb mode.
9527 Register NewVReg2 = MRI->createVirtualRegister(TRC);
9528 BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
9529 .addReg(NewVReg1, RegState::Kill)
9530 .addImm(0x01)
9531 .add(predOps(ARMCC::AL))
9532 .add(condCodeOp());
9533 Register NewVReg3 = MRI->createVirtualRegister(TRC);
9534 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
9535 .addReg(NewVReg2, RegState::Kill)
9536 .addImm(PCLabelId);
9537 BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
9538 .addReg(NewVReg3, RegState::Kill)
9539 .addFrameIndex(FI)
9540 .addImm(36) // &jbuf[1] :: pc
9541 .addMemOperand(FIMMOSt)
9542 .add(predOps(ARMCC::AL));
9543 } else if (isThumb) {
9544 // Incoming value: jbuf
9545 // ldr.n r1, LCPI1_4
9546 // add r1, pc
9547 // mov r2, #1
9548 // orrs r1, r2
9549 // add r2, $jbuf, #+4 ; &jbuf[1]
9550 // str r1, [r2]
9551 Register NewVReg1 = MRI->createVirtualRegister(TRC);
9552 BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
9553 .addConstantPoolIndex(CPI)
9554 .addMemOperand(CPMMO)
9555 .add(predOps(ARMCC::AL));
9556 Register NewVReg2 = MRI->createVirtualRegister(TRC);
9557 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
9558 .addReg(NewVReg1, RegState::Kill)
9559 .addImm(PCLabelId);
9560 // Set the low bit because of thumb mode.
9561 Register NewVReg3 = MRI->createVirtualRegister(TRC);
9562 BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
9563 .addReg(ARM::CPSR, RegState::Define)
9564 .addImm(1)
9565 .add(predOps(ARMCC::AL));
9566 Register NewVReg4 = MRI->createVirtualRegister(TRC);
9567 BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
9568 .addReg(ARM::CPSR, RegState::Define)
9569 .addReg(NewVReg2, RegState::Kill)
9570 .addReg(NewVReg3, RegState::Kill)
9571 .add(predOps(ARMCC::AL));
9572 Register NewVReg5 = MRI->createVirtualRegister(TRC);
9573 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
9574 .addFrameIndex(FI)
9575 .addImm(36); // &jbuf[1] :: pc
9576 BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
9577 .addReg(NewVReg4, RegState::Kill)
9578 .addReg(NewVReg5, RegState::Kill)
9579 .addImm(0)
9580 .addMemOperand(FIMMOSt)
9581 .add(predOps(ARMCC::AL));
9582 } else {
9583 // Incoming value: jbuf
9584 // ldr r1, LCPI1_1
9585 // add r1, pc, r1
9586 // str r1, [$jbuf, #+4] ; &jbuf[1]
9587 Register NewVReg1 = MRI->createVirtualRegister(TRC);
9588 BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
9589 .addConstantPoolIndex(CPI)
9590 .addImm(0)
9591 .addMemOperand(CPMMO)
9592 .add(predOps(ARMCC::AL));
9593 Register NewVReg2 = MRI->createVirtualRegister(TRC);
9594 BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
9595 .addReg(NewVReg1, RegState::Kill)
9596 .addImm(PCLabelId)
9597 .add(predOps(ARMCC::AL));
9598 BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
9599 .addReg(NewVReg2, RegState::Kill)
9600 .addFrameIndex(FI)
9601 .addImm(36) // &jbuf[1] :: pc
9602 .addMemOperand(FIMMOSt)
9603 .add(predOps(ARMCC::AL));
9604 }
9605 }
9606
EmitSjLjDispatchBlock(MachineInstr & MI,MachineBasicBlock * MBB) const9607 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr &MI,
9608 MachineBasicBlock *MBB) const {
9609 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
9610 DebugLoc dl = MI.getDebugLoc();
9611 MachineFunction *MF = MBB->getParent();
9612 MachineRegisterInfo *MRI = &MF->getRegInfo();
9613 MachineFrameInfo &MFI = MF->getFrameInfo();
9614 int FI = MFI.getFunctionContextIndex();
9615
9616 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
9617 : &ARM::GPRnopcRegClass;
9618
9619 // Get a mapping of the call site numbers to all of the landing pads they're
9620 // associated with.
9621 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2>> CallSiteNumToLPad;
9622 unsigned MaxCSNum = 0;
9623 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
9624 ++BB) {
9625 if (!BB->isEHPad()) continue;
9626
9627 // FIXME: We should assert that the EH_LABEL is the first MI in the landing
9628 // pad.
9629 for (MachineBasicBlock::iterator
9630 II = BB->begin(), IE = BB->end(); II != IE; ++II) {
9631 if (!II->isEHLabel()) continue;
9632
9633 MCSymbol *Sym = II->getOperand(0).getMCSymbol();
9634 if (!MF->hasCallSiteLandingPad(Sym)) continue;
9635
9636 SmallVectorImpl<unsigned> &CallSiteIdxs = MF->getCallSiteLandingPad(Sym);
9637 for (SmallVectorImpl<unsigned>::iterator
9638 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
9639 CSI != CSE; ++CSI) {
9640 CallSiteNumToLPad[*CSI].push_back(&*BB);
9641 MaxCSNum = std::max(MaxCSNum, *CSI);
9642 }
9643 break;
9644 }
9645 }
9646
9647 // Get an ordered list of the machine basic blocks for the jump table.
9648 std::vector<MachineBasicBlock*> LPadList;
9649 SmallPtrSet<MachineBasicBlock*, 32> InvokeBBs;
9650 LPadList.reserve(CallSiteNumToLPad.size());
9651 for (unsigned I = 1; I <= MaxCSNum; ++I) {
9652 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
9653 for (SmallVectorImpl<MachineBasicBlock*>::iterator
9654 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
9655 LPadList.push_back(*II);
9656 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
9657 }
9658 }
9659
9660 assert(!LPadList.empty() &&
9661 "No landing pad destinations for the dispatch jump table!");
9662
9663 // Create the jump table and associated information.
9664 MachineJumpTableInfo *JTI =
9665 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
9666 unsigned MJTI = JTI->createJumpTableIndex(LPadList);
9667
9668 // Create the MBBs for the dispatch code.
9669
9670 // Shove the dispatch's address into the return slot in the function context.
9671 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
9672 DispatchBB->setIsEHPad();
9673
9674 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
9675 unsigned trap_opcode;
9676 if (Subtarget->isThumb())
9677 trap_opcode = ARM::tTRAP;
9678 else
9679 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
9680
9681 BuildMI(TrapBB, dl, TII->get(trap_opcode));
9682 DispatchBB->addSuccessor(TrapBB);
9683
9684 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
9685 DispatchBB->addSuccessor(DispContBB);
9686
9687 // Insert and MBBs.
9688 MF->insert(MF->end(), DispatchBB);
9689 MF->insert(MF->end(), DispContBB);
9690 MF->insert(MF->end(), TrapBB);
9691
9692 // Insert code into the entry block that creates and registers the function
9693 // context.
9694 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
9695
9696 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
9697 MachinePointerInfo::getFixedStack(*MF, FI),
9698 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
9699
9700 MachineInstrBuilder MIB;
9701 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
9702
9703 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
9704 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
9705
9706 // Add a register mask with no preserved registers. This results in all
9707 // registers being marked as clobbered. This can't work if the dispatch block
9708 // is in a Thumb1 function and is linked with ARM code which uses the FP
9709 // registers, as there is no way to preserve the FP registers in Thumb1 mode.
9710 MIB.addRegMask(RI.getSjLjDispatchPreservedMask(*MF));
9711
9712 bool IsPositionIndependent = isPositionIndependent();
9713 unsigned NumLPads = LPadList.size();
9714 if (Subtarget->isThumb2()) {
9715 Register NewVReg1 = MRI->createVirtualRegister(TRC);
9716 BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
9717 .addFrameIndex(FI)
9718 .addImm(4)
9719 .addMemOperand(FIMMOLd)
9720 .add(predOps(ARMCC::AL));
9721
9722 if (NumLPads < 256) {
9723 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
9724 .addReg(NewVReg1)
9725 .addImm(LPadList.size())
9726 .add(predOps(ARMCC::AL));
9727 } else {
9728 Register VReg1 = MRI->createVirtualRegister(TRC);
9729 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
9730 .addImm(NumLPads & 0xFFFF)
9731 .add(predOps(ARMCC::AL));
9732
9733 unsigned VReg2 = VReg1;
9734 if ((NumLPads & 0xFFFF0000) != 0) {
9735 VReg2 = MRI->createVirtualRegister(TRC);
9736 BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
9737 .addReg(VReg1)
9738 .addImm(NumLPads >> 16)
9739 .add(predOps(ARMCC::AL));
9740 }
9741
9742 BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
9743 .addReg(NewVReg1)
9744 .addReg(VReg2)
9745 .add(predOps(ARMCC::AL));
9746 }
9747
9748 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
9749 .addMBB(TrapBB)
9750 .addImm(ARMCC::HI)
9751 .addReg(ARM::CPSR);
9752
9753 Register NewVReg3 = MRI->createVirtualRegister(TRC);
9754 BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT), NewVReg3)
9755 .addJumpTableIndex(MJTI)
9756 .add(predOps(ARMCC::AL));
9757
9758 Register NewVReg4 = MRI->createVirtualRegister(TRC);
9759 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
9760 .addReg(NewVReg3, RegState::Kill)
9761 .addReg(NewVReg1)
9762 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9763 .add(predOps(ARMCC::AL))
9764 .add(condCodeOp());
9765
9766 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
9767 .addReg(NewVReg4, RegState::Kill)
9768 .addReg(NewVReg1)
9769 .addJumpTableIndex(MJTI);
9770 } else if (Subtarget->isThumb()) {
9771 Register NewVReg1 = MRI->createVirtualRegister(TRC);
9772 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
9773 .addFrameIndex(FI)
9774 .addImm(1)
9775 .addMemOperand(FIMMOLd)
9776 .add(predOps(ARMCC::AL));
9777
9778 if (NumLPads < 256) {
9779 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
9780 .addReg(NewVReg1)
9781 .addImm(NumLPads)
9782 .add(predOps(ARMCC::AL));
9783 } else {
9784 MachineConstantPool *ConstantPool = MF->getConstantPool();
9785 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9786 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9787
9788 // MachineConstantPool wants an explicit alignment.
9789 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9790 if (Align == 0)
9791 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9792 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9793
9794 Register VReg1 = MRI->createVirtualRegister(TRC);
9795 BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
9796 .addReg(VReg1, RegState::Define)
9797 .addConstantPoolIndex(Idx)
9798 .add(predOps(ARMCC::AL));
9799 BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
9800 .addReg(NewVReg1)
9801 .addReg(VReg1)
9802 .add(predOps(ARMCC::AL));
9803 }
9804
9805 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
9806 .addMBB(TrapBB)
9807 .addImm(ARMCC::HI)
9808 .addReg(ARM::CPSR);
9809
9810 Register NewVReg2 = MRI->createVirtualRegister(TRC);
9811 BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
9812 .addReg(ARM::CPSR, RegState::Define)
9813 .addReg(NewVReg1)
9814 .addImm(2)
9815 .add(predOps(ARMCC::AL));
9816
9817 Register NewVReg3 = MRI->createVirtualRegister(TRC);
9818 BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
9819 .addJumpTableIndex(MJTI)
9820 .add(predOps(ARMCC::AL));
9821
9822 Register NewVReg4 = MRI->createVirtualRegister(TRC);
9823 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
9824 .addReg(ARM::CPSR, RegState::Define)
9825 .addReg(NewVReg2, RegState::Kill)
9826 .addReg(NewVReg3)
9827 .add(predOps(ARMCC::AL));
9828
9829 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9830 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9831
9832 Register NewVReg5 = MRI->createVirtualRegister(TRC);
9833 BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
9834 .addReg(NewVReg4, RegState::Kill)
9835 .addImm(0)
9836 .addMemOperand(JTMMOLd)
9837 .add(predOps(ARMCC::AL));
9838
9839 unsigned NewVReg6 = NewVReg5;
9840 if (IsPositionIndependent) {
9841 NewVReg6 = MRI->createVirtualRegister(TRC);
9842 BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
9843 .addReg(ARM::CPSR, RegState::Define)
9844 .addReg(NewVReg5, RegState::Kill)
9845 .addReg(NewVReg3)
9846 .add(predOps(ARMCC::AL));
9847 }
9848
9849 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
9850 .addReg(NewVReg6, RegState::Kill)
9851 .addJumpTableIndex(MJTI);
9852 } else {
9853 Register NewVReg1 = MRI->createVirtualRegister(TRC);
9854 BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
9855 .addFrameIndex(FI)
9856 .addImm(4)
9857 .addMemOperand(FIMMOLd)
9858 .add(predOps(ARMCC::AL));
9859
9860 if (NumLPads < 256) {
9861 BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
9862 .addReg(NewVReg1)
9863 .addImm(NumLPads)
9864 .add(predOps(ARMCC::AL));
9865 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
9866 Register VReg1 = MRI->createVirtualRegister(TRC);
9867 BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
9868 .addImm(NumLPads & 0xFFFF)
9869 .add(predOps(ARMCC::AL));
9870
9871 unsigned VReg2 = VReg1;
9872 if ((NumLPads & 0xFFFF0000) != 0) {
9873 VReg2 = MRI->createVirtualRegister(TRC);
9874 BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
9875 .addReg(VReg1)
9876 .addImm(NumLPads >> 16)
9877 .add(predOps(ARMCC::AL));
9878 }
9879
9880 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9881 .addReg(NewVReg1)
9882 .addReg(VReg2)
9883 .add(predOps(ARMCC::AL));
9884 } else {
9885 MachineConstantPool *ConstantPool = MF->getConstantPool();
9886 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
9887 const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
9888
9889 // MachineConstantPool wants an explicit alignment.
9890 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
9891 if (Align == 0)
9892 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
9893 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
9894
9895 Register VReg1 = MRI->createVirtualRegister(TRC);
9896 BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
9897 .addReg(VReg1, RegState::Define)
9898 .addConstantPoolIndex(Idx)
9899 .addImm(0)
9900 .add(predOps(ARMCC::AL));
9901 BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
9902 .addReg(NewVReg1)
9903 .addReg(VReg1, RegState::Kill)
9904 .add(predOps(ARMCC::AL));
9905 }
9906
9907 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
9908 .addMBB(TrapBB)
9909 .addImm(ARMCC::HI)
9910 .addReg(ARM::CPSR);
9911
9912 Register NewVReg3 = MRI->createVirtualRegister(TRC);
9913 BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
9914 .addReg(NewVReg1)
9915 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))
9916 .add(predOps(ARMCC::AL))
9917 .add(condCodeOp());
9918 Register NewVReg4 = MRI->createVirtualRegister(TRC);
9919 BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
9920 .addJumpTableIndex(MJTI)
9921 .add(predOps(ARMCC::AL));
9922
9923 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
9924 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
9925 Register NewVReg5 = MRI->createVirtualRegister(TRC);
9926 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
9927 .addReg(NewVReg3, RegState::Kill)
9928 .addReg(NewVReg4)
9929 .addImm(0)
9930 .addMemOperand(JTMMOLd)
9931 .add(predOps(ARMCC::AL));
9932
9933 if (IsPositionIndependent) {
9934 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
9935 .addReg(NewVReg5, RegState::Kill)
9936 .addReg(NewVReg4)
9937 .addJumpTableIndex(MJTI);
9938 } else {
9939 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
9940 .addReg(NewVReg5, RegState::Kill)
9941 .addJumpTableIndex(MJTI);
9942 }
9943 }
9944
9945 // Add the jump table entries as successors to the MBB.
9946 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
9947 for (std::vector<MachineBasicBlock*>::iterator
9948 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
9949 MachineBasicBlock *CurMBB = *I;
9950 if (SeenMBBs.insert(CurMBB).second)
9951 DispContBB->addSuccessor(CurMBB);
9952 }
9953
9954 // N.B. the order the invoke BBs are processed in doesn't matter here.
9955 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
9956 SmallVector<MachineBasicBlock*, 64> MBBLPads;
9957 for (MachineBasicBlock *BB : InvokeBBs) {
9958
9959 // Remove the landing pad successor from the invoke block and replace it
9960 // with the new dispatch block.
9961 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
9962 BB->succ_end());
9963 while (!Successors.empty()) {
9964 MachineBasicBlock *SMBB = Successors.pop_back_val();
9965 if (SMBB->isEHPad()) {
9966 BB->removeSuccessor(SMBB);
9967 MBBLPads.push_back(SMBB);
9968 }
9969 }
9970
9971 BB->addSuccessor(DispatchBB, BranchProbability::getZero());
9972 BB->normalizeSuccProbs();
9973
9974 // Find the invoke call and mark all of the callee-saved registers as
9975 // 'implicit defined' so that they're spilled. This prevents code from
9976 // moving instructions to before the EH block, where they will never be
9977 // executed.
9978 for (MachineBasicBlock::reverse_iterator
9979 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
9980 if (!II->isCall()) continue;
9981
9982 DenseMap<unsigned, bool> DefRegs;
9983 for (MachineInstr::mop_iterator
9984 OI = II->operands_begin(), OE = II->operands_end();
9985 OI != OE; ++OI) {
9986 if (!OI->isReg()) continue;
9987 DefRegs[OI->getReg()] = true;
9988 }
9989
9990 MachineInstrBuilder MIB(*MF, &*II);
9991
9992 for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
9993 unsigned Reg = SavedRegs[i];
9994 if (Subtarget->isThumb2() &&
9995 !ARM::tGPRRegClass.contains(Reg) &&
9996 !ARM::hGPRRegClass.contains(Reg))
9997 continue;
9998 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
9999 continue;
10000 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
10001 continue;
10002 if (!DefRegs[Reg])
10003 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
10004 }
10005
10006 break;
10007 }
10008 }
10009
10010 // Mark all former landing pads as non-landing pads. The dispatch is the only
10011 // landing pad now.
10012 for (SmallVectorImpl<MachineBasicBlock*>::iterator
10013 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
10014 (*I)->setIsEHPad(false);
10015
10016 // The instruction is gone now.
10017 MI.eraseFromParent();
10018 }
10019
10020 static
OtherSucc(MachineBasicBlock * MBB,MachineBasicBlock * Succ)10021 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
10022 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
10023 E = MBB->succ_end(); I != E; ++I)
10024 if (*I != Succ)
10025 return *I;
10026 llvm_unreachable("Expecting a BB with two successors!");
10027 }
10028
10029 /// Return the load opcode for a given load size. If load size >= 8,
10030 /// neon opcode will be returned.
getLdOpcode(unsigned LdSize,bool IsThumb1,bool IsThumb2)10031 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
10032 if (LdSize >= 8)
10033 return LdSize == 16 ? ARM::VLD1q32wb_fixed
10034 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
10035 if (IsThumb1)
10036 return LdSize == 4 ? ARM::tLDRi
10037 : LdSize == 2 ? ARM::tLDRHi
10038 : LdSize == 1 ? ARM::tLDRBi : 0;
10039 if (IsThumb2)
10040 return LdSize == 4 ? ARM::t2LDR_POST
10041 : LdSize == 2 ? ARM::t2LDRH_POST
10042 : LdSize == 1 ? ARM::t2LDRB_POST : 0;
10043 return LdSize == 4 ? ARM::LDR_POST_IMM
10044 : LdSize == 2 ? ARM::LDRH_POST
10045 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
10046 }
10047
10048 /// Return the store opcode for a given store size. If store size >= 8,
10049 /// neon opcode will be returned.
getStOpcode(unsigned StSize,bool IsThumb1,bool IsThumb2)10050 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
10051 if (StSize >= 8)
10052 return StSize == 16 ? ARM::VST1q32wb_fixed
10053 : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
10054 if (IsThumb1)
10055 return StSize == 4 ? ARM::tSTRi
10056 : StSize == 2 ? ARM::tSTRHi
10057 : StSize == 1 ? ARM::tSTRBi : 0;
10058 if (IsThumb2)
10059 return StSize == 4 ? ARM::t2STR_POST
10060 : StSize == 2 ? ARM::t2STRH_POST
10061 : StSize == 1 ? ARM::t2STRB_POST : 0;
10062 return StSize == 4 ? ARM::STR_POST_IMM
10063 : StSize == 2 ? ARM::STRH_POST
10064 : StSize == 1 ? ARM::STRB_POST_IMM : 0;
10065 }
10066
10067 /// Emit a post-increment load operation with given size. The instructions
10068 /// will be added to BB at Pos.
emitPostLd(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned LdSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10069 static void emitPostLd(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10070 const TargetInstrInfo *TII, const DebugLoc &dl,
10071 unsigned LdSize, unsigned Data, unsigned AddrIn,
10072 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10073 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
10074 assert(LdOpc != 0 && "Should have a load opcode");
10075 if (LdSize >= 8) {
10076 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10077 .addReg(AddrOut, RegState::Define)
10078 .addReg(AddrIn)
10079 .addImm(0)
10080 .add(predOps(ARMCC::AL));
10081 } else if (IsThumb1) {
10082 // load + update AddrIn
10083 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10084 .addReg(AddrIn)
10085 .addImm(0)
10086 .add(predOps(ARMCC::AL));
10087 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10088 .add(t1CondCodeOp())
10089 .addReg(AddrIn)
10090 .addImm(LdSize)
10091 .add(predOps(ARMCC::AL));
10092 } else if (IsThumb2) {
10093 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10094 .addReg(AddrOut, RegState::Define)
10095 .addReg(AddrIn)
10096 .addImm(LdSize)
10097 .add(predOps(ARMCC::AL));
10098 } else { // arm
10099 BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
10100 .addReg(AddrOut, RegState::Define)
10101 .addReg(AddrIn)
10102 .addReg(0)
10103 .addImm(LdSize)
10104 .add(predOps(ARMCC::AL));
10105 }
10106 }
10107
10108 /// Emit a post-increment store operation with given size. The instructions
10109 /// will be added to BB at Pos.
emitPostSt(MachineBasicBlock * BB,MachineBasicBlock::iterator Pos,const TargetInstrInfo * TII,const DebugLoc & dl,unsigned StSize,unsigned Data,unsigned AddrIn,unsigned AddrOut,bool IsThumb1,bool IsThumb2)10110 static void emitPostSt(MachineBasicBlock *BB, MachineBasicBlock::iterator Pos,
10111 const TargetInstrInfo *TII, const DebugLoc &dl,
10112 unsigned StSize, unsigned Data, unsigned AddrIn,
10113 unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
10114 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
10115 assert(StOpc != 0 && "Should have a store opcode");
10116 if (StSize >= 8) {
10117 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10118 .addReg(AddrIn)
10119 .addImm(0)
10120 .addReg(Data)
10121 .add(predOps(ARMCC::AL));
10122 } else if (IsThumb1) {
10123 // store + update AddrIn
10124 BuildMI(*BB, Pos, dl, TII->get(StOpc))
10125 .addReg(Data)
10126 .addReg(AddrIn)
10127 .addImm(0)
10128 .add(predOps(ARMCC::AL));
10129 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut)
10130 .add(t1CondCodeOp())
10131 .addReg(AddrIn)
10132 .addImm(StSize)
10133 .add(predOps(ARMCC::AL));
10134 } else if (IsThumb2) {
10135 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10136 .addReg(Data)
10137 .addReg(AddrIn)
10138 .addImm(StSize)
10139 .add(predOps(ARMCC::AL));
10140 } else { // arm
10141 BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
10142 .addReg(Data)
10143 .addReg(AddrIn)
10144 .addReg(0)
10145 .addImm(StSize)
10146 .add(predOps(ARMCC::AL));
10147 }
10148 }
10149
10150 MachineBasicBlock *
EmitStructByval(MachineInstr & MI,MachineBasicBlock * BB) const10151 ARMTargetLowering::EmitStructByval(MachineInstr &MI,
10152 MachineBasicBlock *BB) const {
10153 // This pseudo instruction has 3 operands: dst, src, size
10154 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
10155 // Otherwise, we will generate unrolled scalar copies.
10156 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10157 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10158 MachineFunction::iterator It = ++BB->getIterator();
10159
10160 Register dest = MI.getOperand(0).getReg();
10161 Register src = MI.getOperand(1).getReg();
10162 unsigned SizeVal = MI.getOperand(2).getImm();
10163 unsigned Align = MI.getOperand(3).getImm();
10164 DebugLoc dl = MI.getDebugLoc();
10165
10166 MachineFunction *MF = BB->getParent();
10167 MachineRegisterInfo &MRI = MF->getRegInfo();
10168 unsigned UnitSize = 0;
10169 const TargetRegisterClass *TRC = nullptr;
10170 const TargetRegisterClass *VecTRC = nullptr;
10171
10172 bool IsThumb1 = Subtarget->isThumb1Only();
10173 bool IsThumb2 = Subtarget->isThumb2();
10174 bool IsThumb = Subtarget->isThumb();
10175
10176 if (Align & 1) {
10177 UnitSize = 1;
10178 } else if (Align & 2) {
10179 UnitSize = 2;
10180 } else {
10181 // Check whether we can use NEON instructions.
10182 if (!MF->getFunction().hasFnAttribute(Attribute::NoImplicitFloat) &&
10183 Subtarget->hasNEON()) {
10184 if ((Align % 16 == 0) && SizeVal >= 16)
10185 UnitSize = 16;
10186 else if ((Align % 8 == 0) && SizeVal >= 8)
10187 UnitSize = 8;
10188 }
10189 // Can't use NEON instructions.
10190 if (UnitSize == 0)
10191 UnitSize = 4;
10192 }
10193
10194 // Select the correct opcode and register class for unit size load/store
10195 bool IsNeon = UnitSize >= 8;
10196 TRC = IsThumb ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
10197 if (IsNeon)
10198 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
10199 : UnitSize == 8 ? &ARM::DPRRegClass
10200 : nullptr;
10201
10202 unsigned BytesLeft = SizeVal % UnitSize;
10203 unsigned LoopSize = SizeVal - BytesLeft;
10204
10205 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
10206 // Use LDR and STR to copy.
10207 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
10208 // [destOut] = STR_POST(scratch, destIn, UnitSize)
10209 unsigned srcIn = src;
10210 unsigned destIn = dest;
10211 for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
10212 Register srcOut = MRI.createVirtualRegister(TRC);
10213 Register destOut = MRI.createVirtualRegister(TRC);
10214 Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10215 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
10216 IsThumb1, IsThumb2);
10217 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
10218 IsThumb1, IsThumb2);
10219 srcIn = srcOut;
10220 destIn = destOut;
10221 }
10222
10223 // Handle the leftover bytes with LDRB and STRB.
10224 // [scratch, srcOut] = LDRB_POST(srcIn, 1)
10225 // [destOut] = STRB_POST(scratch, destIn, 1)
10226 for (unsigned i = 0; i < BytesLeft; i++) {
10227 Register srcOut = MRI.createVirtualRegister(TRC);
10228 Register destOut = MRI.createVirtualRegister(TRC);
10229 Register scratch = MRI.createVirtualRegister(TRC);
10230 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
10231 IsThumb1, IsThumb2);
10232 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
10233 IsThumb1, IsThumb2);
10234 srcIn = srcOut;
10235 destIn = destOut;
10236 }
10237 MI.eraseFromParent(); // The instruction is gone now.
10238 return BB;
10239 }
10240
10241 // Expand the pseudo op to a loop.
10242 // thisMBB:
10243 // ...
10244 // movw varEnd, # --> with thumb2
10245 // movt varEnd, #
10246 // ldrcp varEnd, idx --> without thumb2
10247 // fallthrough --> loopMBB
10248 // loopMBB:
10249 // PHI varPhi, varEnd, varLoop
10250 // PHI srcPhi, src, srcLoop
10251 // PHI destPhi, dst, destLoop
10252 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10253 // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
10254 // subs varLoop, varPhi, #UnitSize
10255 // bne loopMBB
10256 // fallthrough --> exitMBB
10257 // exitMBB:
10258 // epilogue to handle left-over bytes
10259 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10260 // [destOut] = STRB_POST(scratch, destLoop, 1)
10261 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10262 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
10263 MF->insert(It, loopMBB);
10264 MF->insert(It, exitMBB);
10265
10266 // Transfer the remainder of BB and its successor edges to exitMBB.
10267 exitMBB->splice(exitMBB->begin(), BB,
10268 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10269 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10270
10271 // Load an immediate to varEnd.
10272 Register varEnd = MRI.createVirtualRegister(TRC);
10273 if (Subtarget->useMovt()) {
10274 unsigned Vtmp = varEnd;
10275 if ((LoopSize & 0xFFFF0000) != 0)
10276 Vtmp = MRI.createVirtualRegister(TRC);
10277 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVi16 : ARM::MOVi16), Vtmp)
10278 .addImm(LoopSize & 0xFFFF)
10279 .add(predOps(ARMCC::AL));
10280
10281 if ((LoopSize & 0xFFFF0000) != 0)
10282 BuildMI(BB, dl, TII->get(IsThumb ? ARM::t2MOVTi16 : ARM::MOVTi16), varEnd)
10283 .addReg(Vtmp)
10284 .addImm(LoopSize >> 16)
10285 .add(predOps(ARMCC::AL));
10286 } else {
10287 MachineConstantPool *ConstantPool = MF->getConstantPool();
10288 Type *Int32Ty = Type::getInt32Ty(MF->getFunction().getContext());
10289 const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
10290
10291 // MachineConstantPool wants an explicit alignment.
10292 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
10293 if (Align == 0)
10294 Align = MF->getDataLayout().getTypeAllocSize(C->getType());
10295 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
10296 MachineMemOperand *CPMMO =
10297 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
10298 MachineMemOperand::MOLoad, 4, 4);
10299
10300 if (IsThumb)
10301 BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci))
10302 .addReg(varEnd, RegState::Define)
10303 .addConstantPoolIndex(Idx)
10304 .add(predOps(ARMCC::AL))
10305 .addMemOperand(CPMMO);
10306 else
10307 BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp))
10308 .addReg(varEnd, RegState::Define)
10309 .addConstantPoolIndex(Idx)
10310 .addImm(0)
10311 .add(predOps(ARMCC::AL))
10312 .addMemOperand(CPMMO);
10313 }
10314 BB->addSuccessor(loopMBB);
10315
10316 // Generate the loop body:
10317 // varPhi = PHI(varLoop, varEnd)
10318 // srcPhi = PHI(srcLoop, src)
10319 // destPhi = PHI(destLoop, dst)
10320 MachineBasicBlock *entryBB = BB;
10321 BB = loopMBB;
10322 Register varLoop = MRI.createVirtualRegister(TRC);
10323 Register varPhi = MRI.createVirtualRegister(TRC);
10324 Register srcLoop = MRI.createVirtualRegister(TRC);
10325 Register srcPhi = MRI.createVirtualRegister(TRC);
10326 Register destLoop = MRI.createVirtualRegister(TRC);
10327 Register destPhi = MRI.createVirtualRegister(TRC);
10328
10329 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
10330 .addReg(varLoop).addMBB(loopMBB)
10331 .addReg(varEnd).addMBB(entryBB);
10332 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
10333 .addReg(srcLoop).addMBB(loopMBB)
10334 .addReg(src).addMBB(entryBB);
10335 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
10336 .addReg(destLoop).addMBB(loopMBB)
10337 .addReg(dest).addMBB(entryBB);
10338
10339 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
10340 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
10341 Register scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
10342 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
10343 IsThumb1, IsThumb2);
10344 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
10345 IsThumb1, IsThumb2);
10346
10347 // Decrement loop variable by UnitSize.
10348 if (IsThumb1) {
10349 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop)
10350 .add(t1CondCodeOp())
10351 .addReg(varPhi)
10352 .addImm(UnitSize)
10353 .add(predOps(ARMCC::AL));
10354 } else {
10355 MachineInstrBuilder MIB =
10356 BuildMI(*BB, BB->end(), dl,
10357 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
10358 MIB.addReg(varPhi)
10359 .addImm(UnitSize)
10360 .add(predOps(ARMCC::AL))
10361 .add(condCodeOp());
10362 MIB->getOperand(5).setReg(ARM::CPSR);
10363 MIB->getOperand(5).setIsDef(true);
10364 }
10365 BuildMI(*BB, BB->end(), dl,
10366 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
10367 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
10368
10369 // loopMBB can loop back to loopMBB or fall through to exitMBB.
10370 BB->addSuccessor(loopMBB);
10371 BB->addSuccessor(exitMBB);
10372
10373 // Add epilogue to handle BytesLeft.
10374 BB = exitMBB;
10375 auto StartOfExit = exitMBB->begin();
10376
10377 // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
10378 // [destOut] = STRB_POST(scratch, destLoop, 1)
10379 unsigned srcIn = srcLoop;
10380 unsigned destIn = destLoop;
10381 for (unsigned i = 0; i < BytesLeft; i++) {
10382 Register srcOut = MRI.createVirtualRegister(TRC);
10383 Register destOut = MRI.createVirtualRegister(TRC);
10384 Register scratch = MRI.createVirtualRegister(TRC);
10385 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
10386 IsThumb1, IsThumb2);
10387 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
10388 IsThumb1, IsThumb2);
10389 srcIn = srcOut;
10390 destIn = destOut;
10391 }
10392
10393 MI.eraseFromParent(); // The instruction is gone now.
10394 return BB;
10395 }
10396
10397 MachineBasicBlock *
EmitLowered__chkstk(MachineInstr & MI,MachineBasicBlock * MBB) const10398 ARMTargetLowering::EmitLowered__chkstk(MachineInstr &MI,
10399 MachineBasicBlock *MBB) const {
10400 const TargetMachine &TM = getTargetMachine();
10401 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
10402 DebugLoc DL = MI.getDebugLoc();
10403
10404 assert(Subtarget->isTargetWindows() &&
10405 "__chkstk is only supported on Windows");
10406 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
10407
10408 // __chkstk takes the number of words to allocate on the stack in R4, and
10409 // returns the stack adjustment in number of bytes in R4. This will not
10410 // clober any other registers (other than the obvious lr).
10411 //
10412 // Although, technically, IP should be considered a register which may be
10413 // clobbered, the call itself will not touch it. Windows on ARM is a pure
10414 // thumb-2 environment, so there is no interworking required. As a result, we
10415 // do not expect a veneer to be emitted by the linker, clobbering IP.
10416 //
10417 // Each module receives its own copy of __chkstk, so no import thunk is
10418 // required, again, ensuring that IP is not clobbered.
10419 //
10420 // Finally, although some linkers may theoretically provide a trampoline for
10421 // out of range calls (which is quite common due to a 32M range limitation of
10422 // branches for Thumb), we can generate the long-call version via
10423 // -mcmodel=large, alleviating the need for the trampoline which may clobber
10424 // IP.
10425
10426 switch (TM.getCodeModel()) {
10427 case CodeModel::Tiny:
10428 llvm_unreachable("Tiny code model not available on ARM.");
10429 case CodeModel::Small:
10430 case CodeModel::Medium:
10431 case CodeModel::Kernel:
10432 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
10433 .add(predOps(ARMCC::AL))
10434 .addExternalSymbol("__chkstk")
10435 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10436 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10437 .addReg(ARM::R12,
10438 RegState::Implicit | RegState::Define | RegState::Dead)
10439 .addReg(ARM::CPSR,
10440 RegState::Implicit | RegState::Define | RegState::Dead);
10441 break;
10442 case CodeModel::Large: {
10443 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
10444 Register Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
10445
10446 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
10447 .addExternalSymbol("__chkstk");
10448 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
10449 .add(predOps(ARMCC::AL))
10450 .addReg(Reg, RegState::Kill)
10451 .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
10452 .addReg(ARM::R4, RegState::Implicit | RegState::Define)
10453 .addReg(ARM::R12,
10454 RegState::Implicit | RegState::Define | RegState::Dead)
10455 .addReg(ARM::CPSR,
10456 RegState::Implicit | RegState::Define | RegState::Dead);
10457 break;
10458 }
10459 }
10460
10461 BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), ARM::SP)
10462 .addReg(ARM::SP, RegState::Kill)
10463 .addReg(ARM::R4, RegState::Kill)
10464 .setMIFlags(MachineInstr::FrameSetup)
10465 .add(predOps(ARMCC::AL))
10466 .add(condCodeOp());
10467
10468 MI.eraseFromParent();
10469 return MBB;
10470 }
10471
10472 MachineBasicBlock *
EmitLowered__dbzchk(MachineInstr & MI,MachineBasicBlock * MBB) const10473 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr &MI,
10474 MachineBasicBlock *MBB) const {
10475 DebugLoc DL = MI.getDebugLoc();
10476 MachineFunction *MF = MBB->getParent();
10477 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10478
10479 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
10480 MF->insert(++MBB->getIterator(), ContBB);
10481 ContBB->splice(ContBB->begin(), MBB,
10482 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10483 ContBB->transferSuccessorsAndUpdatePHIs(MBB);
10484 MBB->addSuccessor(ContBB);
10485
10486 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
10487 BuildMI(TrapBB, DL, TII->get(ARM::t__brkdiv0));
10488 MF->push_back(TrapBB);
10489 MBB->addSuccessor(TrapBB);
10490
10491 BuildMI(*MBB, MI, DL, TII->get(ARM::tCMPi8))
10492 .addReg(MI.getOperand(0).getReg())
10493 .addImm(0)
10494 .add(predOps(ARMCC::AL));
10495 BuildMI(*MBB, MI, DL, TII->get(ARM::t2Bcc))
10496 .addMBB(TrapBB)
10497 .addImm(ARMCC::EQ)
10498 .addReg(ARM::CPSR);
10499
10500 MI.eraseFromParent();
10501 return ContBB;
10502 }
10503
10504 // The CPSR operand of SelectItr might be missing a kill marker
10505 // because there were multiple uses of CPSR, and ISel didn't know
10506 // which to mark. Figure out whether SelectItr should have had a
10507 // kill marker, and set it if it should. Returns the correct kill
10508 // marker value.
checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,MachineBasicBlock * BB,const TargetRegisterInfo * TRI)10509 static bool checkAndUpdateCPSRKill(MachineBasicBlock::iterator SelectItr,
10510 MachineBasicBlock* BB,
10511 const TargetRegisterInfo* TRI) {
10512 // Scan forward through BB for a use/def of CPSR.
10513 MachineBasicBlock::iterator miI(std::next(SelectItr));
10514 for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
10515 const MachineInstr& mi = *miI;
10516 if (mi.readsRegister(ARM::CPSR))
10517 return false;
10518 if (mi.definesRegister(ARM::CPSR))
10519 break; // Should have kill-flag - update below.
10520 }
10521
10522 // If we hit the end of the block, check whether CPSR is live into a
10523 // successor.
10524 if (miI == BB->end()) {
10525 for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
10526 sEnd = BB->succ_end();
10527 sItr != sEnd; ++sItr) {
10528 MachineBasicBlock* succ = *sItr;
10529 if (succ->isLiveIn(ARM::CPSR))
10530 return false;
10531 }
10532 }
10533
10534 // We found a def, or hit the end of the basic block and CPSR wasn't live
10535 // out. SelectMI should have a kill flag on CPSR.
10536 SelectItr->addRegisterKilled(ARM::CPSR, TRI);
10537 return true;
10538 }
10539
10540 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const10541 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
10542 MachineBasicBlock *BB) const {
10543 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
10544 DebugLoc dl = MI.getDebugLoc();
10545 bool isThumb2 = Subtarget->isThumb2();
10546 switch (MI.getOpcode()) {
10547 default: {
10548 MI.print(errs());
10549 llvm_unreachable("Unexpected instr type to insert");
10550 }
10551
10552 // Thumb1 post-indexed loads are really just single-register LDMs.
10553 case ARM::tLDR_postidx: {
10554 MachineOperand Def(MI.getOperand(1));
10555 BuildMI(*BB, MI, dl, TII->get(ARM::tLDMIA_UPD))
10556 .add(Def) // Rn_wb
10557 .add(MI.getOperand(2)) // Rn
10558 .add(MI.getOperand(3)) // PredImm
10559 .add(MI.getOperand(4)) // PredReg
10560 .add(MI.getOperand(0)) // Rt
10561 .cloneMemRefs(MI);
10562 MI.eraseFromParent();
10563 return BB;
10564 }
10565
10566 // The Thumb2 pre-indexed stores have the same MI operands, they just
10567 // define them differently in the .td files from the isel patterns, so
10568 // they need pseudos.
10569 case ARM::t2STR_preidx:
10570 MI.setDesc(TII->get(ARM::t2STR_PRE));
10571 return BB;
10572 case ARM::t2STRB_preidx:
10573 MI.setDesc(TII->get(ARM::t2STRB_PRE));
10574 return BB;
10575 case ARM::t2STRH_preidx:
10576 MI.setDesc(TII->get(ARM::t2STRH_PRE));
10577 return BB;
10578
10579 case ARM::STRi_preidx:
10580 case ARM::STRBi_preidx: {
10581 unsigned NewOpc = MI.getOpcode() == ARM::STRi_preidx ? ARM::STR_PRE_IMM
10582 : ARM::STRB_PRE_IMM;
10583 // Decode the offset.
10584 unsigned Offset = MI.getOperand(4).getImm();
10585 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
10586 Offset = ARM_AM::getAM2Offset(Offset);
10587 if (isSub)
10588 Offset = -Offset;
10589
10590 MachineMemOperand *MMO = *MI.memoperands_begin();
10591 BuildMI(*BB, MI, dl, TII->get(NewOpc))
10592 .add(MI.getOperand(0)) // Rn_wb
10593 .add(MI.getOperand(1)) // Rt
10594 .add(MI.getOperand(2)) // Rn
10595 .addImm(Offset) // offset (skip GPR==zero_reg)
10596 .add(MI.getOperand(5)) // pred
10597 .add(MI.getOperand(6))
10598 .addMemOperand(MMO);
10599 MI.eraseFromParent();
10600 return BB;
10601 }
10602 case ARM::STRr_preidx:
10603 case ARM::STRBr_preidx:
10604 case ARM::STRH_preidx: {
10605 unsigned NewOpc;
10606 switch (MI.getOpcode()) {
10607 default: llvm_unreachable("unexpected opcode!");
10608 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
10609 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
10610 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
10611 }
10612 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
10613 for (unsigned i = 0; i < MI.getNumOperands(); ++i)
10614 MIB.add(MI.getOperand(i));
10615 MI.eraseFromParent();
10616 return BB;
10617 }
10618
10619 case ARM::tMOVCCr_pseudo: {
10620 // To "insert" a SELECT_CC instruction, we actually have to insert the
10621 // diamond control-flow pattern. The incoming instruction knows the
10622 // destination vreg to set, the condition code register to branch on, the
10623 // true/false values to select between, and a branch opcode to use.
10624 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10625 MachineFunction::iterator It = ++BB->getIterator();
10626
10627 // thisMBB:
10628 // ...
10629 // TrueVal = ...
10630 // cmpTY ccX, r1, r2
10631 // bCC copy1MBB
10632 // fallthrough --> copy0MBB
10633 MachineBasicBlock *thisMBB = BB;
10634 MachineFunction *F = BB->getParent();
10635 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
10636 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
10637 F->insert(It, copy0MBB);
10638 F->insert(It, sinkMBB);
10639
10640 // Check whether CPSR is live past the tMOVCCr_pseudo.
10641 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
10642 if (!MI.killsRegister(ARM::CPSR) &&
10643 !checkAndUpdateCPSRKill(MI, thisMBB, TRI)) {
10644 copy0MBB->addLiveIn(ARM::CPSR);
10645 sinkMBB->addLiveIn(ARM::CPSR);
10646 }
10647
10648 // Transfer the remainder of BB and its successor edges to sinkMBB.
10649 sinkMBB->splice(sinkMBB->begin(), BB,
10650 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10651 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
10652
10653 BB->addSuccessor(copy0MBB);
10654 BB->addSuccessor(sinkMBB);
10655
10656 BuildMI(BB, dl, TII->get(ARM::tBcc))
10657 .addMBB(sinkMBB)
10658 .addImm(MI.getOperand(3).getImm())
10659 .addReg(MI.getOperand(4).getReg());
10660
10661 // copy0MBB:
10662 // %FalseValue = ...
10663 // # fallthrough to sinkMBB
10664 BB = copy0MBB;
10665
10666 // Update machine-CFG edges
10667 BB->addSuccessor(sinkMBB);
10668
10669 // sinkMBB:
10670 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
10671 // ...
10672 BB = sinkMBB;
10673 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), MI.getOperand(0).getReg())
10674 .addReg(MI.getOperand(1).getReg())
10675 .addMBB(copy0MBB)
10676 .addReg(MI.getOperand(2).getReg())
10677 .addMBB(thisMBB);
10678
10679 MI.eraseFromParent(); // The pseudo instruction is gone now.
10680 return BB;
10681 }
10682
10683 case ARM::BCCi64:
10684 case ARM::BCCZi64: {
10685 // If there is an unconditional branch to the other successor, remove it.
10686 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
10687
10688 // Compare both parts that make up the double comparison separately for
10689 // equality.
10690 bool RHSisZero = MI.getOpcode() == ARM::BCCZi64;
10691
10692 Register LHS1 = MI.getOperand(1).getReg();
10693 Register LHS2 = MI.getOperand(2).getReg();
10694 if (RHSisZero) {
10695 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10696 .addReg(LHS1)
10697 .addImm(0)
10698 .add(predOps(ARMCC::AL));
10699 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10700 .addReg(LHS2).addImm(0)
10701 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10702 } else {
10703 Register RHS1 = MI.getOperand(3).getReg();
10704 Register RHS2 = MI.getOperand(4).getReg();
10705 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10706 .addReg(LHS1)
10707 .addReg(RHS1)
10708 .add(predOps(ARMCC::AL));
10709 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
10710 .addReg(LHS2).addReg(RHS2)
10711 .addImm(ARMCC::EQ).addReg(ARM::CPSR);
10712 }
10713
10714 MachineBasicBlock *destMBB = MI.getOperand(RHSisZero ? 3 : 5).getMBB();
10715 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
10716 if (MI.getOperand(0).getImm() == ARMCC::NE)
10717 std::swap(destMBB, exitMBB);
10718
10719 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
10720 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
10721 if (isThumb2)
10722 BuildMI(BB, dl, TII->get(ARM::t2B))
10723 .addMBB(exitMBB)
10724 .add(predOps(ARMCC::AL));
10725 else
10726 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
10727
10728 MI.eraseFromParent(); // The pseudo instruction is gone now.
10729 return BB;
10730 }
10731
10732 case ARM::Int_eh_sjlj_setjmp:
10733 case ARM::Int_eh_sjlj_setjmp_nofp:
10734 case ARM::tInt_eh_sjlj_setjmp:
10735 case ARM::t2Int_eh_sjlj_setjmp:
10736 case ARM::t2Int_eh_sjlj_setjmp_nofp:
10737 return BB;
10738
10739 case ARM::Int_eh_sjlj_setup_dispatch:
10740 EmitSjLjDispatchBlock(MI, BB);
10741 return BB;
10742
10743 case ARM::ABS:
10744 case ARM::t2ABS: {
10745 // To insert an ABS instruction, we have to insert the
10746 // diamond control-flow pattern. The incoming instruction knows the
10747 // source vreg to test against 0, the destination vreg to set,
10748 // the condition code register to branch on, the
10749 // true/false values to select between, and a branch opcode to use.
10750 // It transforms
10751 // V1 = ABS V0
10752 // into
10753 // V2 = MOVS V0
10754 // BCC (branch to SinkBB if V0 >= 0)
10755 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
10756 // SinkBB: V1 = PHI(V2, V3)
10757 const BasicBlock *LLVM_BB = BB->getBasicBlock();
10758 MachineFunction::iterator BBI = ++BB->getIterator();
10759 MachineFunction *Fn = BB->getParent();
10760 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
10761 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
10762 Fn->insert(BBI, RSBBB);
10763 Fn->insert(BBI, SinkBB);
10764
10765 Register ABSSrcReg = MI.getOperand(1).getReg();
10766 Register ABSDstReg = MI.getOperand(0).getReg();
10767 bool ABSSrcKIll = MI.getOperand(1).isKill();
10768 bool isThumb2 = Subtarget->isThumb2();
10769 MachineRegisterInfo &MRI = Fn->getRegInfo();
10770 // In Thumb mode S must not be specified if source register is the SP or
10771 // PC and if destination register is the SP, so restrict register class
10772 Register NewRsbDstReg = MRI.createVirtualRegister(
10773 isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
10774
10775 // Transfer the remainder of BB and its successor edges to sinkMBB.
10776 SinkBB->splice(SinkBB->begin(), BB,
10777 std::next(MachineBasicBlock::iterator(MI)), BB->end());
10778 SinkBB->transferSuccessorsAndUpdatePHIs(BB);
10779
10780 BB->addSuccessor(RSBBB);
10781 BB->addSuccessor(SinkBB);
10782
10783 // fall through to SinkMBB
10784 RSBBB->addSuccessor(SinkBB);
10785
10786 // insert a cmp at the end of BB
10787 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
10788 .addReg(ABSSrcReg)
10789 .addImm(0)
10790 .add(predOps(ARMCC::AL));
10791
10792 // insert a bcc with opposite CC to ARMCC::MI at the end of BB
10793 BuildMI(BB, dl,
10794 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
10795 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
10796
10797 // insert rsbri in RSBBB
10798 // Note: BCC and rsbri will be converted into predicated rsbmi
10799 // by if-conversion pass
10800 BuildMI(*RSBBB, RSBBB->begin(), dl,
10801 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
10802 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
10803 .addImm(0)
10804 .add(predOps(ARMCC::AL))
10805 .add(condCodeOp());
10806
10807 // insert PHI in SinkBB,
10808 // reuse ABSDstReg to not change uses of ABS instruction
10809 BuildMI(*SinkBB, SinkBB->begin(), dl,
10810 TII->get(ARM::PHI), ABSDstReg)
10811 .addReg(NewRsbDstReg).addMBB(RSBBB)
10812 .addReg(ABSSrcReg).addMBB(BB);
10813
10814 // remove ABS instruction
10815 MI.eraseFromParent();
10816
10817 // return last added BB
10818 return SinkBB;
10819 }
10820 case ARM::COPY_STRUCT_BYVAL_I32:
10821 ++NumLoopByVals;
10822 return EmitStructByval(MI, BB);
10823 case ARM::WIN__CHKSTK:
10824 return EmitLowered__chkstk(MI, BB);
10825 case ARM::WIN__DBZCHK:
10826 return EmitLowered__dbzchk(MI, BB);
10827 }
10828 }
10829
10830 /// Attaches vregs to MEMCPY that it will use as scratch registers
10831 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
10832 /// instead of as a custom inserter because we need the use list from the SDNode.
attachMEMCPYScratchRegs(const ARMSubtarget * Subtarget,MachineInstr & MI,const SDNode * Node)10833 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
10834 MachineInstr &MI, const SDNode *Node) {
10835 bool isThumb1 = Subtarget->isThumb1Only();
10836
10837 DebugLoc DL = MI.getDebugLoc();
10838 MachineFunction *MF = MI.getParent()->getParent();
10839 MachineRegisterInfo &MRI = MF->getRegInfo();
10840 MachineInstrBuilder MIB(*MF, MI);
10841
10842 // If the new dst/src is unused mark it as dead.
10843 if (!Node->hasAnyUseOfValue(0)) {
10844 MI.getOperand(0).setIsDead(true);
10845 }
10846 if (!Node->hasAnyUseOfValue(1)) {
10847 MI.getOperand(1).setIsDead(true);
10848 }
10849
10850 // The MEMCPY both defines and kills the scratch registers.
10851 for (unsigned I = 0; I != MI.getOperand(4).getImm(); ++I) {
10852 Register TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
10853 : &ARM::GPRRegClass);
10854 MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
10855 }
10856 }
10857
AdjustInstrPostInstrSelection(MachineInstr & MI,SDNode * Node) const10858 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
10859 SDNode *Node) const {
10860 if (MI.getOpcode() == ARM::MEMCPY) {
10861 attachMEMCPYScratchRegs(Subtarget, MI, Node);
10862 return;
10863 }
10864
10865 const MCInstrDesc *MCID = &MI.getDesc();
10866 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
10867 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
10868 // operand is still set to noreg. If needed, set the optional operand's
10869 // register to CPSR, and remove the redundant implicit def.
10870 //
10871 // e.g. ADCS (..., implicit-def CPSR) -> ADC (... opt:def CPSR).
10872
10873 // Rename pseudo opcodes.
10874 unsigned NewOpc = convertAddSubFlagsOpcode(MI.getOpcode());
10875 unsigned ccOutIdx;
10876 if (NewOpc) {
10877 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
10878 MCID = &TII->get(NewOpc);
10879
10880 assert(MCID->getNumOperands() ==
10881 MI.getDesc().getNumOperands() + 5 - MI.getDesc().getSize()
10882 && "converted opcode should be the same except for cc_out"
10883 " (and, on Thumb1, pred)");
10884
10885 MI.setDesc(*MCID);
10886
10887 // Add the optional cc_out operand
10888 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
10889
10890 // On Thumb1, move all input operands to the end, then add the predicate
10891 if (Subtarget->isThumb1Only()) {
10892 for (unsigned c = MCID->getNumOperands() - 4; c--;) {
10893 MI.addOperand(MI.getOperand(1));
10894 MI.RemoveOperand(1);
10895 }
10896
10897 // Restore the ties
10898 for (unsigned i = MI.getNumOperands(); i--;) {
10899 const MachineOperand& op = MI.getOperand(i);
10900 if (op.isReg() && op.isUse()) {
10901 int DefIdx = MCID->getOperandConstraint(i, MCOI::TIED_TO);
10902 if (DefIdx != -1)
10903 MI.tieOperands(DefIdx, i);
10904 }
10905 }
10906
10907 MI.addOperand(MachineOperand::CreateImm(ARMCC::AL));
10908 MI.addOperand(MachineOperand::CreateReg(0, /*isDef=*/false));
10909 ccOutIdx = 1;
10910 } else
10911 ccOutIdx = MCID->getNumOperands() - 1;
10912 } else
10913 ccOutIdx = MCID->getNumOperands() - 1;
10914
10915 // Any ARM instruction that sets the 's' bit should specify an optional
10916 // "cc_out" operand in the last operand position.
10917 if (!MI.hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
10918 assert(!NewOpc && "Optional cc_out operand required");
10919 return;
10920 }
10921 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
10922 // since we already have an optional CPSR def.
10923 bool definesCPSR = false;
10924 bool deadCPSR = false;
10925 for (unsigned i = MCID->getNumOperands(), e = MI.getNumOperands(); i != e;
10926 ++i) {
10927 const MachineOperand &MO = MI.getOperand(i);
10928 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
10929 definesCPSR = true;
10930 if (MO.isDead())
10931 deadCPSR = true;
10932 MI.RemoveOperand(i);
10933 break;
10934 }
10935 }
10936 if (!definesCPSR) {
10937 assert(!NewOpc && "Optional cc_out operand required");
10938 return;
10939 }
10940 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
10941 if (deadCPSR) {
10942 assert(!MI.getOperand(ccOutIdx).getReg() &&
10943 "expect uninitialized optional cc_out operand");
10944 // Thumb1 instructions must have the S bit even if the CPSR is dead.
10945 if (!Subtarget->isThumb1Only())
10946 return;
10947 }
10948
10949 // If this instruction was defined with an optional CPSR def and its dag node
10950 // had a live implicit CPSR def, then activate the optional CPSR def.
10951 MachineOperand &MO = MI.getOperand(ccOutIdx);
10952 MO.setReg(ARM::CPSR);
10953 MO.setIsDef(true);
10954 }
10955
10956 //===----------------------------------------------------------------------===//
10957 // ARM Optimization Hooks
10958 //===----------------------------------------------------------------------===//
10959
10960 // Helper function that checks if N is a null or all ones constant.
isZeroOrAllOnes(SDValue N,bool AllOnes)10961 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
10962 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
10963 }
10964
10965 // Return true if N is conditionally 0 or all ones.
10966 // Detects these expressions where cc is an i1 value:
10967 //
10968 // (select cc 0, y) [AllOnes=0]
10969 // (select cc y, 0) [AllOnes=0]
10970 // (zext cc) [AllOnes=0]
10971 // (sext cc) [AllOnes=0/1]
10972 // (select cc -1, y) [AllOnes=1]
10973 // (select cc y, -1) [AllOnes=1]
10974 //
10975 // Invert is set when N is the null/all ones constant when CC is false.
10976 // OtherOp is set to the alternative value of N.
isConditionalZeroOrAllOnes(SDNode * N,bool AllOnes,SDValue & CC,bool & Invert,SDValue & OtherOp,SelectionDAG & DAG)10977 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
10978 SDValue &CC, bool &Invert,
10979 SDValue &OtherOp,
10980 SelectionDAG &DAG) {
10981 switch (N->getOpcode()) {
10982 default: return false;
10983 case ISD::SELECT: {
10984 CC = N->getOperand(0);
10985 SDValue N1 = N->getOperand(1);
10986 SDValue N2 = N->getOperand(2);
10987 if (isZeroOrAllOnes(N1, AllOnes)) {
10988 Invert = false;
10989 OtherOp = N2;
10990 return true;
10991 }
10992 if (isZeroOrAllOnes(N2, AllOnes)) {
10993 Invert = true;
10994 OtherOp = N1;
10995 return true;
10996 }
10997 return false;
10998 }
10999 case ISD::ZERO_EXTEND:
11000 // (zext cc) can never be the all ones value.
11001 if (AllOnes)
11002 return false;
11003 LLVM_FALLTHROUGH;
11004 case ISD::SIGN_EXTEND: {
11005 SDLoc dl(N);
11006 EVT VT = N->getValueType(0);
11007 CC = N->getOperand(0);
11008 if (CC.getValueType() != MVT::i1 || CC.getOpcode() != ISD::SETCC)
11009 return false;
11010 Invert = !AllOnes;
11011 if (AllOnes)
11012 // When looking for an AllOnes constant, N is an sext, and the 'other'
11013 // value is 0.
11014 OtherOp = DAG.getConstant(0, dl, VT);
11015 else if (N->getOpcode() == ISD::ZERO_EXTEND)
11016 // When looking for a 0 constant, N can be zext or sext.
11017 OtherOp = DAG.getConstant(1, dl, VT);
11018 else
11019 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
11020 VT);
11021 return true;
11022 }
11023 }
11024 }
11025
11026 // Combine a constant select operand into its use:
11027 //
11028 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11029 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11030 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
11031 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
11032 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
11033 //
11034 // The transform is rejected if the select doesn't have a constant operand that
11035 // is null, or all ones when AllOnes is set.
11036 //
11037 // Also recognize sext/zext from i1:
11038 //
11039 // (add (zext cc), x) -> (select cc (add x, 1), x)
11040 // (add (sext cc), x) -> (select cc (add x, -1), x)
11041 //
11042 // These transformations eventually create predicated instructions.
11043 //
11044 // @param N The node to transform.
11045 // @param Slct The N operand that is a select.
11046 // @param OtherOp The other N operand (x above).
11047 // @param DCI Context.
11048 // @param AllOnes Require the select constant to be all ones instead of null.
11049 // @returns The new node, or SDValue() on failure.
11050 static
combineSelectAndUse(SDNode * N,SDValue Slct,SDValue OtherOp,TargetLowering::DAGCombinerInfo & DCI,bool AllOnes=false)11051 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
11052 TargetLowering::DAGCombinerInfo &DCI,
11053 bool AllOnes = false) {
11054 SelectionDAG &DAG = DCI.DAG;
11055 EVT VT = N->getValueType(0);
11056 SDValue NonConstantVal;
11057 SDValue CCOp;
11058 bool SwapSelectOps;
11059 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
11060 NonConstantVal, DAG))
11061 return SDValue();
11062
11063 // Slct is now know to be the desired identity constant when CC is true.
11064 SDValue TrueVal = OtherOp;
11065 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
11066 OtherOp, NonConstantVal);
11067 // Unless SwapSelectOps says CC should be false.
11068 if (SwapSelectOps)
11069 std::swap(TrueVal, FalseVal);
11070
11071 return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
11072 CCOp, TrueVal, FalseVal);
11073 }
11074
11075 // Attempt combineSelectAndUse on each operand of a commutative operator N.
11076 static
combineSelectAndUseCommutative(SDNode * N,bool AllOnes,TargetLowering::DAGCombinerInfo & DCI)11077 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
11078 TargetLowering::DAGCombinerInfo &DCI) {
11079 SDValue N0 = N->getOperand(0);
11080 SDValue N1 = N->getOperand(1);
11081 if (N0.getNode()->hasOneUse())
11082 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
11083 return Result;
11084 if (N1.getNode()->hasOneUse())
11085 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
11086 return Result;
11087 return SDValue();
11088 }
11089
IsVUZPShuffleNode(SDNode * N)11090 static bool IsVUZPShuffleNode(SDNode *N) {
11091 // VUZP shuffle node.
11092 if (N->getOpcode() == ARMISD::VUZP)
11093 return true;
11094
11095 // "VUZP" on i32 is an alias for VTRN.
11096 if (N->getOpcode() == ARMISD::VTRN && N->getValueType(0) == MVT::v2i32)
11097 return true;
11098
11099 return false;
11100 }
11101
AddCombineToVPADD(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11102 static SDValue AddCombineToVPADD(SDNode *N, SDValue N0, SDValue N1,
11103 TargetLowering::DAGCombinerInfo &DCI,
11104 const ARMSubtarget *Subtarget) {
11105 // Look for ADD(VUZP.0, VUZP.1).
11106 if (!IsVUZPShuffleNode(N0.getNode()) || N0.getNode() != N1.getNode() ||
11107 N0 == N1)
11108 return SDValue();
11109
11110 // Make sure the ADD is a 64-bit add; there is no 128-bit VPADD.
11111 if (!N->getValueType(0).is64BitVector())
11112 return SDValue();
11113
11114 // Generate vpadd.
11115 SelectionDAG &DAG = DCI.DAG;
11116 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11117 SDLoc dl(N);
11118 SDNode *Unzip = N0.getNode();
11119 EVT VT = N->getValueType(0);
11120
11121 SmallVector<SDValue, 8> Ops;
11122 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpadd, dl,
11123 TLI.getPointerTy(DAG.getDataLayout())));
11124 Ops.push_back(Unzip->getOperand(0));
11125 Ops.push_back(Unzip->getOperand(1));
11126
11127 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11128 }
11129
AddCombineVUZPToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11130 static SDValue AddCombineVUZPToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11131 TargetLowering::DAGCombinerInfo &DCI,
11132 const ARMSubtarget *Subtarget) {
11133 // Check for two extended operands.
11134 if (!(N0.getOpcode() == ISD::SIGN_EXTEND &&
11135 N1.getOpcode() == ISD::SIGN_EXTEND) &&
11136 !(N0.getOpcode() == ISD::ZERO_EXTEND &&
11137 N1.getOpcode() == ISD::ZERO_EXTEND))
11138 return SDValue();
11139
11140 SDValue N00 = N0.getOperand(0);
11141 SDValue N10 = N1.getOperand(0);
11142
11143 // Look for ADD(SEXT(VUZP.0), SEXT(VUZP.1))
11144 if (!IsVUZPShuffleNode(N00.getNode()) || N00.getNode() != N10.getNode() ||
11145 N00 == N10)
11146 return SDValue();
11147
11148 // We only recognize Q register paddl here; this can't be reached until
11149 // after type legalization.
11150 if (!N00.getValueType().is64BitVector() ||
11151 !N0.getValueType().is128BitVector())
11152 return SDValue();
11153
11154 // Generate vpaddl.
11155 SelectionDAG &DAG = DCI.DAG;
11156 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11157 SDLoc dl(N);
11158 EVT VT = N->getValueType(0);
11159
11160 SmallVector<SDValue, 8> Ops;
11161 // Form vpaddl.sN or vpaddl.uN depending on the kind of extension.
11162 unsigned Opcode;
11163 if (N0.getOpcode() == ISD::SIGN_EXTEND)
11164 Opcode = Intrinsic::arm_neon_vpaddls;
11165 else
11166 Opcode = Intrinsic::arm_neon_vpaddlu;
11167 Ops.push_back(DAG.getConstant(Opcode, dl,
11168 TLI.getPointerTy(DAG.getDataLayout())));
11169 EVT ElemTy = N00.getValueType().getVectorElementType();
11170 unsigned NumElts = VT.getVectorNumElements();
11171 EVT ConcatVT = EVT::getVectorVT(*DAG.getContext(), ElemTy, NumElts * 2);
11172 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), ConcatVT,
11173 N00.getOperand(0), N00.getOperand(1));
11174 Ops.push_back(Concat);
11175
11176 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, Ops);
11177 }
11178
11179 // FIXME: This function shouldn't be necessary; if we lower BUILD_VECTOR in
11180 // an appropriate manner, we end up with ADD(VUZP(ZEXT(N))), which is
11181 // much easier to match.
11182 static SDValue
AddCombineBUILD_VECTORToVPADDL(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11183 AddCombineBUILD_VECTORToVPADDL(SDNode *N, SDValue N0, SDValue N1,
11184 TargetLowering::DAGCombinerInfo &DCI,
11185 const ARMSubtarget *Subtarget) {
11186 // Only perform optimization if after legalize, and if NEON is available. We
11187 // also expected both operands to be BUILD_VECTORs.
11188 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
11189 || N0.getOpcode() != ISD::BUILD_VECTOR
11190 || N1.getOpcode() != ISD::BUILD_VECTOR)
11191 return SDValue();
11192
11193 // Check output type since VPADDL operand elements can only be 8, 16, or 32.
11194 EVT VT = N->getValueType(0);
11195 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
11196 return SDValue();
11197
11198 // Check that the vector operands are of the right form.
11199 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
11200 // operands, where N is the size of the formed vector.
11201 // Each EXTRACT_VECTOR should have the same input vector and odd or even
11202 // index such that we have a pair wise add pattern.
11203
11204 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
11205 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
11206 return SDValue();
11207 SDValue Vec = N0->getOperand(0)->getOperand(0);
11208 SDNode *V = Vec.getNode();
11209 unsigned nextIndex = 0;
11210
11211 // For each operands to the ADD which are BUILD_VECTORs,
11212 // check to see if each of their operands are an EXTRACT_VECTOR with
11213 // the same vector and appropriate index.
11214 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
11215 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
11216 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
11217
11218 SDValue ExtVec0 = N0->getOperand(i);
11219 SDValue ExtVec1 = N1->getOperand(i);
11220
11221 // First operand is the vector, verify its the same.
11222 if (V != ExtVec0->getOperand(0).getNode() ||
11223 V != ExtVec1->getOperand(0).getNode())
11224 return SDValue();
11225
11226 // Second is the constant, verify its correct.
11227 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
11228 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
11229
11230 // For the constant, we want to see all the even or all the odd.
11231 if (!C0 || !C1 || C0->getZExtValue() != nextIndex
11232 || C1->getZExtValue() != nextIndex+1)
11233 return SDValue();
11234
11235 // Increment index.
11236 nextIndex+=2;
11237 } else
11238 return SDValue();
11239 }
11240
11241 // Don't generate vpaddl+vmovn; we'll match it to vpadd later. Also make sure
11242 // we're using the entire input vector, otherwise there's a size/legality
11243 // mismatch somewhere.
11244 if (nextIndex != Vec.getValueType().getVectorNumElements() ||
11245 Vec.getValueType().getVectorElementType() == VT.getVectorElementType())
11246 return SDValue();
11247
11248 // Create VPADDL node.
11249 SelectionDAG &DAG = DCI.DAG;
11250 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11251
11252 SDLoc dl(N);
11253
11254 // Build operand list.
11255 SmallVector<SDValue, 8> Ops;
11256 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
11257 TLI.getPointerTy(DAG.getDataLayout())));
11258
11259 // Input is the vector.
11260 Ops.push_back(Vec);
11261
11262 // Get widened type and narrowed type.
11263 MVT widenType;
11264 unsigned numElem = VT.getVectorNumElements();
11265
11266 EVT inputLaneType = Vec.getValueType().getVectorElementType();
11267 switch (inputLaneType.getSimpleVT().SimpleTy) {
11268 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
11269 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
11270 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
11271 default:
11272 llvm_unreachable("Invalid vector element type for padd optimization.");
11273 }
11274
11275 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
11276 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
11277 return DAG.getNode(ExtOp, dl, VT, tmp);
11278 }
11279
findMUL_LOHI(SDValue V)11280 static SDValue findMUL_LOHI(SDValue V) {
11281 if (V->getOpcode() == ISD::UMUL_LOHI ||
11282 V->getOpcode() == ISD::SMUL_LOHI)
11283 return V;
11284 return SDValue();
11285 }
11286
AddCombineTo64BitSMLAL16(SDNode * AddcNode,SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11287 static SDValue AddCombineTo64BitSMLAL16(SDNode *AddcNode, SDNode *AddeNode,
11288 TargetLowering::DAGCombinerInfo &DCI,
11289 const ARMSubtarget *Subtarget) {
11290 if (!Subtarget->hasBaseDSP())
11291 return SDValue();
11292
11293 // SMLALBB, SMLALBT, SMLALTB, SMLALTT multiply two 16-bit values and
11294 // accumulates the product into a 64-bit value. The 16-bit values will
11295 // be sign extended somehow or SRA'd into 32-bit values
11296 // (addc (adde (mul 16bit, 16bit), lo), hi)
11297 SDValue Mul = AddcNode->getOperand(0);
11298 SDValue Lo = AddcNode->getOperand(1);
11299 if (Mul.getOpcode() != ISD::MUL) {
11300 Lo = AddcNode->getOperand(0);
11301 Mul = AddcNode->getOperand(1);
11302 if (Mul.getOpcode() != ISD::MUL)
11303 return SDValue();
11304 }
11305
11306 SDValue SRA = AddeNode->getOperand(0);
11307 SDValue Hi = AddeNode->getOperand(1);
11308 if (SRA.getOpcode() != ISD::SRA) {
11309 SRA = AddeNode->getOperand(1);
11310 Hi = AddeNode->getOperand(0);
11311 if (SRA.getOpcode() != ISD::SRA)
11312 return SDValue();
11313 }
11314 if (auto Const = dyn_cast<ConstantSDNode>(SRA.getOperand(1))) {
11315 if (Const->getZExtValue() != 31)
11316 return SDValue();
11317 } else
11318 return SDValue();
11319
11320 if (SRA.getOperand(0) != Mul)
11321 return SDValue();
11322
11323 SelectionDAG &DAG = DCI.DAG;
11324 SDLoc dl(AddcNode);
11325 unsigned Opcode = 0;
11326 SDValue Op0;
11327 SDValue Op1;
11328
11329 if (isS16(Mul.getOperand(0), DAG) && isS16(Mul.getOperand(1), DAG)) {
11330 Opcode = ARMISD::SMLALBB;
11331 Op0 = Mul.getOperand(0);
11332 Op1 = Mul.getOperand(1);
11333 } else if (isS16(Mul.getOperand(0), DAG) && isSRA16(Mul.getOperand(1))) {
11334 Opcode = ARMISD::SMLALBT;
11335 Op0 = Mul.getOperand(0);
11336 Op1 = Mul.getOperand(1).getOperand(0);
11337 } else if (isSRA16(Mul.getOperand(0)) && isS16(Mul.getOperand(1), DAG)) {
11338 Opcode = ARMISD::SMLALTB;
11339 Op0 = Mul.getOperand(0).getOperand(0);
11340 Op1 = Mul.getOperand(1);
11341 } else if (isSRA16(Mul.getOperand(0)) && isSRA16(Mul.getOperand(1))) {
11342 Opcode = ARMISD::SMLALTT;
11343 Op0 = Mul->getOperand(0).getOperand(0);
11344 Op1 = Mul->getOperand(1).getOperand(0);
11345 }
11346
11347 if (!Op0 || !Op1)
11348 return SDValue();
11349
11350 SDValue SMLAL = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32),
11351 Op0, Op1, Lo, Hi);
11352 // Replace the ADDs' nodes uses by the MLA node's values.
11353 SDValue HiMLALResult(SMLAL.getNode(), 1);
11354 SDValue LoMLALResult(SMLAL.getNode(), 0);
11355
11356 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
11357 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
11358
11359 // Return original node to notify the driver to stop replacing.
11360 SDValue resNode(AddcNode, 0);
11361 return resNode;
11362 }
11363
AddCombineTo64bitMLAL(SDNode * AddeSubeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11364 static SDValue AddCombineTo64bitMLAL(SDNode *AddeSubeNode,
11365 TargetLowering::DAGCombinerInfo &DCI,
11366 const ARMSubtarget *Subtarget) {
11367 // Look for multiply add opportunities.
11368 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
11369 // each add nodes consumes a value from ISD::UMUL_LOHI and there is
11370 // a glue link from the first add to the second add.
11371 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
11372 // a S/UMLAL instruction.
11373 // UMUL_LOHI
11374 // / :lo \ :hi
11375 // V \ [no multiline comment]
11376 // loAdd -> ADDC |
11377 // \ :carry /
11378 // V V
11379 // ADDE <- hiAdd
11380 //
11381 // In the special case where only the higher part of a signed result is used
11382 // and the add to the low part of the result of ISD::UMUL_LOHI adds or subtracts
11383 // a constant with the exact value of 0x80000000, we recognize we are dealing
11384 // with a "rounded multiply and add" (or subtract) and transform it into
11385 // either a ARMISD::SMMLAR or ARMISD::SMMLSR respectively.
11386
11387 assert((AddeSubeNode->getOpcode() == ARMISD::ADDE ||
11388 AddeSubeNode->getOpcode() == ARMISD::SUBE) &&
11389 "Expect an ADDE or SUBE");
11390
11391 assert(AddeSubeNode->getNumOperands() == 3 &&
11392 AddeSubeNode->getOperand(2).getValueType() == MVT::i32 &&
11393 "ADDE node has the wrong inputs");
11394
11395 // Check that we are chained to the right ADDC or SUBC node.
11396 SDNode *AddcSubcNode = AddeSubeNode->getOperand(2).getNode();
11397 if ((AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11398 AddcSubcNode->getOpcode() != ARMISD::ADDC) ||
11399 (AddeSubeNode->getOpcode() == ARMISD::SUBE &&
11400 AddcSubcNode->getOpcode() != ARMISD::SUBC))
11401 return SDValue();
11402
11403 SDValue AddcSubcOp0 = AddcSubcNode->getOperand(0);
11404 SDValue AddcSubcOp1 = AddcSubcNode->getOperand(1);
11405
11406 // Check if the two operands are from the same mul_lohi node.
11407 if (AddcSubcOp0.getNode() == AddcSubcOp1.getNode())
11408 return SDValue();
11409
11410 assert(AddcSubcNode->getNumValues() == 2 &&
11411 AddcSubcNode->getValueType(0) == MVT::i32 &&
11412 "Expect ADDC with two result values. First: i32");
11413
11414 // Check that the ADDC adds the low result of the S/UMUL_LOHI. If not, it
11415 // maybe a SMLAL which multiplies two 16-bit values.
11416 if (AddeSubeNode->getOpcode() == ARMISD::ADDE &&
11417 AddcSubcOp0->getOpcode() != ISD::UMUL_LOHI &&
11418 AddcSubcOp0->getOpcode() != ISD::SMUL_LOHI &&
11419 AddcSubcOp1->getOpcode() != ISD::UMUL_LOHI &&
11420 AddcSubcOp1->getOpcode() != ISD::SMUL_LOHI)
11421 return AddCombineTo64BitSMLAL16(AddcSubcNode, AddeSubeNode, DCI, Subtarget);
11422
11423 // Check for the triangle shape.
11424 SDValue AddeSubeOp0 = AddeSubeNode->getOperand(0);
11425 SDValue AddeSubeOp1 = AddeSubeNode->getOperand(1);
11426
11427 // Make sure that the ADDE/SUBE operands are not coming from the same node.
11428 if (AddeSubeOp0.getNode() == AddeSubeOp1.getNode())
11429 return SDValue();
11430
11431 // Find the MUL_LOHI node walking up ADDE/SUBE's operands.
11432 bool IsLeftOperandMUL = false;
11433 SDValue MULOp = findMUL_LOHI(AddeSubeOp0);
11434 if (MULOp == SDValue())
11435 MULOp = findMUL_LOHI(AddeSubeOp1);
11436 else
11437 IsLeftOperandMUL = true;
11438 if (MULOp == SDValue())
11439 return SDValue();
11440
11441 // Figure out the right opcode.
11442 unsigned Opc = MULOp->getOpcode();
11443 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
11444
11445 // Figure out the high and low input values to the MLAL node.
11446 SDValue *HiAddSub = nullptr;
11447 SDValue *LoMul = nullptr;
11448 SDValue *LowAddSub = nullptr;
11449
11450 // Ensure that ADDE/SUBE is from high result of ISD::xMUL_LOHI.
11451 if ((AddeSubeOp0 != MULOp.getValue(1)) && (AddeSubeOp1 != MULOp.getValue(1)))
11452 return SDValue();
11453
11454 if (IsLeftOperandMUL)
11455 HiAddSub = &AddeSubeOp1;
11456 else
11457 HiAddSub = &AddeSubeOp0;
11458
11459 // Ensure that LoMul and LowAddSub are taken from correct ISD::SMUL_LOHI node
11460 // whose low result is fed to the ADDC/SUBC we are checking.
11461
11462 if (AddcSubcOp0 == MULOp.getValue(0)) {
11463 LoMul = &AddcSubcOp0;
11464 LowAddSub = &AddcSubcOp1;
11465 }
11466 if (AddcSubcOp1 == MULOp.getValue(0)) {
11467 LoMul = &AddcSubcOp1;
11468 LowAddSub = &AddcSubcOp0;
11469 }
11470
11471 if (!LoMul)
11472 return SDValue();
11473
11474 // If HiAddSub is the same node as ADDC/SUBC or is a predecessor of ADDC/SUBC
11475 // the replacement below will create a cycle.
11476 if (AddcSubcNode == HiAddSub->getNode() ||
11477 AddcSubcNode->isPredecessorOf(HiAddSub->getNode()))
11478 return SDValue();
11479
11480 // Create the merged node.
11481 SelectionDAG &DAG = DCI.DAG;
11482
11483 // Start building operand list.
11484 SmallVector<SDValue, 8> Ops;
11485 Ops.push_back(LoMul->getOperand(0));
11486 Ops.push_back(LoMul->getOperand(1));
11487
11488 // Check whether we can use SMMLAR, SMMLSR or SMMULR instead. For this to be
11489 // the case, we must be doing signed multiplication and only use the higher
11490 // part of the result of the MLAL, furthermore the LowAddSub must be a constant
11491 // addition or subtraction with the value of 0x800000.
11492 if (Subtarget->hasV6Ops() && Subtarget->hasDSP() && Subtarget->useMulOps() &&
11493 FinalOpc == ARMISD::SMLAL && !AddeSubeNode->hasAnyUseOfValue(1) &&
11494 LowAddSub->getNode()->getOpcode() == ISD::Constant &&
11495 static_cast<ConstantSDNode *>(LowAddSub->getNode())->getZExtValue() ==
11496 0x80000000) {
11497 Ops.push_back(*HiAddSub);
11498 if (AddcSubcNode->getOpcode() == ARMISD::SUBC) {
11499 FinalOpc = ARMISD::SMMLSR;
11500 } else {
11501 FinalOpc = ARMISD::SMMLAR;
11502 }
11503 SDValue NewNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode), MVT::i32, Ops);
11504 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), NewNode);
11505
11506 return SDValue(AddeSubeNode, 0);
11507 } else if (AddcSubcNode->getOpcode() == ARMISD::SUBC)
11508 // SMMLS is generated during instruction selection and the rest of this
11509 // function can not handle the case where AddcSubcNode is a SUBC.
11510 return SDValue();
11511
11512 // Finish building the operand list for {U/S}MLAL
11513 Ops.push_back(*LowAddSub);
11514 Ops.push_back(*HiAddSub);
11515
11516 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcSubcNode),
11517 DAG.getVTList(MVT::i32, MVT::i32), Ops);
11518
11519 // Replace the ADDs' nodes uses by the MLA node's values.
11520 SDValue HiMLALResult(MLALNode.getNode(), 1);
11521 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeSubeNode, 0), HiMLALResult);
11522
11523 SDValue LoMLALResult(MLALNode.getNode(), 0);
11524 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcSubcNode, 0), LoMLALResult);
11525
11526 // Return original node to notify the driver to stop replacing.
11527 return SDValue(AddeSubeNode, 0);
11528 }
11529
AddCombineTo64bitUMAAL(SDNode * AddeNode,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11530 static SDValue AddCombineTo64bitUMAAL(SDNode *AddeNode,
11531 TargetLowering::DAGCombinerInfo &DCI,
11532 const ARMSubtarget *Subtarget) {
11533 // UMAAL is similar to UMLAL except that it adds two unsigned values.
11534 // While trying to combine for the other MLAL nodes, first search for the
11535 // chance to use UMAAL. Check if Addc uses a node which has already
11536 // been combined into a UMLAL. The other pattern is UMLAL using Addc/Adde
11537 // as the addend, and it's handled in PerformUMLALCombine.
11538
11539 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11540 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11541
11542 // Check that we have a glued ADDC node.
11543 SDNode* AddcNode = AddeNode->getOperand(2).getNode();
11544 if (AddcNode->getOpcode() != ARMISD::ADDC)
11545 return SDValue();
11546
11547 // Find the converted UMAAL or quit if it doesn't exist.
11548 SDNode *UmlalNode = nullptr;
11549 SDValue AddHi;
11550 if (AddcNode->getOperand(0).getOpcode() == ARMISD::UMLAL) {
11551 UmlalNode = AddcNode->getOperand(0).getNode();
11552 AddHi = AddcNode->getOperand(1);
11553 } else if (AddcNode->getOperand(1).getOpcode() == ARMISD::UMLAL) {
11554 UmlalNode = AddcNode->getOperand(1).getNode();
11555 AddHi = AddcNode->getOperand(0);
11556 } else {
11557 return AddCombineTo64bitMLAL(AddeNode, DCI, Subtarget);
11558 }
11559
11560 // The ADDC should be glued to an ADDE node, which uses the same UMLAL as
11561 // the ADDC as well as Zero.
11562 if (!isNullConstant(UmlalNode->getOperand(3)))
11563 return SDValue();
11564
11565 if ((isNullConstant(AddeNode->getOperand(0)) &&
11566 AddeNode->getOperand(1).getNode() == UmlalNode) ||
11567 (AddeNode->getOperand(0).getNode() == UmlalNode &&
11568 isNullConstant(AddeNode->getOperand(1)))) {
11569 SelectionDAG &DAG = DCI.DAG;
11570 SDValue Ops[] = { UmlalNode->getOperand(0), UmlalNode->getOperand(1),
11571 UmlalNode->getOperand(2), AddHi };
11572 SDValue UMAAL = DAG.getNode(ARMISD::UMAAL, SDLoc(AddcNode),
11573 DAG.getVTList(MVT::i32, MVT::i32), Ops);
11574
11575 // Replace the ADDs' nodes uses by the UMAAL node's values.
11576 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), SDValue(UMAAL.getNode(), 1));
11577 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), SDValue(UMAAL.getNode(), 0));
11578
11579 // Return original node to notify the driver to stop replacing.
11580 return SDValue(AddeNode, 0);
11581 }
11582 return SDValue();
11583 }
11584
PerformUMLALCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)11585 static SDValue PerformUMLALCombine(SDNode *N, SelectionDAG &DAG,
11586 const ARMSubtarget *Subtarget) {
11587 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
11588 return SDValue();
11589
11590 // Check that we have a pair of ADDC and ADDE as operands.
11591 // Both addends of the ADDE must be zero.
11592 SDNode* AddcNode = N->getOperand(2).getNode();
11593 SDNode* AddeNode = N->getOperand(3).getNode();
11594 if ((AddcNode->getOpcode() == ARMISD::ADDC) &&
11595 (AddeNode->getOpcode() == ARMISD::ADDE) &&
11596 isNullConstant(AddeNode->getOperand(0)) &&
11597 isNullConstant(AddeNode->getOperand(1)) &&
11598 (AddeNode->getOperand(2).getNode() == AddcNode))
11599 return DAG.getNode(ARMISD::UMAAL, SDLoc(N),
11600 DAG.getVTList(MVT::i32, MVT::i32),
11601 {N->getOperand(0), N->getOperand(1),
11602 AddcNode->getOperand(0), AddcNode->getOperand(1)});
11603 else
11604 return SDValue();
11605 }
11606
PerformAddcSubcCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11607 static SDValue PerformAddcSubcCombine(SDNode *N,
11608 TargetLowering::DAGCombinerInfo &DCI,
11609 const ARMSubtarget *Subtarget) {
11610 SelectionDAG &DAG(DCI.DAG);
11611
11612 if (N->getOpcode() == ARMISD::SUBC) {
11613 // (SUBC (ADDE 0, 0, C), 1) -> C
11614 SDValue LHS = N->getOperand(0);
11615 SDValue RHS = N->getOperand(1);
11616 if (LHS->getOpcode() == ARMISD::ADDE &&
11617 isNullConstant(LHS->getOperand(0)) &&
11618 isNullConstant(LHS->getOperand(1)) && isOneConstant(RHS)) {
11619 return DCI.CombineTo(N, SDValue(N, 0), LHS->getOperand(2));
11620 }
11621 }
11622
11623 if (Subtarget->isThumb1Only()) {
11624 SDValue RHS = N->getOperand(1);
11625 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11626 int32_t imm = C->getSExtValue();
11627 if (imm < 0 && imm > std::numeric_limits<int>::min()) {
11628 SDLoc DL(N);
11629 RHS = DAG.getConstant(-imm, DL, MVT::i32);
11630 unsigned Opcode = (N->getOpcode() == ARMISD::ADDC) ? ARMISD::SUBC
11631 : ARMISD::ADDC;
11632 return DAG.getNode(Opcode, DL, N->getVTList(), N->getOperand(0), RHS);
11633 }
11634 }
11635 }
11636
11637 return SDValue();
11638 }
11639
PerformAddeSubeCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11640 static SDValue PerformAddeSubeCombine(SDNode *N,
11641 TargetLowering::DAGCombinerInfo &DCI,
11642 const ARMSubtarget *Subtarget) {
11643 if (Subtarget->isThumb1Only()) {
11644 SelectionDAG &DAG = DCI.DAG;
11645 SDValue RHS = N->getOperand(1);
11646 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
11647 int64_t imm = C->getSExtValue();
11648 if (imm < 0) {
11649 SDLoc DL(N);
11650
11651 // The with-carry-in form matches bitwise not instead of the negation.
11652 // Effectively, the inverse interpretation of the carry flag already
11653 // accounts for part of the negation.
11654 RHS = DAG.getConstant(~imm, DL, MVT::i32);
11655
11656 unsigned Opcode = (N->getOpcode() == ARMISD::ADDE) ? ARMISD::SUBE
11657 : ARMISD::ADDE;
11658 return DAG.getNode(Opcode, DL, N->getVTList(),
11659 N->getOperand(0), RHS, N->getOperand(2));
11660 }
11661 }
11662 } else if (N->getOperand(1)->getOpcode() == ISD::SMUL_LOHI) {
11663 return AddCombineTo64bitMLAL(N, DCI, Subtarget);
11664 }
11665 return SDValue();
11666 }
11667
PerformABSCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11668 static SDValue PerformABSCombine(SDNode *N,
11669 TargetLowering::DAGCombinerInfo &DCI,
11670 const ARMSubtarget *Subtarget) {
11671 SDValue res;
11672 SelectionDAG &DAG = DCI.DAG;
11673 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11674
11675 if (TLI.isOperationLegal(N->getOpcode(), N->getValueType(0)))
11676 return SDValue();
11677
11678 if (!TLI.expandABS(N, res, DAG))
11679 return SDValue();
11680
11681 return res;
11682 }
11683
11684 /// PerformADDECombine - Target-specific dag combine transform from
11685 /// ARMISD::ADDC, ARMISD::ADDE, and ISD::MUL_LOHI to MLAL or
11686 /// ARMISD::ADDC, ARMISD::ADDE and ARMISD::UMLAL to ARMISD::UMAAL
PerformADDECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11687 static SDValue PerformADDECombine(SDNode *N,
11688 TargetLowering::DAGCombinerInfo &DCI,
11689 const ARMSubtarget *Subtarget) {
11690 // Only ARM and Thumb2 support UMLAL/SMLAL.
11691 if (Subtarget->isThumb1Only())
11692 return PerformAddeSubeCombine(N, DCI, Subtarget);
11693
11694 // Only perform the checks after legalize when the pattern is available.
11695 if (DCI.isBeforeLegalize()) return SDValue();
11696
11697 return AddCombineTo64bitUMAAL(N, DCI, Subtarget);
11698 }
11699
11700 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
11701 /// operands N0 and N1. This is a helper for PerformADDCombine that is
11702 /// called with the default operands, and if that fails, with commuted
11703 /// operands.
PerformADDCombineWithOperands(SDNode * N,SDValue N0,SDValue N1,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11704 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
11705 TargetLowering::DAGCombinerInfo &DCI,
11706 const ARMSubtarget *Subtarget){
11707 // Attempt to create vpadd for this add.
11708 if (SDValue Result = AddCombineToVPADD(N, N0, N1, DCI, Subtarget))
11709 return Result;
11710
11711 // Attempt to create vpaddl for this add.
11712 if (SDValue Result = AddCombineVUZPToVPADDL(N, N0, N1, DCI, Subtarget))
11713 return Result;
11714 if (SDValue Result = AddCombineBUILD_VECTORToVPADDL(N, N0, N1, DCI,
11715 Subtarget))
11716 return Result;
11717
11718 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
11719 if (N0.getNode()->hasOneUse())
11720 if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI))
11721 return Result;
11722 return SDValue();
11723 }
11724
11725 bool
isDesirableToCommuteWithShift(const SDNode * N,CombineLevel Level) const11726 ARMTargetLowering::isDesirableToCommuteWithShift(const SDNode *N,
11727 CombineLevel Level) const {
11728 if (Level == BeforeLegalizeTypes)
11729 return true;
11730
11731 if (N->getOpcode() != ISD::SHL)
11732 return true;
11733
11734 if (Subtarget->isThumb1Only()) {
11735 // Avoid making expensive immediates by commuting shifts. (This logic
11736 // only applies to Thumb1 because ARM and Thumb2 immediates can be shifted
11737 // for free.)
11738 if (N->getOpcode() != ISD::SHL)
11739 return true;
11740 SDValue N1 = N->getOperand(0);
11741 if (N1->getOpcode() != ISD::ADD && N1->getOpcode() != ISD::AND &&
11742 N1->getOpcode() != ISD::OR && N1->getOpcode() != ISD::XOR)
11743 return true;
11744 if (auto *Const = dyn_cast<ConstantSDNode>(N1->getOperand(1))) {
11745 if (Const->getAPIntValue().ult(256))
11746 return false;
11747 if (N1->getOpcode() == ISD::ADD && Const->getAPIntValue().slt(0) &&
11748 Const->getAPIntValue().sgt(-256))
11749 return false;
11750 }
11751 return true;
11752 }
11753
11754 // Turn off commute-with-shift transform after legalization, so it doesn't
11755 // conflict with PerformSHLSimplify. (We could try to detect when
11756 // PerformSHLSimplify would trigger more precisely, but it isn't
11757 // really necessary.)
11758 return false;
11759 }
11760
shouldFoldConstantShiftPairToMask(const SDNode * N,CombineLevel Level) const11761 bool ARMTargetLowering::shouldFoldConstantShiftPairToMask(
11762 const SDNode *N, CombineLevel Level) const {
11763 if (!Subtarget->isThumb1Only())
11764 return true;
11765
11766 if (Level == BeforeLegalizeTypes)
11767 return true;
11768
11769 return false;
11770 }
11771
preferIncOfAddToSubOfNot(EVT VT) const11772 bool ARMTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
11773 if (!Subtarget->hasNEON()) {
11774 if (Subtarget->isThumb1Only())
11775 return VT.getScalarSizeInBits() <= 32;
11776 return true;
11777 }
11778 return VT.isScalarInteger();
11779 }
11780
PerformSHLSimplify(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)11781 static SDValue PerformSHLSimplify(SDNode *N,
11782 TargetLowering::DAGCombinerInfo &DCI,
11783 const ARMSubtarget *ST) {
11784 // Allow the generic combiner to identify potential bswaps.
11785 if (DCI.isBeforeLegalize())
11786 return SDValue();
11787
11788 // DAG combiner will fold:
11789 // (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
11790 // (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2
11791 // Other code patterns that can be also be modified have the following form:
11792 // b + ((a << 1) | 510)
11793 // b + ((a << 1) & 510)
11794 // b + ((a << 1) ^ 510)
11795 // b + ((a << 1) + 510)
11796
11797 // Many instructions can perform the shift for free, but it requires both
11798 // the operands to be registers. If c1 << c2 is too large, a mov immediate
11799 // instruction will needed. So, unfold back to the original pattern if:
11800 // - if c1 and c2 are small enough that they don't require mov imms.
11801 // - the user(s) of the node can perform an shl
11802
11803 // No shifted operands for 16-bit instructions.
11804 if (ST->isThumb() && ST->isThumb1Only())
11805 return SDValue();
11806
11807 // Check that all the users could perform the shl themselves.
11808 for (auto U : N->uses()) {
11809 switch(U->getOpcode()) {
11810 default:
11811 return SDValue();
11812 case ISD::SUB:
11813 case ISD::ADD:
11814 case ISD::AND:
11815 case ISD::OR:
11816 case ISD::XOR:
11817 case ISD::SETCC:
11818 case ARMISD::CMP:
11819 // Check that the user isn't already using a constant because there
11820 // aren't any instructions that support an immediate operand and a
11821 // shifted operand.
11822 if (isa<ConstantSDNode>(U->getOperand(0)) ||
11823 isa<ConstantSDNode>(U->getOperand(1)))
11824 return SDValue();
11825
11826 // Check that it's not already using a shift.
11827 if (U->getOperand(0).getOpcode() == ISD::SHL ||
11828 U->getOperand(1).getOpcode() == ISD::SHL)
11829 return SDValue();
11830 break;
11831 }
11832 }
11833
11834 if (N->getOpcode() != ISD::ADD && N->getOpcode() != ISD::OR &&
11835 N->getOpcode() != ISD::XOR && N->getOpcode() != ISD::AND)
11836 return SDValue();
11837
11838 if (N->getOperand(0).getOpcode() != ISD::SHL)
11839 return SDValue();
11840
11841 SDValue SHL = N->getOperand(0);
11842
11843 auto *C1ShlC2 = dyn_cast<ConstantSDNode>(N->getOperand(1));
11844 auto *C2 = dyn_cast<ConstantSDNode>(SHL.getOperand(1));
11845 if (!C1ShlC2 || !C2)
11846 return SDValue();
11847
11848 APInt C2Int = C2->getAPIntValue();
11849 APInt C1Int = C1ShlC2->getAPIntValue();
11850
11851 // Check that performing a lshr will not lose any information.
11852 APInt Mask = APInt::getHighBitsSet(C2Int.getBitWidth(),
11853 C2Int.getBitWidth() - C2->getZExtValue());
11854 if ((C1Int & Mask) != C1Int)
11855 return SDValue();
11856
11857 // Shift the first constant.
11858 C1Int.lshrInPlace(C2Int);
11859
11860 // The immediates are encoded as an 8-bit value that can be rotated.
11861 auto LargeImm = [](const APInt &Imm) {
11862 unsigned Zeros = Imm.countLeadingZeros() + Imm.countTrailingZeros();
11863 return Imm.getBitWidth() - Zeros > 8;
11864 };
11865
11866 if (LargeImm(C1Int) || LargeImm(C2Int))
11867 return SDValue();
11868
11869 SelectionDAG &DAG = DCI.DAG;
11870 SDLoc dl(N);
11871 SDValue X = SHL.getOperand(0);
11872 SDValue BinOp = DAG.getNode(N->getOpcode(), dl, MVT::i32, X,
11873 DAG.getConstant(C1Int, dl, MVT::i32));
11874 // Shift left to compensate for the lshr of C1Int.
11875 SDValue Res = DAG.getNode(ISD::SHL, dl, MVT::i32, BinOp, SHL.getOperand(1));
11876
11877 LLVM_DEBUG(dbgs() << "Simplify shl use:\n"; SHL.getOperand(0).dump();
11878 SHL.dump(); N->dump());
11879 LLVM_DEBUG(dbgs() << "Into:\n"; X.dump(); BinOp.dump(); Res.dump());
11880 return Res;
11881 }
11882
11883
11884 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
11885 ///
PerformADDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11886 static SDValue PerformADDCombine(SDNode *N,
11887 TargetLowering::DAGCombinerInfo &DCI,
11888 const ARMSubtarget *Subtarget) {
11889 SDValue N0 = N->getOperand(0);
11890 SDValue N1 = N->getOperand(1);
11891
11892 // Only works one way, because it needs an immediate operand.
11893 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
11894 return Result;
11895
11896 // First try with the default operand order.
11897 if (SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget))
11898 return Result;
11899
11900 // If that didn't work, try again with the operands commuted.
11901 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
11902 }
11903
11904 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
11905 ///
PerformSUBCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11906 static SDValue PerformSUBCombine(SDNode *N,
11907 TargetLowering::DAGCombinerInfo &DCI,
11908 const ARMSubtarget *Subtarget) {
11909 SDValue N0 = N->getOperand(0);
11910 SDValue N1 = N->getOperand(1);
11911
11912 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
11913 if (N1.getNode()->hasOneUse())
11914 if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI))
11915 return Result;
11916
11917 if (!Subtarget->hasMVEIntegerOps() || !N->getValueType(0).isVector())
11918 return SDValue();
11919
11920 // Fold (sub (ARMvmovImm 0), (ARMvdup x)) -> (ARMvdup (sub 0, x))
11921 // so that we can readily pattern match more mve instructions which can use
11922 // a scalar operand.
11923 SDValue VDup = N->getOperand(1);
11924 if (VDup->getOpcode() != ARMISD::VDUP)
11925 return SDValue();
11926
11927 SDValue VMov = N->getOperand(0);
11928 if (VMov->getOpcode() == ISD::BITCAST)
11929 VMov = VMov->getOperand(0);
11930
11931 if (VMov->getOpcode() != ARMISD::VMOVIMM || !isZeroVector(VMov))
11932 return SDValue();
11933
11934 SDLoc dl(N);
11935 SDValue Negate = DCI.DAG.getNode(ISD::SUB, dl, MVT::i32,
11936 DCI.DAG.getConstant(0, dl, MVT::i32),
11937 VDup->getOperand(0));
11938 return DCI.DAG.getNode(ARMISD::VDUP, dl, N->getValueType(0), Negate);
11939 }
11940
11941 /// PerformVMULCombine
11942 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
11943 /// special multiplier accumulator forwarding.
11944 /// vmul d3, d0, d2
11945 /// vmla d3, d1, d2
11946 /// is faster than
11947 /// vadd d3, d0, d1
11948 /// vmul d3, d3, d2
11949 // However, for (A + B) * (A + B),
11950 // vadd d2, d0, d1
11951 // vmul d3, d0, d2
11952 // vmla d3, d1, d2
11953 // is slower than
11954 // vadd d2, d0, d1
11955 // vmul d3, d2, d2
PerformVMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11956 static SDValue PerformVMULCombine(SDNode *N,
11957 TargetLowering::DAGCombinerInfo &DCI,
11958 const ARMSubtarget *Subtarget) {
11959 if (!Subtarget->hasVMLxForwarding())
11960 return SDValue();
11961
11962 SelectionDAG &DAG = DCI.DAG;
11963 SDValue N0 = N->getOperand(0);
11964 SDValue N1 = N->getOperand(1);
11965 unsigned Opcode = N0.getOpcode();
11966 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11967 Opcode != ISD::FADD && Opcode != ISD::FSUB) {
11968 Opcode = N1.getOpcode();
11969 if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
11970 Opcode != ISD::FADD && Opcode != ISD::FSUB)
11971 return SDValue();
11972 std::swap(N0, N1);
11973 }
11974
11975 if (N0 == N1)
11976 return SDValue();
11977
11978 EVT VT = N->getValueType(0);
11979 SDLoc DL(N);
11980 SDValue N00 = N0->getOperand(0);
11981 SDValue N01 = N0->getOperand(1);
11982 return DAG.getNode(Opcode, DL, VT,
11983 DAG.getNode(ISD::MUL, DL, VT, N00, N1),
11984 DAG.getNode(ISD::MUL, DL, VT, N01, N1));
11985 }
11986
PerformMULCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)11987 static SDValue PerformMULCombine(SDNode *N,
11988 TargetLowering::DAGCombinerInfo &DCI,
11989 const ARMSubtarget *Subtarget) {
11990 SelectionDAG &DAG = DCI.DAG;
11991
11992 if (Subtarget->isThumb1Only())
11993 return SDValue();
11994
11995 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
11996 return SDValue();
11997
11998 EVT VT = N->getValueType(0);
11999 if (VT.is64BitVector() || VT.is128BitVector())
12000 return PerformVMULCombine(N, DCI, Subtarget);
12001 if (VT != MVT::i32)
12002 return SDValue();
12003
12004 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12005 if (!C)
12006 return SDValue();
12007
12008 int64_t MulAmt = C->getSExtValue();
12009 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
12010
12011 ShiftAmt = ShiftAmt & (32 - 1);
12012 SDValue V = N->getOperand(0);
12013 SDLoc DL(N);
12014
12015 SDValue Res;
12016 MulAmt >>= ShiftAmt;
12017
12018 if (MulAmt >= 0) {
12019 if (isPowerOf2_32(MulAmt - 1)) {
12020 // (mul x, 2^N + 1) => (add (shl x, N), x)
12021 Res = DAG.getNode(ISD::ADD, DL, VT,
12022 V,
12023 DAG.getNode(ISD::SHL, DL, VT,
12024 V,
12025 DAG.getConstant(Log2_32(MulAmt - 1), DL,
12026 MVT::i32)));
12027 } else if (isPowerOf2_32(MulAmt + 1)) {
12028 // (mul x, 2^N - 1) => (sub (shl x, N), x)
12029 Res = DAG.getNode(ISD::SUB, DL, VT,
12030 DAG.getNode(ISD::SHL, DL, VT,
12031 V,
12032 DAG.getConstant(Log2_32(MulAmt + 1), DL,
12033 MVT::i32)),
12034 V);
12035 } else
12036 return SDValue();
12037 } else {
12038 uint64_t MulAmtAbs = -MulAmt;
12039 if (isPowerOf2_32(MulAmtAbs + 1)) {
12040 // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
12041 Res = DAG.getNode(ISD::SUB, DL, VT,
12042 V,
12043 DAG.getNode(ISD::SHL, DL, VT,
12044 V,
12045 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
12046 MVT::i32)));
12047 } else if (isPowerOf2_32(MulAmtAbs - 1)) {
12048 // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
12049 Res = DAG.getNode(ISD::ADD, DL, VT,
12050 V,
12051 DAG.getNode(ISD::SHL, DL, VT,
12052 V,
12053 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
12054 MVT::i32)));
12055 Res = DAG.getNode(ISD::SUB, DL, VT,
12056 DAG.getConstant(0, DL, MVT::i32), Res);
12057 } else
12058 return SDValue();
12059 }
12060
12061 if (ShiftAmt != 0)
12062 Res = DAG.getNode(ISD::SHL, DL, VT,
12063 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
12064
12065 // Do not add new nodes to DAG combiner worklist.
12066 DCI.CombineTo(N, Res, false);
12067 return SDValue();
12068 }
12069
CombineANDShift(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12070 static SDValue CombineANDShift(SDNode *N,
12071 TargetLowering::DAGCombinerInfo &DCI,
12072 const ARMSubtarget *Subtarget) {
12073 // Allow DAGCombine to pattern-match before we touch the canonical form.
12074 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
12075 return SDValue();
12076
12077 if (N->getValueType(0) != MVT::i32)
12078 return SDValue();
12079
12080 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
12081 if (!N1C)
12082 return SDValue();
12083
12084 uint32_t C1 = (uint32_t)N1C->getZExtValue();
12085 // Don't transform uxtb/uxth.
12086 if (C1 == 255 || C1 == 65535)
12087 return SDValue();
12088
12089 SDNode *N0 = N->getOperand(0).getNode();
12090 if (!N0->hasOneUse())
12091 return SDValue();
12092
12093 if (N0->getOpcode() != ISD::SHL && N0->getOpcode() != ISD::SRL)
12094 return SDValue();
12095
12096 bool LeftShift = N0->getOpcode() == ISD::SHL;
12097
12098 ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0->getOperand(1));
12099 if (!N01C)
12100 return SDValue();
12101
12102 uint32_t C2 = (uint32_t)N01C->getZExtValue();
12103 if (!C2 || C2 >= 32)
12104 return SDValue();
12105
12106 // Clear irrelevant bits in the mask.
12107 if (LeftShift)
12108 C1 &= (-1U << C2);
12109 else
12110 C1 &= (-1U >> C2);
12111
12112 SelectionDAG &DAG = DCI.DAG;
12113 SDLoc DL(N);
12114
12115 // We have a pattern of the form "(and (shl x, c2) c1)" or
12116 // "(and (srl x, c2) c1)", where c1 is a shifted mask. Try to
12117 // transform to a pair of shifts, to save materializing c1.
12118
12119 // First pattern: right shift, then mask off leading bits.
12120 // FIXME: Use demanded bits?
12121 if (!LeftShift && isMask_32(C1)) {
12122 uint32_t C3 = countLeadingZeros(C1);
12123 if (C2 < C3) {
12124 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12125 DAG.getConstant(C3 - C2, DL, MVT::i32));
12126 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12127 DAG.getConstant(C3, DL, MVT::i32));
12128 }
12129 }
12130
12131 // First pattern, reversed: left shift, then mask off trailing bits.
12132 if (LeftShift && isMask_32(~C1)) {
12133 uint32_t C3 = countTrailingZeros(C1);
12134 if (C2 < C3) {
12135 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12136 DAG.getConstant(C3 - C2, DL, MVT::i32));
12137 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12138 DAG.getConstant(C3, DL, MVT::i32));
12139 }
12140 }
12141
12142 // Second pattern: left shift, then mask off leading bits.
12143 // FIXME: Use demanded bits?
12144 if (LeftShift && isShiftedMask_32(C1)) {
12145 uint32_t Trailing = countTrailingZeros(C1);
12146 uint32_t C3 = countLeadingZeros(C1);
12147 if (Trailing == C2 && C2 + C3 < 32) {
12148 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
12149 DAG.getConstant(C2 + C3, DL, MVT::i32));
12150 return DAG.getNode(ISD::SRL, DL, MVT::i32, SHL,
12151 DAG.getConstant(C3, DL, MVT::i32));
12152 }
12153 }
12154
12155 // Second pattern, reversed: right shift, then mask off trailing bits.
12156 // FIXME: Handle other patterns of known/demanded bits.
12157 if (!LeftShift && isShiftedMask_32(C1)) {
12158 uint32_t Leading = countLeadingZeros(C1);
12159 uint32_t C3 = countTrailingZeros(C1);
12160 if (Leading == C2 && C2 + C3 < 32) {
12161 SDValue SHL = DAG.getNode(ISD::SRL, DL, MVT::i32, N0->getOperand(0),
12162 DAG.getConstant(C2 + C3, DL, MVT::i32));
12163 return DAG.getNode(ISD::SHL, DL, MVT::i32, SHL,
12164 DAG.getConstant(C3, DL, MVT::i32));
12165 }
12166 }
12167
12168 // FIXME: Transform "(and (shl x, c2) c1)" ->
12169 // "(shl (and x, c1>>c2), c2)" if "c1 >> c2" is a cheaper immediate than
12170 // c1.
12171 return SDValue();
12172 }
12173
PerformANDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12174 static SDValue PerformANDCombine(SDNode *N,
12175 TargetLowering::DAGCombinerInfo &DCI,
12176 const ARMSubtarget *Subtarget) {
12177 // Attempt to use immediate-form VBIC
12178 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
12179 SDLoc dl(N);
12180 EVT VT = N->getValueType(0);
12181 SelectionDAG &DAG = DCI.DAG;
12182
12183 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12184 return SDValue();
12185
12186 APInt SplatBits, SplatUndef;
12187 unsigned SplatBitSize;
12188 bool HasAnyUndefs;
12189 if (BVN && Subtarget->hasNEON() &&
12190 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
12191 if (SplatBitSize <= 64) {
12192 EVT VbicVT;
12193 SDValue Val = isVMOVModifiedImm((~SplatBits).getZExtValue(),
12194 SplatUndef.getZExtValue(), SplatBitSize,
12195 DAG, dl, VbicVT, VT.is128BitVector(),
12196 OtherModImm);
12197 if (Val.getNode()) {
12198 SDValue Input =
12199 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
12200 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
12201 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
12202 }
12203 }
12204 }
12205
12206 if (!Subtarget->isThumb1Only()) {
12207 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
12208 if (SDValue Result = combineSelectAndUseCommutative(N, true, DCI))
12209 return Result;
12210
12211 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12212 return Result;
12213 }
12214
12215 if (Subtarget->isThumb1Only())
12216 if (SDValue Result = CombineANDShift(N, DCI, Subtarget))
12217 return Result;
12218
12219 return SDValue();
12220 }
12221
12222 // Try combining OR nodes to SMULWB, SMULWT.
PerformORCombineToSMULWBT(SDNode * OR,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12223 static SDValue PerformORCombineToSMULWBT(SDNode *OR,
12224 TargetLowering::DAGCombinerInfo &DCI,
12225 const ARMSubtarget *Subtarget) {
12226 if (!Subtarget->hasV6Ops() ||
12227 (Subtarget->isThumb() &&
12228 (!Subtarget->hasThumb2() || !Subtarget->hasDSP())))
12229 return SDValue();
12230
12231 SDValue SRL = OR->getOperand(0);
12232 SDValue SHL = OR->getOperand(1);
12233
12234 if (SRL.getOpcode() != ISD::SRL || SHL.getOpcode() != ISD::SHL) {
12235 SRL = OR->getOperand(1);
12236 SHL = OR->getOperand(0);
12237 }
12238 if (!isSRL16(SRL) || !isSHL16(SHL))
12239 return SDValue();
12240
12241 // The first operands to the shifts need to be the two results from the
12242 // same smul_lohi node.
12243 if ((SRL.getOperand(0).getNode() != SHL.getOperand(0).getNode()) ||
12244 SRL.getOperand(0).getOpcode() != ISD::SMUL_LOHI)
12245 return SDValue();
12246
12247 SDNode *SMULLOHI = SRL.getOperand(0).getNode();
12248 if (SRL.getOperand(0) != SDValue(SMULLOHI, 0) ||
12249 SHL.getOperand(0) != SDValue(SMULLOHI, 1))
12250 return SDValue();
12251
12252 // Now we have:
12253 // (or (srl (smul_lohi ?, ?), 16), (shl (smul_lohi ?, ?), 16)))
12254 // For SMUL[B|T] smul_lohi will take a 32-bit and a 16-bit arguments.
12255 // For SMUWB the 16-bit value will signed extended somehow.
12256 // For SMULWT only the SRA is required.
12257 // Check both sides of SMUL_LOHI
12258 SDValue OpS16 = SMULLOHI->getOperand(0);
12259 SDValue OpS32 = SMULLOHI->getOperand(1);
12260
12261 SelectionDAG &DAG = DCI.DAG;
12262 if (!isS16(OpS16, DAG) && !isSRA16(OpS16)) {
12263 OpS16 = OpS32;
12264 OpS32 = SMULLOHI->getOperand(0);
12265 }
12266
12267 SDLoc dl(OR);
12268 unsigned Opcode = 0;
12269 if (isS16(OpS16, DAG))
12270 Opcode = ARMISD::SMULWB;
12271 else if (isSRA16(OpS16)) {
12272 Opcode = ARMISD::SMULWT;
12273 OpS16 = OpS16->getOperand(0);
12274 }
12275 else
12276 return SDValue();
12277
12278 SDValue Res = DAG.getNode(Opcode, dl, MVT::i32, OpS32, OpS16);
12279 DAG.ReplaceAllUsesOfValueWith(SDValue(OR, 0), Res);
12280 return SDValue(OR, 0);
12281 }
12282
PerformORCombineToBFI(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12283 static SDValue PerformORCombineToBFI(SDNode *N,
12284 TargetLowering::DAGCombinerInfo &DCI,
12285 const ARMSubtarget *Subtarget) {
12286 // BFI is only available on V6T2+
12287 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
12288 return SDValue();
12289
12290 EVT VT = N->getValueType(0);
12291 SDValue N0 = N->getOperand(0);
12292 SDValue N1 = N->getOperand(1);
12293 SelectionDAG &DAG = DCI.DAG;
12294 SDLoc DL(N);
12295 // 1) or (and A, mask), val => ARMbfi A, val, mask
12296 // iff (val & mask) == val
12297 //
12298 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12299 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
12300 // && mask == ~mask2
12301 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
12302 // && ~mask == mask2
12303 // (i.e., copy a bitfield value into another bitfield of the same width)
12304
12305 if (VT != MVT::i32)
12306 return SDValue();
12307
12308 SDValue N00 = N0.getOperand(0);
12309
12310 // The value and the mask need to be constants so we can verify this is
12311 // actually a bitfield set. If the mask is 0xffff, we can do better
12312 // via a movt instruction, so don't use BFI in that case.
12313 SDValue MaskOp = N0.getOperand(1);
12314 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
12315 if (!MaskC)
12316 return SDValue();
12317 unsigned Mask = MaskC->getZExtValue();
12318 if (Mask == 0xffff)
12319 return SDValue();
12320 SDValue Res;
12321 // Case (1): or (and A, mask), val => ARMbfi A, val, mask
12322 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
12323 if (N1C) {
12324 unsigned Val = N1C->getZExtValue();
12325 if ((Val & ~Mask) != Val)
12326 return SDValue();
12327
12328 if (ARM::isBitFieldInvertedMask(Mask)) {
12329 Val >>= countTrailingZeros(~Mask);
12330
12331 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
12332 DAG.getConstant(Val, DL, MVT::i32),
12333 DAG.getConstant(Mask, DL, MVT::i32));
12334
12335 DCI.CombineTo(N, Res, false);
12336 // Return value from the original node to inform the combiner than N is
12337 // now dead.
12338 return SDValue(N, 0);
12339 }
12340 } else if (N1.getOpcode() == ISD::AND) {
12341 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
12342 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
12343 if (!N11C)
12344 return SDValue();
12345 unsigned Mask2 = N11C->getZExtValue();
12346
12347 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
12348 // as is to match.
12349 if (ARM::isBitFieldInvertedMask(Mask) &&
12350 (Mask == ~Mask2)) {
12351 // The pack halfword instruction works better for masks that fit it,
12352 // so use that when it's available.
12353 if (Subtarget->hasDSP() &&
12354 (Mask == 0xffff || Mask == 0xffff0000))
12355 return SDValue();
12356 // 2a
12357 unsigned amt = countTrailingZeros(Mask2);
12358 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
12359 DAG.getConstant(amt, DL, MVT::i32));
12360 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
12361 DAG.getConstant(Mask, DL, MVT::i32));
12362 DCI.CombineTo(N, Res, false);
12363 // Return value from the original node to inform the combiner than N is
12364 // now dead.
12365 return SDValue(N, 0);
12366 } else if (ARM::isBitFieldInvertedMask(~Mask) &&
12367 (~Mask == Mask2)) {
12368 // The pack halfword instruction works better for masks that fit it,
12369 // so use that when it's available.
12370 if (Subtarget->hasDSP() &&
12371 (Mask2 == 0xffff || Mask2 == 0xffff0000))
12372 return SDValue();
12373 // 2b
12374 unsigned lsb = countTrailingZeros(Mask);
12375 Res = DAG.getNode(ISD::SRL, DL, VT, N00,
12376 DAG.getConstant(lsb, DL, MVT::i32));
12377 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
12378 DAG.getConstant(Mask2, DL, MVT::i32));
12379 DCI.CombineTo(N, Res, false);
12380 // Return value from the original node to inform the combiner than N is
12381 // now dead.
12382 return SDValue(N, 0);
12383 }
12384 }
12385
12386 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
12387 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
12388 ARM::isBitFieldInvertedMask(~Mask)) {
12389 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
12390 // where lsb(mask) == #shamt and masked bits of B are known zero.
12391 SDValue ShAmt = N00.getOperand(1);
12392 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
12393 unsigned LSB = countTrailingZeros(Mask);
12394 if (ShAmtC != LSB)
12395 return SDValue();
12396
12397 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
12398 DAG.getConstant(~Mask, DL, MVT::i32));
12399
12400 DCI.CombineTo(N, Res, false);
12401 // Return value from the original node to inform the combiner than N is
12402 // now dead.
12403 return SDValue(N, 0);
12404 }
12405
12406 return SDValue();
12407 }
12408
isValidMVECond(unsigned CC,bool IsFloat)12409 static bool isValidMVECond(unsigned CC, bool IsFloat) {
12410 switch (CC) {
12411 case ARMCC::EQ:
12412 case ARMCC::NE:
12413 case ARMCC::LE:
12414 case ARMCC::GT:
12415 case ARMCC::GE:
12416 case ARMCC::LT:
12417 return true;
12418 case ARMCC::HS:
12419 case ARMCC::HI:
12420 return !IsFloat;
12421 default:
12422 return false;
12423 };
12424 }
12425
PerformORCombine_i1(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12426 static SDValue PerformORCombine_i1(SDNode *N,
12427 TargetLowering::DAGCombinerInfo &DCI,
12428 const ARMSubtarget *Subtarget) {
12429 // Try to invert "or A, B" -> "and ~A, ~B", as the "and" is easier to chain
12430 // together with predicates
12431 EVT VT = N->getValueType(0);
12432 SDValue N0 = N->getOperand(0);
12433 SDValue N1 = N->getOperand(1);
12434
12435 ARMCC::CondCodes CondCode0 = ARMCC::AL;
12436 ARMCC::CondCodes CondCode1 = ARMCC::AL;
12437 if (N0->getOpcode() == ARMISD::VCMP)
12438 CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(2))
12439 ->getZExtValue();
12440 else if (N0->getOpcode() == ARMISD::VCMPZ)
12441 CondCode0 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N0->getOperand(1))
12442 ->getZExtValue();
12443 if (N1->getOpcode() == ARMISD::VCMP)
12444 CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(2))
12445 ->getZExtValue();
12446 else if (N1->getOpcode() == ARMISD::VCMPZ)
12447 CondCode1 = (ARMCC::CondCodes)cast<const ConstantSDNode>(N1->getOperand(1))
12448 ->getZExtValue();
12449
12450 if (CondCode0 == ARMCC::AL || CondCode1 == ARMCC::AL)
12451 return SDValue();
12452
12453 unsigned Opposite0 = ARMCC::getOppositeCondition(CondCode0);
12454 unsigned Opposite1 = ARMCC::getOppositeCondition(CondCode1);
12455
12456 if (!isValidMVECond(Opposite0,
12457 N0->getOperand(0)->getValueType(0).isFloatingPoint()) ||
12458 !isValidMVECond(Opposite1,
12459 N1->getOperand(0)->getValueType(0).isFloatingPoint()))
12460 return SDValue();
12461
12462 SmallVector<SDValue, 4> Ops0;
12463 Ops0.push_back(N0->getOperand(0));
12464 if (N0->getOpcode() == ARMISD::VCMP)
12465 Ops0.push_back(N0->getOperand(1));
12466 Ops0.push_back(DCI.DAG.getConstant(Opposite0, SDLoc(N0), MVT::i32));
12467 SmallVector<SDValue, 4> Ops1;
12468 Ops1.push_back(N1->getOperand(0));
12469 if (N1->getOpcode() == ARMISD::VCMP)
12470 Ops1.push_back(N1->getOperand(1));
12471 Ops1.push_back(DCI.DAG.getConstant(Opposite1, SDLoc(N1), MVT::i32));
12472
12473 SDValue NewN0 = DCI.DAG.getNode(N0->getOpcode(), SDLoc(N0), VT, Ops0);
12474 SDValue NewN1 = DCI.DAG.getNode(N1->getOpcode(), SDLoc(N1), VT, Ops1);
12475 SDValue And = DCI.DAG.getNode(ISD::AND, SDLoc(N), VT, NewN0, NewN1);
12476 return DCI.DAG.getNode(ISD::XOR, SDLoc(N), VT, And,
12477 DCI.DAG.getAllOnesConstant(SDLoc(N), VT));
12478 }
12479
12480 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
PerformORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12481 static SDValue PerformORCombine(SDNode *N,
12482 TargetLowering::DAGCombinerInfo &DCI,
12483 const ARMSubtarget *Subtarget) {
12484 // Attempt to use immediate-form VORR
12485 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
12486 SDLoc dl(N);
12487 EVT VT = N->getValueType(0);
12488 SelectionDAG &DAG = DCI.DAG;
12489
12490 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12491 return SDValue();
12492
12493 APInt SplatBits, SplatUndef;
12494 unsigned SplatBitSize;
12495 bool HasAnyUndefs;
12496 if (BVN && Subtarget->hasNEON() &&
12497 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
12498 if (SplatBitSize <= 64) {
12499 EVT VorrVT;
12500 SDValue Val = isVMOVModifiedImm(SplatBits.getZExtValue(),
12501 SplatUndef.getZExtValue(), SplatBitSize,
12502 DAG, dl, VorrVT, VT.is128BitVector(),
12503 OtherModImm);
12504 if (Val.getNode()) {
12505 SDValue Input =
12506 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
12507 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
12508 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
12509 }
12510 }
12511 }
12512
12513 if (!Subtarget->isThumb1Only()) {
12514 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
12515 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
12516 return Result;
12517 if (SDValue Result = PerformORCombineToSMULWBT(N, DCI, Subtarget))
12518 return Result;
12519 }
12520
12521 SDValue N0 = N->getOperand(0);
12522 SDValue N1 = N->getOperand(1);
12523
12524 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
12525 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
12526 DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
12527
12528 // The code below optimizes (or (and X, Y), Z).
12529 // The AND operand needs to have a single user to make these optimizations
12530 // profitable.
12531 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
12532 return SDValue();
12533
12534 APInt SplatUndef;
12535 unsigned SplatBitSize;
12536 bool HasAnyUndefs;
12537
12538 APInt SplatBits0, SplatBits1;
12539 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
12540 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
12541 // Ensure that the second operand of both ands are constants
12542 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
12543 HasAnyUndefs) && !HasAnyUndefs) {
12544 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
12545 HasAnyUndefs) && !HasAnyUndefs) {
12546 // Ensure that the bit width of the constants are the same and that
12547 // the splat arguments are logical inverses as per the pattern we
12548 // are trying to simplify.
12549 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
12550 SplatBits0 == ~SplatBits1) {
12551 // Canonicalize the vector type to make instruction selection
12552 // simpler.
12553 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
12554 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
12555 N0->getOperand(1),
12556 N0->getOperand(0),
12557 N1->getOperand(0));
12558 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
12559 }
12560 }
12561 }
12562 }
12563
12564 if (Subtarget->hasMVEIntegerOps() &&
12565 (VT == MVT::v4i1 || VT == MVT::v8i1 || VT == MVT::v16i1))
12566 return PerformORCombine_i1(N, DCI, Subtarget);
12567
12568 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
12569 // reasonable.
12570 if (N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
12571 if (SDValue Res = PerformORCombineToBFI(N, DCI, Subtarget))
12572 return Res;
12573 }
12574
12575 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12576 return Result;
12577
12578 return SDValue();
12579 }
12580
PerformXORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12581 static SDValue PerformXORCombine(SDNode *N,
12582 TargetLowering::DAGCombinerInfo &DCI,
12583 const ARMSubtarget *Subtarget) {
12584 EVT VT = N->getValueType(0);
12585 SelectionDAG &DAG = DCI.DAG;
12586
12587 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
12588 return SDValue();
12589
12590 if (!Subtarget->isThumb1Only()) {
12591 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
12592 if (SDValue Result = combineSelectAndUseCommutative(N, false, DCI))
12593 return Result;
12594
12595 if (SDValue Result = PerformSHLSimplify(N, DCI, Subtarget))
12596 return Result;
12597 }
12598
12599 return SDValue();
12600 }
12601
12602 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
12603 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
12604 // their position in "to" (Rd).
ParseBFI(SDNode * N,APInt & ToMask,APInt & FromMask)12605 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
12606 assert(N->getOpcode() == ARMISD::BFI);
12607
12608 SDValue From = N->getOperand(1);
12609 ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
12610 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
12611
12612 // If the Base came from a SHR #C, we can deduce that it is really testing bit
12613 // #C in the base of the SHR.
12614 if (From->getOpcode() == ISD::SRL &&
12615 isa<ConstantSDNode>(From->getOperand(1))) {
12616 APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
12617 assert(Shift.getLimitedValue() < 32 && "Shift too large!");
12618 FromMask <<= Shift.getLimitedValue(31);
12619 From = From->getOperand(0);
12620 }
12621
12622 return From;
12623 }
12624
12625 // If A and B contain one contiguous set of bits, does A | B == A . B?
12626 //
12627 // Neither A nor B must be zero.
BitsProperlyConcatenate(const APInt & A,const APInt & B)12628 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
12629 unsigned LastActiveBitInA = A.countTrailingZeros();
12630 unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
12631 return LastActiveBitInA - 1 == FirstActiveBitInB;
12632 }
12633
FindBFIToCombineWith(SDNode * N)12634 static SDValue FindBFIToCombineWith(SDNode *N) {
12635 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
12636 // if one exists.
12637 APInt ToMask, FromMask;
12638 SDValue From = ParseBFI(N, ToMask, FromMask);
12639 SDValue To = N->getOperand(0);
12640
12641 // Now check for a compatible BFI to merge with. We can pass through BFIs that
12642 // aren't compatible, but not if they set the same bit in their destination as
12643 // we do (or that of any BFI we're going to combine with).
12644 SDValue V = To;
12645 APInt CombinedToMask = ToMask;
12646 while (V.getOpcode() == ARMISD::BFI) {
12647 APInt NewToMask, NewFromMask;
12648 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
12649 if (NewFrom != From) {
12650 // This BFI has a different base. Keep going.
12651 CombinedToMask |= NewToMask;
12652 V = V.getOperand(0);
12653 continue;
12654 }
12655
12656 // Do the written bits conflict with any we've seen so far?
12657 if ((NewToMask & CombinedToMask).getBoolValue())
12658 // Conflicting bits - bail out because going further is unsafe.
12659 return SDValue();
12660
12661 // Are the new bits contiguous when combined with the old bits?
12662 if (BitsProperlyConcatenate(ToMask, NewToMask) &&
12663 BitsProperlyConcatenate(FromMask, NewFromMask))
12664 return V;
12665 if (BitsProperlyConcatenate(NewToMask, ToMask) &&
12666 BitsProperlyConcatenate(NewFromMask, FromMask))
12667 return V;
12668
12669 // We've seen a write to some bits, so track it.
12670 CombinedToMask |= NewToMask;
12671 // Keep going...
12672 V = V.getOperand(0);
12673 }
12674
12675 return SDValue();
12676 }
12677
PerformBFICombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12678 static SDValue PerformBFICombine(SDNode *N,
12679 TargetLowering::DAGCombinerInfo &DCI) {
12680 SDValue N1 = N->getOperand(1);
12681 if (N1.getOpcode() == ISD::AND) {
12682 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
12683 // the bits being cleared by the AND are not demanded by the BFI.
12684 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
12685 if (!N11C)
12686 return SDValue();
12687 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
12688 unsigned LSB = countTrailingZeros(~InvMask);
12689 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
12690 assert(Width <
12691 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
12692 "undefined behavior");
12693 unsigned Mask = (1u << Width) - 1;
12694 unsigned Mask2 = N11C->getZExtValue();
12695 if ((Mask & (~Mask2)) == 0)
12696 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
12697 N->getOperand(0), N1.getOperand(0),
12698 N->getOperand(2));
12699 } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
12700 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
12701 // Keep track of any consecutive bits set that all come from the same base
12702 // value. We can combine these together into a single BFI.
12703 SDValue CombineBFI = FindBFIToCombineWith(N);
12704 if (CombineBFI == SDValue())
12705 return SDValue();
12706
12707 // We've found a BFI.
12708 APInt ToMask1, FromMask1;
12709 SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
12710
12711 APInt ToMask2, FromMask2;
12712 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
12713 assert(From1 == From2);
12714 (void)From2;
12715
12716 // First, unlink CombineBFI.
12717 DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
12718 // Then create a new BFI, combining the two together.
12719 APInt NewFromMask = FromMask1 | FromMask2;
12720 APInt NewToMask = ToMask1 | ToMask2;
12721
12722 EVT VT = N->getValueType(0);
12723 SDLoc dl(N);
12724
12725 if (NewFromMask[0] == 0)
12726 From1 = DCI.DAG.getNode(
12727 ISD::SRL, dl, VT, From1,
12728 DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
12729 return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
12730 DCI.DAG.getConstant(~NewToMask, dl, VT));
12731 }
12732 return SDValue();
12733 }
12734
12735 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
12736 /// ARMISD::VMOVRRD.
PerformVMOVRRDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12737 static SDValue PerformVMOVRRDCombine(SDNode *N,
12738 TargetLowering::DAGCombinerInfo &DCI,
12739 const ARMSubtarget *Subtarget) {
12740 // vmovrrd(vmovdrr x, y) -> x,y
12741 SDValue InDouble = N->getOperand(0);
12742 if (InDouble.getOpcode() == ARMISD::VMOVDRR && Subtarget->hasFP64())
12743 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
12744
12745 // vmovrrd(load f64) -> (load i32), (load i32)
12746 SDNode *InNode = InDouble.getNode();
12747 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
12748 InNode->getValueType(0) == MVT::f64 &&
12749 InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
12750 !cast<LoadSDNode>(InNode)->isVolatile()) {
12751 // TODO: Should this be done for non-FrameIndex operands?
12752 LoadSDNode *LD = cast<LoadSDNode>(InNode);
12753
12754 SelectionDAG &DAG = DCI.DAG;
12755 SDLoc DL(LD);
12756 SDValue BasePtr = LD->getBasePtr();
12757 SDValue NewLD1 =
12758 DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, LD->getPointerInfo(),
12759 LD->getAlignment(), LD->getMemOperand()->getFlags());
12760
12761 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
12762 DAG.getConstant(4, DL, MVT::i32));
12763
12764 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, LD->getChain(), OffsetPtr,
12765 LD->getPointerInfo().getWithOffset(4),
12766 std::min(4U, LD->getAlignment()),
12767 LD->getMemOperand()->getFlags());
12768
12769 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
12770 if (DCI.DAG.getDataLayout().isBigEndian())
12771 std::swap (NewLD1, NewLD2);
12772 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
12773 return Result;
12774 }
12775
12776 return SDValue();
12777 }
12778
12779 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
12780 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
PerformVMOVDRRCombine(SDNode * N,SelectionDAG & DAG)12781 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
12782 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
12783 SDValue Op0 = N->getOperand(0);
12784 SDValue Op1 = N->getOperand(1);
12785 if (Op0.getOpcode() == ISD::BITCAST)
12786 Op0 = Op0.getOperand(0);
12787 if (Op1.getOpcode() == ISD::BITCAST)
12788 Op1 = Op1.getOperand(0);
12789 if (Op0.getOpcode() == ARMISD::VMOVRRD &&
12790 Op0.getNode() == Op1.getNode() &&
12791 Op0.getResNo() == 0 && Op1.getResNo() == 1)
12792 return DAG.getNode(ISD::BITCAST, SDLoc(N),
12793 N->getValueType(0), Op0.getOperand(0));
12794 return SDValue();
12795 }
12796
12797 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
12798 /// are normal, non-volatile loads. If so, it is profitable to bitcast an
12799 /// i64 vector to have f64 elements, since the value can then be loaded
12800 /// directly into a VFP register.
hasNormalLoadOperand(SDNode * N)12801 static bool hasNormalLoadOperand(SDNode *N) {
12802 unsigned NumElts = N->getValueType(0).getVectorNumElements();
12803 for (unsigned i = 0; i < NumElts; ++i) {
12804 SDNode *Elt = N->getOperand(i).getNode();
12805 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
12806 return true;
12807 }
12808 return false;
12809 }
12810
12811 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
12812 /// ISD::BUILD_VECTOR.
PerformBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12813 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
12814 TargetLowering::DAGCombinerInfo &DCI,
12815 const ARMSubtarget *Subtarget) {
12816 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
12817 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
12818 // into a pair of GPRs, which is fine when the value is used as a scalar,
12819 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
12820 SelectionDAG &DAG = DCI.DAG;
12821 if (N->getNumOperands() == 2)
12822 if (SDValue RV = PerformVMOVDRRCombine(N, DAG))
12823 return RV;
12824
12825 // Load i64 elements as f64 values so that type legalization does not split
12826 // them up into i32 values.
12827 EVT VT = N->getValueType(0);
12828 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
12829 return SDValue();
12830 SDLoc dl(N);
12831 SmallVector<SDValue, 8> Ops;
12832 unsigned NumElts = VT.getVectorNumElements();
12833 for (unsigned i = 0; i < NumElts; ++i) {
12834 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
12835 Ops.push_back(V);
12836 // Make the DAGCombiner fold the bitcast.
12837 DCI.AddToWorklist(V.getNode());
12838 }
12839 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
12840 SDValue BV = DAG.getBuildVector(FloatVT, dl, Ops);
12841 return DAG.getNode(ISD::BITCAST, dl, VT, BV);
12842 }
12843
12844 /// Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
12845 static SDValue
PerformARMBUILD_VECTORCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12846 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12847 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
12848 // At that time, we may have inserted bitcasts from integer to float.
12849 // If these bitcasts have survived DAGCombine, change the lowering of this
12850 // BUILD_VECTOR in something more vector friendly, i.e., that does not
12851 // force to use floating point types.
12852
12853 // Make sure we can change the type of the vector.
12854 // This is possible iff:
12855 // 1. The vector is only used in a bitcast to a integer type. I.e.,
12856 // 1.1. Vector is used only once.
12857 // 1.2. Use is a bit convert to an integer type.
12858 // 2. The size of its operands are 32-bits (64-bits are not legal).
12859 EVT VT = N->getValueType(0);
12860 EVT EltVT = VT.getVectorElementType();
12861
12862 // Check 1.1. and 2.
12863 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
12864 return SDValue();
12865
12866 // By construction, the input type must be float.
12867 assert(EltVT == MVT::f32 && "Unexpected type!");
12868
12869 // Check 1.2.
12870 SDNode *Use = *N->use_begin();
12871 if (Use->getOpcode() != ISD::BITCAST ||
12872 Use->getValueType(0).isFloatingPoint())
12873 return SDValue();
12874
12875 // Check profitability.
12876 // Model is, if more than half of the relevant operands are bitcast from
12877 // i32, turn the build_vector into a sequence of insert_vector_elt.
12878 // Relevant operands are everything that is not statically
12879 // (i.e., at compile time) bitcasted.
12880 unsigned NumOfBitCastedElts = 0;
12881 unsigned NumElts = VT.getVectorNumElements();
12882 unsigned NumOfRelevantElts = NumElts;
12883 for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
12884 SDValue Elt = N->getOperand(Idx);
12885 if (Elt->getOpcode() == ISD::BITCAST) {
12886 // Assume only bit cast to i32 will go away.
12887 if (Elt->getOperand(0).getValueType() == MVT::i32)
12888 ++NumOfBitCastedElts;
12889 } else if (Elt.isUndef() || isa<ConstantSDNode>(Elt))
12890 // Constants are statically casted, thus do not count them as
12891 // relevant operands.
12892 --NumOfRelevantElts;
12893 }
12894
12895 // Check if more than half of the elements require a non-free bitcast.
12896 if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
12897 return SDValue();
12898
12899 SelectionDAG &DAG = DCI.DAG;
12900 // Create the new vector type.
12901 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
12902 // Check if the type is legal.
12903 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12904 if (!TLI.isTypeLegal(VecVT))
12905 return SDValue();
12906
12907 // Combine:
12908 // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
12909 // => BITCAST INSERT_VECTOR_ELT
12910 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
12911 // (BITCAST EN), N.
12912 SDValue Vec = DAG.getUNDEF(VecVT);
12913 SDLoc dl(N);
12914 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
12915 SDValue V = N->getOperand(Idx);
12916 if (V.isUndef())
12917 continue;
12918 if (V.getOpcode() == ISD::BITCAST &&
12919 V->getOperand(0).getValueType() == MVT::i32)
12920 // Fold obvious case.
12921 V = V.getOperand(0);
12922 else {
12923 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
12924 // Make the DAGCombiner fold the bitcasts.
12925 DCI.AddToWorklist(V.getNode());
12926 }
12927 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
12928 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
12929 }
12930 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
12931 // Make the DAGCombiner fold the bitcasts.
12932 DCI.AddToWorklist(Vec.getNode());
12933 return Vec;
12934 }
12935
12936 static SDValue
PerformPREDICATE_CASTCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12937 PerformPREDICATE_CASTCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
12938 EVT VT = N->getValueType(0);
12939 SDValue Op = N->getOperand(0);
12940 SDLoc dl(N);
12941
12942 // PREDICATE_CAST(PREDICATE_CAST(x)) == PREDICATE_CAST(x)
12943 if (Op->getOpcode() == ARMISD::PREDICATE_CAST) {
12944 // If the valuetypes are the same, we can remove the cast entirely.
12945 if (Op->getOperand(0).getValueType() == VT)
12946 return Op->getOperand(0);
12947 return DCI.DAG.getNode(ARMISD::PREDICATE_CAST, dl,
12948 Op->getOperand(0).getValueType(), Op->getOperand(0));
12949 }
12950
12951 return SDValue();
12952 }
12953
PerformVCMPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)12954 static SDValue PerformVCMPCombine(SDNode *N,
12955 TargetLowering::DAGCombinerInfo &DCI,
12956 const ARMSubtarget *Subtarget) {
12957 if (!Subtarget->hasMVEIntegerOps())
12958 return SDValue();
12959
12960 EVT VT = N->getValueType(0);
12961 SDValue Op0 = N->getOperand(0);
12962 SDValue Op1 = N->getOperand(1);
12963 ARMCC::CondCodes Cond =
12964 (ARMCC::CondCodes)cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
12965 SDLoc dl(N);
12966
12967 // vcmp X, 0, cc -> vcmpz X, cc
12968 if (isZeroVector(Op1))
12969 return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op0,
12970 N->getOperand(2));
12971
12972 unsigned SwappedCond = getSwappedCondition(Cond);
12973 if (isValidMVECond(SwappedCond, VT.isFloatingPoint())) {
12974 // vcmp 0, X, cc -> vcmpz X, reversed(cc)
12975 if (isZeroVector(Op0))
12976 return DCI.DAG.getNode(ARMISD::VCMPZ, dl, VT, Op1,
12977 DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
12978 // vcmp vdup(Y), X, cc -> vcmp X, vdup(Y), reversed(cc)
12979 if (Op0->getOpcode() == ARMISD::VDUP && Op1->getOpcode() != ARMISD::VDUP)
12980 return DCI.DAG.getNode(ARMISD::VCMP, dl, VT, Op1, Op0,
12981 DCI.DAG.getConstant(SwappedCond, dl, MVT::i32));
12982 }
12983
12984 return SDValue();
12985 }
12986
12987 /// PerformInsertEltCombine - Target-specific dag combine xforms for
12988 /// ISD::INSERT_VECTOR_ELT.
PerformInsertEltCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)12989 static SDValue PerformInsertEltCombine(SDNode *N,
12990 TargetLowering::DAGCombinerInfo &DCI) {
12991 // Bitcast an i64 load inserted into a vector to f64.
12992 // Otherwise, the i64 value will be legalized to a pair of i32 values.
12993 EVT VT = N->getValueType(0);
12994 SDNode *Elt = N->getOperand(1).getNode();
12995 if (VT.getVectorElementType() != MVT::i64 ||
12996 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
12997 return SDValue();
12998
12999 SelectionDAG &DAG = DCI.DAG;
13000 SDLoc dl(N);
13001 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
13002 VT.getVectorNumElements());
13003 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
13004 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
13005 // Make the DAGCombiner fold the bitcasts.
13006 DCI.AddToWorklist(Vec.getNode());
13007 DCI.AddToWorklist(V.getNode());
13008 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
13009 Vec, V, N->getOperand(2));
13010 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
13011 }
13012
13013 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
13014 /// ISD::VECTOR_SHUFFLE.
PerformVECTOR_SHUFFLECombine(SDNode * N,SelectionDAG & DAG)13015 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
13016 // The LLVM shufflevector instruction does not require the shuffle mask
13017 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
13018 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
13019 // operands do not match the mask length, they are extended by concatenating
13020 // them with undef vectors. That is probably the right thing for other
13021 // targets, but for NEON it is better to concatenate two double-register
13022 // size vector operands into a single quad-register size vector. Do that
13023 // transformation here:
13024 // shuffle(concat(v1, undef), concat(v2, undef)) ->
13025 // shuffle(concat(v1, v2), undef)
13026 SDValue Op0 = N->getOperand(0);
13027 SDValue Op1 = N->getOperand(1);
13028 if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
13029 Op1.getOpcode() != ISD::CONCAT_VECTORS ||
13030 Op0.getNumOperands() != 2 ||
13031 Op1.getNumOperands() != 2)
13032 return SDValue();
13033 SDValue Concat0Op1 = Op0.getOperand(1);
13034 SDValue Concat1Op1 = Op1.getOperand(1);
13035 if (!Concat0Op1.isUndef() || !Concat1Op1.isUndef())
13036 return SDValue();
13037 // Skip the transformation if any of the types are illegal.
13038 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13039 EVT VT = N->getValueType(0);
13040 if (!TLI.isTypeLegal(VT) ||
13041 !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
13042 !TLI.isTypeLegal(Concat1Op1.getValueType()))
13043 return SDValue();
13044
13045 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
13046 Op0.getOperand(0), Op1.getOperand(0));
13047 // Translate the shuffle mask.
13048 SmallVector<int, 16> NewMask;
13049 unsigned NumElts = VT.getVectorNumElements();
13050 unsigned HalfElts = NumElts/2;
13051 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
13052 for (unsigned n = 0; n < NumElts; ++n) {
13053 int MaskElt = SVN->getMaskElt(n);
13054 int NewElt = -1;
13055 if (MaskElt < (int)HalfElts)
13056 NewElt = MaskElt;
13057 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
13058 NewElt = HalfElts + MaskElt - NumElts;
13059 NewMask.push_back(NewElt);
13060 }
13061 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
13062 DAG.getUNDEF(VT), NewMask);
13063 }
13064
13065 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
13066 /// NEON load/store intrinsics, and generic vector load/stores, to merge
13067 /// base address updates.
13068 /// For generic load/stores, the memory type is assumed to be a vector.
13069 /// The caller is assumed to have checked legality.
CombineBaseUpdate(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13070 static SDValue CombineBaseUpdate(SDNode *N,
13071 TargetLowering::DAGCombinerInfo &DCI) {
13072 SelectionDAG &DAG = DCI.DAG;
13073 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
13074 N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
13075 const bool isStore = N->getOpcode() == ISD::STORE;
13076 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
13077 SDValue Addr = N->getOperand(AddrOpIdx);
13078 MemSDNode *MemN = cast<MemSDNode>(N);
13079 SDLoc dl(N);
13080
13081 // Search for a use of the address operand that is an increment.
13082 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
13083 UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
13084 SDNode *User = *UI;
13085 if (User->getOpcode() != ISD::ADD ||
13086 UI.getUse().getResNo() != Addr.getResNo())
13087 continue;
13088
13089 // Check that the add is independent of the load/store. Otherwise, folding
13090 // it would create a cycle. We can avoid searching through Addr as it's a
13091 // predecessor to both.
13092 SmallPtrSet<const SDNode *, 32> Visited;
13093 SmallVector<const SDNode *, 16> Worklist;
13094 Visited.insert(Addr.getNode());
13095 Worklist.push_back(N);
13096 Worklist.push_back(User);
13097 if (SDNode::hasPredecessorHelper(N, Visited, Worklist) ||
13098 SDNode::hasPredecessorHelper(User, Visited, Worklist))
13099 continue;
13100
13101 // Find the new opcode for the updating load/store.
13102 bool isLoadOp = true;
13103 bool isLaneOp = false;
13104 unsigned NewOpc = 0;
13105 unsigned NumVecs = 0;
13106 if (isIntrinsic) {
13107 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
13108 switch (IntNo) {
13109 default: llvm_unreachable("unexpected intrinsic for Neon base update");
13110 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
13111 NumVecs = 1; break;
13112 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
13113 NumVecs = 2; break;
13114 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
13115 NumVecs = 3; break;
13116 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
13117 NumVecs = 4; break;
13118 case Intrinsic::arm_neon_vld2dup:
13119 case Intrinsic::arm_neon_vld3dup:
13120 case Intrinsic::arm_neon_vld4dup:
13121 // TODO: Support updating VLDxDUP nodes. For now, we just skip
13122 // combining base updates for such intrinsics.
13123 continue;
13124 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
13125 NumVecs = 2; isLaneOp = true; break;
13126 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
13127 NumVecs = 3; isLaneOp = true; break;
13128 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
13129 NumVecs = 4; isLaneOp = true; break;
13130 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
13131 NumVecs = 1; isLoadOp = false; break;
13132 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
13133 NumVecs = 2; isLoadOp = false; break;
13134 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
13135 NumVecs = 3; isLoadOp = false; break;
13136 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
13137 NumVecs = 4; isLoadOp = false; break;
13138 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
13139 NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
13140 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
13141 NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
13142 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
13143 NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
13144 }
13145 } else {
13146 isLaneOp = true;
13147 switch (N->getOpcode()) {
13148 default: llvm_unreachable("unexpected opcode for Neon base update");
13149 case ARMISD::VLD1DUP: NewOpc = ARMISD::VLD1DUP_UPD; NumVecs = 1; break;
13150 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
13151 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
13152 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
13153 case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
13154 NumVecs = 1; isLaneOp = false; break;
13155 case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
13156 NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
13157 }
13158 }
13159
13160 // Find the size of memory referenced by the load/store.
13161 EVT VecTy;
13162 if (isLoadOp) {
13163 VecTy = N->getValueType(0);
13164 } else if (isIntrinsic) {
13165 VecTy = N->getOperand(AddrOpIdx+1).getValueType();
13166 } else {
13167 assert(isStore && "Node has to be a load, a store, or an intrinsic!");
13168 VecTy = N->getOperand(1).getValueType();
13169 }
13170
13171 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
13172 if (isLaneOp)
13173 NumBytes /= VecTy.getVectorNumElements();
13174
13175 // If the increment is a constant, it must match the memory ref size.
13176 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
13177 ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode());
13178 if (NumBytes >= 3 * 16 && (!CInc || CInc->getZExtValue() != NumBytes)) {
13179 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
13180 // separate instructions that make it harder to use a non-constant update.
13181 continue;
13182 }
13183
13184 // OK, we found an ADD we can fold into the base update.
13185 // Now, create a _UPD node, taking care of not breaking alignment.
13186
13187 EVT AlignedVecTy = VecTy;
13188 unsigned Alignment = MemN->getAlignment();
13189
13190 // If this is a less-than-standard-aligned load/store, change the type to
13191 // match the standard alignment.
13192 // The alignment is overlooked when selecting _UPD variants; and it's
13193 // easier to introduce bitcasts here than fix that.
13194 // There are 3 ways to get to this base-update combine:
13195 // - intrinsics: they are assumed to be properly aligned (to the standard
13196 // alignment of the memory type), so we don't need to do anything.
13197 // - ARMISD::VLDx nodes: they are only generated from the aforementioned
13198 // intrinsics, so, likewise, there's nothing to do.
13199 // - generic load/store instructions: the alignment is specified as an
13200 // explicit operand, rather than implicitly as the standard alignment
13201 // of the memory type (like the intrisics). We need to change the
13202 // memory type to match the explicit alignment. That way, we don't
13203 // generate non-standard-aligned ARMISD::VLDx nodes.
13204 if (isa<LSBaseSDNode>(N)) {
13205 if (Alignment == 0)
13206 Alignment = 1;
13207 if (Alignment < VecTy.getScalarSizeInBits() / 8) {
13208 MVT EltTy = MVT::getIntegerVT(Alignment * 8);
13209 assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
13210 assert(!isLaneOp && "Unexpected generic load/store lane.");
13211 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
13212 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
13213 }
13214 // Don't set an explicit alignment on regular load/stores that we want
13215 // to transform to VLD/VST 1_UPD nodes.
13216 // This matches the behavior of regular load/stores, which only get an
13217 // explicit alignment if the MMO alignment is larger than the standard
13218 // alignment of the memory type.
13219 // Intrinsics, however, always get an explicit alignment, set to the
13220 // alignment of the MMO.
13221 Alignment = 1;
13222 }
13223
13224 // Create the new updating load/store node.
13225 // First, create an SDVTList for the new updating node's results.
13226 EVT Tys[6];
13227 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
13228 unsigned n;
13229 for (n = 0; n < NumResultVecs; ++n)
13230 Tys[n] = AlignedVecTy;
13231 Tys[n++] = MVT::i32;
13232 Tys[n] = MVT::Other;
13233 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
13234
13235 // Then, gather the new node's operands.
13236 SmallVector<SDValue, 8> Ops;
13237 Ops.push_back(N->getOperand(0)); // incoming chain
13238 Ops.push_back(N->getOperand(AddrOpIdx));
13239 Ops.push_back(Inc);
13240
13241 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
13242 // Try to match the intrinsic's signature
13243 Ops.push_back(StN->getValue());
13244 } else {
13245 // Loads (and of course intrinsics) match the intrinsics' signature,
13246 // so just add all but the alignment operand.
13247 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
13248 Ops.push_back(N->getOperand(i));
13249 }
13250
13251 // For all node types, the alignment operand is always the last one.
13252 Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
13253
13254 // If this is a non-standard-aligned STORE, the penultimate operand is the
13255 // stored value. Bitcast it to the aligned type.
13256 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
13257 SDValue &StVal = Ops[Ops.size()-2];
13258 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
13259 }
13260
13261 EVT LoadVT = isLaneOp ? VecTy.getVectorElementType() : AlignedVecTy;
13262 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, Ops, LoadVT,
13263 MemN->getMemOperand());
13264
13265 // Update the uses.
13266 SmallVector<SDValue, 5> NewResults;
13267 for (unsigned i = 0; i < NumResultVecs; ++i)
13268 NewResults.push_back(SDValue(UpdN.getNode(), i));
13269
13270 // If this is an non-standard-aligned LOAD, the first result is the loaded
13271 // value. Bitcast it to the expected result type.
13272 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
13273 SDValue &LdVal = NewResults[0];
13274 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
13275 }
13276
13277 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
13278 DCI.CombineTo(N, NewResults);
13279 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
13280
13281 break;
13282 }
13283 return SDValue();
13284 }
13285
PerformVLDCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13286 static SDValue PerformVLDCombine(SDNode *N,
13287 TargetLowering::DAGCombinerInfo &DCI) {
13288 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13289 return SDValue();
13290
13291 return CombineBaseUpdate(N, DCI);
13292 }
13293
13294 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
13295 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
13296 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
13297 /// return true.
CombineVLDDUP(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13298 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
13299 SelectionDAG &DAG = DCI.DAG;
13300 EVT VT = N->getValueType(0);
13301 // vldN-dup instructions only support 64-bit vectors for N > 1.
13302 if (!VT.is64BitVector())
13303 return false;
13304
13305 // Check if the VDUPLANE operand is a vldN-dup intrinsic.
13306 SDNode *VLD = N->getOperand(0).getNode();
13307 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
13308 return false;
13309 unsigned NumVecs = 0;
13310 unsigned NewOpc = 0;
13311 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
13312 if (IntNo == Intrinsic::arm_neon_vld2lane) {
13313 NumVecs = 2;
13314 NewOpc = ARMISD::VLD2DUP;
13315 } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
13316 NumVecs = 3;
13317 NewOpc = ARMISD::VLD3DUP;
13318 } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
13319 NumVecs = 4;
13320 NewOpc = ARMISD::VLD4DUP;
13321 } else {
13322 return false;
13323 }
13324
13325 // First check that all the vldN-lane uses are VDUPLANEs and that the lane
13326 // numbers match the load.
13327 unsigned VLDLaneNo =
13328 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
13329 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
13330 UI != UE; ++UI) {
13331 // Ignore uses of the chain result.
13332 if (UI.getUse().getResNo() == NumVecs)
13333 continue;
13334 SDNode *User = *UI;
13335 if (User->getOpcode() != ARMISD::VDUPLANE ||
13336 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
13337 return false;
13338 }
13339
13340 // Create the vldN-dup node.
13341 EVT Tys[5];
13342 unsigned n;
13343 for (n = 0; n < NumVecs; ++n)
13344 Tys[n] = VT;
13345 Tys[n] = MVT::Other;
13346 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
13347 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
13348 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
13349 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
13350 Ops, VLDMemInt->getMemoryVT(),
13351 VLDMemInt->getMemOperand());
13352
13353 // Update the uses.
13354 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
13355 UI != UE; ++UI) {
13356 unsigned ResNo = UI.getUse().getResNo();
13357 // Ignore uses of the chain result.
13358 if (ResNo == NumVecs)
13359 continue;
13360 SDNode *User = *UI;
13361 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
13362 }
13363
13364 // Now the vldN-lane intrinsic is dead except for its chain result.
13365 // Update uses of the chain.
13366 std::vector<SDValue> VLDDupResults;
13367 for (unsigned n = 0; n < NumVecs; ++n)
13368 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
13369 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
13370 DCI.CombineTo(VLD, VLDDupResults);
13371
13372 return true;
13373 }
13374
13375 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
13376 /// ARMISD::VDUPLANE.
PerformVDUPLANECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13377 static SDValue PerformVDUPLANECombine(SDNode *N,
13378 TargetLowering::DAGCombinerInfo &DCI) {
13379 SDValue Op = N->getOperand(0);
13380
13381 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
13382 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
13383 if (CombineVLDDUP(N, DCI))
13384 return SDValue(N, 0);
13385
13386 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
13387 // redundant. Ignore bit_converts for now; element sizes are checked below.
13388 while (Op.getOpcode() == ISD::BITCAST)
13389 Op = Op.getOperand(0);
13390 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
13391 return SDValue();
13392
13393 // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
13394 unsigned EltSize = Op.getScalarValueSizeInBits();
13395 // The canonical VMOV for a zero vector uses a 32-bit element size.
13396 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
13397 unsigned EltBits;
13398 if (ARM_AM::decodeVMOVModImm(Imm, EltBits) == 0)
13399 EltSize = 8;
13400 EVT VT = N->getValueType(0);
13401 if (EltSize > VT.getScalarSizeInBits())
13402 return SDValue();
13403
13404 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
13405 }
13406
13407 /// PerformVDUPCombine - Target-specific dag combine xforms for ARMISD::VDUP.
PerformVDUPCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13408 static SDValue PerformVDUPCombine(SDNode *N,
13409 TargetLowering::DAGCombinerInfo &DCI,
13410 const ARMSubtarget *Subtarget) {
13411 SelectionDAG &DAG = DCI.DAG;
13412 SDValue Op = N->getOperand(0);
13413
13414 if (!Subtarget->hasNEON())
13415 return SDValue();
13416
13417 // Match VDUP(LOAD) -> VLD1DUP.
13418 // We match this pattern here rather than waiting for isel because the
13419 // transform is only legal for unindexed loads.
13420 LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode());
13421 if (LD && Op.hasOneUse() && LD->isUnindexed() &&
13422 LD->getMemoryVT() == N->getValueType(0).getVectorElementType()) {
13423 SDValue Ops[] = { LD->getOperand(0), LD->getOperand(1),
13424 DAG.getConstant(LD->getAlignment(), SDLoc(N), MVT::i32) };
13425 SDVTList SDTys = DAG.getVTList(N->getValueType(0), MVT::Other);
13426 SDValue VLDDup = DAG.getMemIntrinsicNode(ARMISD::VLD1DUP, SDLoc(N), SDTys,
13427 Ops, LD->getMemoryVT(),
13428 LD->getMemOperand());
13429 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), VLDDup.getValue(1));
13430 return VLDDup;
13431 }
13432
13433 return SDValue();
13434 }
13435
PerformLOADCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI)13436 static SDValue PerformLOADCombine(SDNode *N,
13437 TargetLowering::DAGCombinerInfo &DCI) {
13438 EVT VT = N->getValueType(0);
13439
13440 // If this is a legal vector load, try to combine it into a VLD1_UPD.
13441 if (ISD::isNormalLoad(N) && VT.isVector() &&
13442 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13443 return CombineBaseUpdate(N, DCI);
13444
13445 return SDValue();
13446 }
13447
13448 // Optimize trunc store (of multiple scalars) to shuffle and store. First,
13449 // pack all of the elements in one place. Next, store to memory in fewer
13450 // chunks.
PerformTruncatingStoreCombine(StoreSDNode * St,SelectionDAG & DAG)13451 static SDValue PerformTruncatingStoreCombine(StoreSDNode *St,
13452 SelectionDAG &DAG) {
13453 SDValue StVal = St->getValue();
13454 EVT VT = StVal.getValueType();
13455 if (!St->isTruncatingStore() || !VT.isVector())
13456 return SDValue();
13457 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13458 EVT StVT = St->getMemoryVT();
13459 unsigned NumElems = VT.getVectorNumElements();
13460 assert(StVT != VT && "Cannot truncate to the same type");
13461 unsigned FromEltSz = VT.getScalarSizeInBits();
13462 unsigned ToEltSz = StVT.getScalarSizeInBits();
13463
13464 // From, To sizes and ElemCount must be pow of two
13465 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz))
13466 return SDValue();
13467
13468 // We are going to use the original vector elt for storing.
13469 // Accumulated smaller vector elements must be a multiple of the store size.
13470 if (0 != (NumElems * FromEltSz) % ToEltSz)
13471 return SDValue();
13472
13473 unsigned SizeRatio = FromEltSz / ToEltSz;
13474 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
13475
13476 // Create a type on which we perform the shuffle.
13477 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
13478 NumElems * SizeRatio);
13479 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13480
13481 SDLoc DL(St);
13482 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
13483 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13484 for (unsigned i = 0; i < NumElems; ++i)
13485 ShuffleVec[i] = DAG.getDataLayout().isBigEndian() ? (i + 1) * SizeRatio - 1
13486 : i * SizeRatio;
13487
13488 // Can't shuffle using an illegal type.
13489 if (!TLI.isTypeLegal(WideVecVT))
13490 return SDValue();
13491
13492 SDValue Shuff = DAG.getVectorShuffle(
13493 WideVecVT, DL, WideVec, DAG.getUNDEF(WideVec.getValueType()), ShuffleVec);
13494 // At this point all of the data is stored at the bottom of the
13495 // register. We now need to save it to mem.
13496
13497 // Find the largest store unit
13498 MVT StoreType = MVT::i8;
13499 for (MVT Tp : MVT::integer_valuetypes()) {
13500 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
13501 StoreType = Tp;
13502 }
13503 // Didn't find a legal store type.
13504 if (!TLI.isTypeLegal(StoreType))
13505 return SDValue();
13506
13507 // Bitcast the original vector into a vector of store-size units
13508 EVT StoreVecVT =
13509 EVT::getVectorVT(*DAG.getContext(), StoreType,
13510 VT.getSizeInBits() / EVT(StoreType).getSizeInBits());
13511 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13512 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
13513 SmallVector<SDValue, 8> Chains;
13514 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
13515 TLI.getPointerTy(DAG.getDataLayout()));
13516 SDValue BasePtr = St->getBasePtr();
13517
13518 // Perform one or more big stores into memory.
13519 unsigned E = (ToEltSz * NumElems) / StoreType.getSizeInBits();
13520 for (unsigned I = 0; I < E; I++) {
13521 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, StoreType,
13522 ShuffWide, DAG.getIntPtrConstant(I, DL));
13523 SDValue Ch =
13524 DAG.getStore(St->getChain(), DL, SubVec, BasePtr, St->getPointerInfo(),
13525 St->getAlignment(), St->getMemOperand()->getFlags());
13526 BasePtr =
13527 DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, Increment);
13528 Chains.push_back(Ch);
13529 }
13530 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
13531 }
13532
13533 // Try taking a single vector store from an truncate (which would otherwise turn
13534 // into an expensive buildvector) and splitting it into a series of narrowing
13535 // stores.
PerformSplittingToNarrowingStores(StoreSDNode * St,SelectionDAG & DAG)13536 static SDValue PerformSplittingToNarrowingStores(StoreSDNode *St,
13537 SelectionDAG &DAG) {
13538 if (!St->isSimple() || St->isTruncatingStore() || !St->isUnindexed())
13539 return SDValue();
13540 SDValue Trunc = St->getValue();
13541 if (Trunc->getOpcode() != ISD::TRUNCATE)
13542 return SDValue();
13543 EVT FromVT = Trunc->getOperand(0).getValueType();
13544 EVT ToVT = Trunc.getValueType();
13545 if (!ToVT.isVector())
13546 return SDValue();
13547 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
13548 EVT ToEltVT = ToVT.getVectorElementType();
13549 EVT FromEltVT = FromVT.getVectorElementType();
13550
13551 unsigned NumElements = 0;
13552 if (FromEltVT == MVT::i32 && (ToEltVT == MVT::i16 || ToEltVT == MVT::i8))
13553 NumElements = 4;
13554 if (FromEltVT == MVT::i16 && ToEltVT == MVT::i8)
13555 NumElements = 8;
13556 if (NumElements == 0 || FromVT.getVectorNumElements() == NumElements ||
13557 FromVT.getVectorNumElements() % NumElements != 0)
13558 return SDValue();
13559
13560 SDLoc DL(St);
13561 // Details about the old store
13562 SDValue Ch = St->getChain();
13563 SDValue BasePtr = St->getBasePtr();
13564 unsigned Alignment = St->getOriginalAlignment();
13565 MachineMemOperand::Flags MMOFlags = St->getMemOperand()->getFlags();
13566 AAMDNodes AAInfo = St->getAAInfo();
13567
13568 EVT NewFromVT = EVT::getVectorVT(*DAG.getContext(), FromEltVT, NumElements);
13569 EVT NewToVT = EVT::getVectorVT(*DAG.getContext(), ToEltVT, NumElements);
13570
13571 SmallVector<SDValue, 4> Stores;
13572 for (unsigned i = 0; i < FromVT.getVectorNumElements() / NumElements; i++) {
13573 unsigned NewOffset = i * NumElements * ToEltVT.getSizeInBits() / 8;
13574 SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);
13575
13576 SDValue Extract =
13577 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewFromVT, Trunc.getOperand(0),
13578 DAG.getConstant(i * NumElements, DL, MVT::i32));
13579 SDValue Store = DAG.getTruncStore(
13580 Ch, DL, Extract, NewPtr, St->getPointerInfo().getWithOffset(NewOffset),
13581 NewToVT, Alignment, MMOFlags, AAInfo);
13582 Stores.push_back(Store);
13583 }
13584 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Stores);
13585 }
13586
13587 /// PerformSTORECombine - Target-specific dag combine xforms for
13588 /// ISD::STORE.
PerformSTORECombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * Subtarget)13589 static SDValue PerformSTORECombine(SDNode *N,
13590 TargetLowering::DAGCombinerInfo &DCI,
13591 const ARMSubtarget *Subtarget) {
13592 StoreSDNode *St = cast<StoreSDNode>(N);
13593 if (St->isVolatile())
13594 return SDValue();
13595 SDValue StVal = St->getValue();
13596 EVT VT = StVal.getValueType();
13597
13598 if (Subtarget->hasNEON())
13599 if (SDValue Store = PerformTruncatingStoreCombine(St, DCI.DAG))
13600 return Store;
13601
13602 if (Subtarget->hasMVEIntegerOps())
13603 if (SDValue NewToken = PerformSplittingToNarrowingStores(St, DCI.DAG))
13604 return NewToken;
13605
13606 if (!ISD::isNormalStore(St))
13607 return SDValue();
13608
13609 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
13610 // ARM stores of arguments in the same cache line.
13611 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
13612 StVal.getNode()->hasOneUse()) {
13613 SelectionDAG &DAG = DCI.DAG;
13614 bool isBigEndian = DAG.getDataLayout().isBigEndian();
13615 SDLoc DL(St);
13616 SDValue BasePtr = St->getBasePtr();
13617 SDValue NewST1 = DAG.getStore(
13618 St->getChain(), DL, StVal.getNode()->getOperand(isBigEndian ? 1 : 0),
13619 BasePtr, St->getPointerInfo(), St->getAlignment(),
13620 St->getMemOperand()->getFlags());
13621
13622 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
13623 DAG.getConstant(4, DL, MVT::i32));
13624 return DAG.getStore(NewST1.getValue(0), DL,
13625 StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
13626 OffsetPtr, St->getPointerInfo(),
13627 std::min(4U, St->getAlignment() / 2),
13628 St->getMemOperand()->getFlags());
13629 }
13630
13631 if (StVal.getValueType() == MVT::i64 &&
13632 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
13633
13634 // Bitcast an i64 store extracted from a vector to f64.
13635 // Otherwise, the i64 value will be legalized to a pair of i32 values.
13636 SelectionDAG &DAG = DCI.DAG;
13637 SDLoc dl(StVal);
13638 SDValue IntVec = StVal.getOperand(0);
13639 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
13640 IntVec.getValueType().getVectorNumElements());
13641 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
13642 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
13643 Vec, StVal.getOperand(1));
13644 dl = SDLoc(N);
13645 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
13646 // Make the DAGCombiner fold the bitcasts.
13647 DCI.AddToWorklist(Vec.getNode());
13648 DCI.AddToWorklist(ExtElt.getNode());
13649 DCI.AddToWorklist(V.getNode());
13650 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
13651 St->getPointerInfo(), St->getAlignment(),
13652 St->getMemOperand()->getFlags(), St->getAAInfo());
13653 }
13654
13655 // If this is a legal vector store, try to combine it into a VST1_UPD.
13656 if (Subtarget->hasNEON() && ISD::isNormalStore(N) && VT.isVector() &&
13657 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
13658 return CombineBaseUpdate(N, DCI);
13659
13660 return SDValue();
13661 }
13662
13663 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
13664 /// can replace combinations of VMUL and VCVT (floating-point to integer)
13665 /// when the VMUL has a constant operand that is a power of 2.
13666 ///
13667 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13668 /// vmul.f32 d16, d17, d16
13669 /// vcvt.s32.f32 d16, d16
13670 /// becomes:
13671 /// vcvt.s32.f32 d16, d16, #3
PerformVCVTCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)13672 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
13673 const ARMSubtarget *Subtarget) {
13674 if (!Subtarget->hasNEON())
13675 return SDValue();
13676
13677 SDValue Op = N->getOperand(0);
13678 if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() ||
13679 Op.getOpcode() != ISD::FMUL)
13680 return SDValue();
13681
13682 SDValue ConstVec = Op->getOperand(1);
13683 if (!isa<BuildVectorSDNode>(ConstVec))
13684 return SDValue();
13685
13686 MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
13687 uint32_t FloatBits = FloatTy.getSizeInBits();
13688 MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
13689 uint32_t IntBits = IntTy.getSizeInBits();
13690 unsigned NumLanes = Op.getValueType().getVectorNumElements();
13691 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13692 // These instructions only exist converting from f32 to i32. We can handle
13693 // smaller integers by generating an extra truncate, but larger ones would
13694 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13695 // these intructions only support v2i32/v4i32 types.
13696 return SDValue();
13697 }
13698
13699 BitVector UndefElements;
13700 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13701 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13702 if (C == -1 || C == 0 || C > 32)
13703 return SDValue();
13704
13705 SDLoc dl(N);
13706 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
13707 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
13708 Intrinsic::arm_neon_vcvtfp2fxu;
13709 SDValue FixConv = DAG.getNode(
13710 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13711 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
13712 DAG.getConstant(C, dl, MVT::i32));
13713
13714 if (IntBits < FloatBits)
13715 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
13716
13717 return FixConv;
13718 }
13719
13720 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
13721 /// can replace combinations of VCVT (integer to floating-point) and VDIV
13722 /// when the VDIV has a constant operand that is a power of 2.
13723 ///
13724 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
13725 /// vcvt.f32.s32 d16, d16
13726 /// vdiv.f32 d16, d17, d16
13727 /// becomes:
13728 /// vcvt.f32.s32 d16, d16, #3
PerformVDIVCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * Subtarget)13729 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
13730 const ARMSubtarget *Subtarget) {
13731 if (!Subtarget->hasNEON())
13732 return SDValue();
13733
13734 SDValue Op = N->getOperand(0);
13735 unsigned OpOpcode = Op.getNode()->getOpcode();
13736 if (!N->getValueType(0).isVector() || !N->getValueType(0).isSimple() ||
13737 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
13738 return SDValue();
13739
13740 SDValue ConstVec = N->getOperand(1);
13741 if (!isa<BuildVectorSDNode>(ConstVec))
13742 return SDValue();
13743
13744 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
13745 uint32_t FloatBits = FloatTy.getSizeInBits();
13746 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
13747 uint32_t IntBits = IntTy.getSizeInBits();
13748 unsigned NumLanes = Op.getValueType().getVectorNumElements();
13749 if (FloatBits != 32 || IntBits > 32 || (NumLanes != 4 && NumLanes != 2)) {
13750 // These instructions only exist converting from i32 to f32. We can handle
13751 // smaller integers by generating an extra extend, but larger ones would
13752 // be lossy. We also can't handle anything other than 2 or 4 lanes, since
13753 // these intructions only support v2i32/v4i32 types.
13754 return SDValue();
13755 }
13756
13757 BitVector UndefElements;
13758 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
13759 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
13760 if (C == -1 || C == 0 || C > 32)
13761 return SDValue();
13762
13763 SDLoc dl(N);
13764 bool isSigned = OpOpcode == ISD::SINT_TO_FP;
13765 SDValue ConvInput = Op.getOperand(0);
13766 if (IntBits < FloatBits)
13767 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
13768 dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
13769 ConvInput);
13770
13771 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
13772 Intrinsic::arm_neon_vcvtfxu2fp;
13773 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
13774 Op.getValueType(),
13775 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
13776 ConvInput, DAG.getConstant(C, dl, MVT::i32));
13777 }
13778
13779 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
PerformIntrinsicCombine(SDNode * N,SelectionDAG & DAG)13780 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
13781 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
13782 switch (IntNo) {
13783 default:
13784 // Don't do anything for most intrinsics.
13785 break;
13786
13787 // Vector shifts: check for immediate versions and lower them.
13788 // Note: This is done during DAG combining instead of DAG legalizing because
13789 // the build_vectors for 64-bit vector element shift counts are generally
13790 // not legal, and it is hard to see their values after they get legalized to
13791 // loads from a constant pool.
13792 case Intrinsic::arm_neon_vshifts:
13793 case Intrinsic::arm_neon_vshiftu:
13794 case Intrinsic::arm_neon_vrshifts:
13795 case Intrinsic::arm_neon_vrshiftu:
13796 case Intrinsic::arm_neon_vrshiftn:
13797 case Intrinsic::arm_neon_vqshifts:
13798 case Intrinsic::arm_neon_vqshiftu:
13799 case Intrinsic::arm_neon_vqshiftsu:
13800 case Intrinsic::arm_neon_vqshiftns:
13801 case Intrinsic::arm_neon_vqshiftnu:
13802 case Intrinsic::arm_neon_vqshiftnsu:
13803 case Intrinsic::arm_neon_vqrshiftns:
13804 case Intrinsic::arm_neon_vqrshiftnu:
13805 case Intrinsic::arm_neon_vqrshiftnsu: {
13806 EVT VT = N->getOperand(1).getValueType();
13807 int64_t Cnt;
13808 unsigned VShiftOpc = 0;
13809
13810 switch (IntNo) {
13811 case Intrinsic::arm_neon_vshifts:
13812 case Intrinsic::arm_neon_vshiftu:
13813 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
13814 VShiftOpc = ARMISD::VSHLIMM;
13815 break;
13816 }
13817 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
13818 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? ARMISD::VSHRsIMM
13819 : ARMISD::VSHRuIMM);
13820 break;
13821 }
13822 return SDValue();
13823
13824 case Intrinsic::arm_neon_vrshifts:
13825 case Intrinsic::arm_neon_vrshiftu:
13826 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
13827 break;
13828 return SDValue();
13829
13830 case Intrinsic::arm_neon_vqshifts:
13831 case Intrinsic::arm_neon_vqshiftu:
13832 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13833 break;
13834 return SDValue();
13835
13836 case Intrinsic::arm_neon_vqshiftsu:
13837 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
13838 break;
13839 llvm_unreachable("invalid shift count for vqshlu intrinsic");
13840
13841 case Intrinsic::arm_neon_vrshiftn:
13842 case Intrinsic::arm_neon_vqshiftns:
13843 case Intrinsic::arm_neon_vqshiftnu:
13844 case Intrinsic::arm_neon_vqshiftnsu:
13845 case Intrinsic::arm_neon_vqrshiftns:
13846 case Intrinsic::arm_neon_vqrshiftnu:
13847 case Intrinsic::arm_neon_vqrshiftnsu:
13848 // Narrowing shifts require an immediate right shift.
13849 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
13850 break;
13851 llvm_unreachable("invalid shift count for narrowing vector shift "
13852 "intrinsic");
13853
13854 default:
13855 llvm_unreachable("unhandled vector shift");
13856 }
13857
13858 switch (IntNo) {
13859 case Intrinsic::arm_neon_vshifts:
13860 case Intrinsic::arm_neon_vshiftu:
13861 // Opcode already set above.
13862 break;
13863 case Intrinsic::arm_neon_vrshifts:
13864 VShiftOpc = ARMISD::VRSHRsIMM;
13865 break;
13866 case Intrinsic::arm_neon_vrshiftu:
13867 VShiftOpc = ARMISD::VRSHRuIMM;
13868 break;
13869 case Intrinsic::arm_neon_vrshiftn:
13870 VShiftOpc = ARMISD::VRSHRNIMM;
13871 break;
13872 case Intrinsic::arm_neon_vqshifts:
13873 VShiftOpc = ARMISD::VQSHLsIMM;
13874 break;
13875 case Intrinsic::arm_neon_vqshiftu:
13876 VShiftOpc = ARMISD::VQSHLuIMM;
13877 break;
13878 case Intrinsic::arm_neon_vqshiftsu:
13879 VShiftOpc = ARMISD::VQSHLsuIMM;
13880 break;
13881 case Intrinsic::arm_neon_vqshiftns:
13882 VShiftOpc = ARMISD::VQSHRNsIMM;
13883 break;
13884 case Intrinsic::arm_neon_vqshiftnu:
13885 VShiftOpc = ARMISD::VQSHRNuIMM;
13886 break;
13887 case Intrinsic::arm_neon_vqshiftnsu:
13888 VShiftOpc = ARMISD::VQSHRNsuIMM;
13889 break;
13890 case Intrinsic::arm_neon_vqrshiftns:
13891 VShiftOpc = ARMISD::VQRSHRNsIMM;
13892 break;
13893 case Intrinsic::arm_neon_vqrshiftnu:
13894 VShiftOpc = ARMISD::VQRSHRNuIMM;
13895 break;
13896 case Intrinsic::arm_neon_vqrshiftnsu:
13897 VShiftOpc = ARMISD::VQRSHRNsuIMM;
13898 break;
13899 }
13900
13901 SDLoc dl(N);
13902 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13903 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
13904 }
13905
13906 case Intrinsic::arm_neon_vshiftins: {
13907 EVT VT = N->getOperand(1).getValueType();
13908 int64_t Cnt;
13909 unsigned VShiftOpc = 0;
13910
13911 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
13912 VShiftOpc = ARMISD::VSLIIMM;
13913 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
13914 VShiftOpc = ARMISD::VSRIIMM;
13915 else {
13916 llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
13917 }
13918
13919 SDLoc dl(N);
13920 return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
13921 N->getOperand(1), N->getOperand(2),
13922 DAG.getConstant(Cnt, dl, MVT::i32));
13923 }
13924
13925 case Intrinsic::arm_neon_vqrshifts:
13926 case Intrinsic::arm_neon_vqrshiftu:
13927 // No immediate versions of these to check for.
13928 break;
13929 }
13930
13931 return SDValue();
13932 }
13933
13934 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
13935 /// lowers them. As with the vector shift intrinsics, this is done during DAG
13936 /// combining instead of DAG legalizing because the build_vectors for 64-bit
13937 /// vector element shift counts are generally not legal, and it is hard to see
13938 /// their values after they get legalized to loads from a constant pool.
PerformShiftCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)13939 static SDValue PerformShiftCombine(SDNode *N,
13940 TargetLowering::DAGCombinerInfo &DCI,
13941 const ARMSubtarget *ST) {
13942 SelectionDAG &DAG = DCI.DAG;
13943 EVT VT = N->getValueType(0);
13944 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
13945 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
13946 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
13947 SDValue N1 = N->getOperand(1);
13948 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
13949 SDValue N0 = N->getOperand(0);
13950 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
13951 DAG.MaskedValueIsZero(N0.getOperand(0),
13952 APInt::getHighBitsSet(32, 16)))
13953 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
13954 }
13955 }
13956
13957 if (ST->isThumb1Only() && N->getOpcode() == ISD::SHL && VT == MVT::i32 &&
13958 N->getOperand(0)->getOpcode() == ISD::AND &&
13959 N->getOperand(0)->hasOneUse()) {
13960 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13961 return SDValue();
13962 // Look for the pattern (shl (and x, AndMask), ShiftAmt). This doesn't
13963 // usually show up because instcombine prefers to canonicalize it to
13964 // (and (shl x, ShiftAmt) (shl AndMask, ShiftAmt)), but the shift can come
13965 // out of GEP lowering in some cases.
13966 SDValue N0 = N->getOperand(0);
13967 ConstantSDNode *ShiftAmtNode = dyn_cast<ConstantSDNode>(N->getOperand(1));
13968 if (!ShiftAmtNode)
13969 return SDValue();
13970 uint32_t ShiftAmt = static_cast<uint32_t>(ShiftAmtNode->getZExtValue());
13971 ConstantSDNode *AndMaskNode = dyn_cast<ConstantSDNode>(N0->getOperand(1));
13972 if (!AndMaskNode)
13973 return SDValue();
13974 uint32_t AndMask = static_cast<uint32_t>(AndMaskNode->getZExtValue());
13975 // Don't transform uxtb/uxth.
13976 if (AndMask == 255 || AndMask == 65535)
13977 return SDValue();
13978 if (isMask_32(AndMask)) {
13979 uint32_t MaskedBits = countLeadingZeros(AndMask);
13980 if (MaskedBits > ShiftAmt) {
13981 SDLoc DL(N);
13982 SDValue SHL = DAG.getNode(ISD::SHL, DL, MVT::i32, N0->getOperand(0),
13983 DAG.getConstant(MaskedBits, DL, MVT::i32));
13984 return DAG.getNode(
13985 ISD::SRL, DL, MVT::i32, SHL,
13986 DAG.getConstant(MaskedBits - ShiftAmt, DL, MVT::i32));
13987 }
13988 }
13989 }
13990
13991 // Nothing to be done for scalar shifts.
13992 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13993 if (!VT.isVector() || !TLI.isTypeLegal(VT))
13994 return SDValue();
13995 if (ST->hasMVEIntegerOps() && VT == MVT::v2i64)
13996 return SDValue();
13997
13998 int64_t Cnt;
13999
14000 switch (N->getOpcode()) {
14001 default: llvm_unreachable("unexpected shift opcode");
14002
14003 case ISD::SHL:
14004 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
14005 SDLoc dl(N);
14006 return DAG.getNode(ARMISD::VSHLIMM, dl, VT, N->getOperand(0),
14007 DAG.getConstant(Cnt, dl, MVT::i32));
14008 }
14009 break;
14010
14011 case ISD::SRA:
14012 case ISD::SRL:
14013 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
14014 unsigned VShiftOpc =
14015 (N->getOpcode() == ISD::SRA ? ARMISD::VSHRsIMM : ARMISD::VSHRuIMM);
14016 SDLoc dl(N);
14017 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
14018 DAG.getConstant(Cnt, dl, MVT::i32));
14019 }
14020 }
14021 return SDValue();
14022 }
14023
14024 // Look for a sign/zero extend of a larger than legal load. This can be split
14025 // into two extending loads, which are simpler to deal with than an arbitrary
14026 // sign extend.
PerformSplittingToWideningLoad(SDNode * N,SelectionDAG & DAG)14027 static SDValue PerformSplittingToWideningLoad(SDNode *N, SelectionDAG &DAG) {
14028 SDValue N0 = N->getOperand(0);
14029 if (N0.getOpcode() != ISD::LOAD)
14030 return SDValue();
14031 LoadSDNode *LD = cast<LoadSDNode>(N0.getNode());
14032 if (!LD->isSimple() || !N0.hasOneUse() || LD->isIndexed() ||
14033 LD->getExtensionType() != ISD::NON_EXTLOAD)
14034 return SDValue();
14035 EVT FromVT = LD->getValueType(0);
14036 EVT ToVT = N->getValueType(0);
14037 if (!ToVT.isVector())
14038 return SDValue();
14039 assert(FromVT.getVectorNumElements() == ToVT.getVectorNumElements());
14040 EVT ToEltVT = ToVT.getVectorElementType();
14041 EVT FromEltVT = FromVT.getVectorElementType();
14042
14043 unsigned NumElements = 0;
14044 if (ToEltVT == MVT::i32 && (FromEltVT == MVT::i16 || FromEltVT == MVT::i8))
14045 NumElements = 4;
14046 if (ToEltVT == MVT::i16 && FromEltVT == MVT::i8)
14047 NumElements = 8;
14048 if (NumElements == 0 ||
14049 FromVT.getVectorNumElements() == NumElements ||
14050 FromVT.getVectorNumElements() % NumElements != 0 ||
14051 !isPowerOf2_32(NumElements))
14052 return SDValue();
14053
14054 SDLoc DL(LD);
14055 // Details about the old load
14056 SDValue Ch = LD->getChain();
14057 SDValue BasePtr = LD->getBasePtr();
14058 unsigned Alignment = LD->getOriginalAlignment();
14059 MachineMemOperand::Flags MMOFlags = LD->getMemOperand()->getFlags();
14060 AAMDNodes AAInfo = LD->getAAInfo();
14061
14062 ISD::LoadExtType NewExtType =
14063 N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
14064 SDValue Offset = DAG.getUNDEF(BasePtr.getValueType());
14065 EVT NewFromVT = FromVT.getHalfNumVectorElementsVT(*DAG.getContext());
14066 EVT NewToVT = ToVT.getHalfNumVectorElementsVT(*DAG.getContext());
14067 unsigned NewOffset = NewFromVT.getSizeInBits() / 8;
14068 SDValue NewPtr = DAG.getObjectPtrOffset(DL, BasePtr, NewOffset);
14069
14070 // Split the load in half, each side of which is extended separately. This
14071 // is good enough, as legalisation will take it from there. They are either
14072 // already legal or they will be split further into something that is
14073 // legal.
14074 SDValue NewLoad1 =
14075 DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, BasePtr, Offset,
14076 LD->getPointerInfo(), NewFromVT, Alignment, MMOFlags, AAInfo);
14077 SDValue NewLoad2 =
14078 DAG.getLoad(ISD::UNINDEXED, NewExtType, NewToVT, DL, Ch, NewPtr, Offset,
14079 LD->getPointerInfo().getWithOffset(NewOffset), NewFromVT,
14080 Alignment, MMOFlags, AAInfo);
14081
14082 SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
14083 SDValue(NewLoad1.getNode(), 1),
14084 SDValue(NewLoad2.getNode(), 1));
14085 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewChain);
14086 return DAG.getNode(ISD::CONCAT_VECTORS, DL, ToVT, NewLoad1, NewLoad2);
14087 }
14088
14089 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
14090 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
PerformExtendCombine(SDNode * N,SelectionDAG & DAG,const ARMSubtarget * ST)14091 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
14092 const ARMSubtarget *ST) {
14093 SDValue N0 = N->getOperand(0);
14094
14095 // Check for sign- and zero-extensions of vector extract operations of 8- and
14096 // 16-bit vector elements. NEON and MVE support these directly. They are
14097 // handled during DAG combining because type legalization will promote them
14098 // to 32-bit types and it is messy to recognize the operations after that.
14099 if ((ST->hasNEON() || ST->hasMVEIntegerOps()) &&
14100 N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
14101 SDValue Vec = N0.getOperand(0);
14102 SDValue Lane = N0.getOperand(1);
14103 EVT VT = N->getValueType(0);
14104 EVT EltVT = N0.getValueType();
14105 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14106
14107 if (VT == MVT::i32 &&
14108 (EltVT == MVT::i8 || EltVT == MVT::i16) &&
14109 TLI.isTypeLegal(Vec.getValueType()) &&
14110 isa<ConstantSDNode>(Lane)) {
14111
14112 unsigned Opc = 0;
14113 switch (N->getOpcode()) {
14114 default: llvm_unreachable("unexpected opcode");
14115 case ISD::SIGN_EXTEND:
14116 Opc = ARMISD::VGETLANEs;
14117 break;
14118 case ISD::ZERO_EXTEND:
14119 case ISD::ANY_EXTEND:
14120 Opc = ARMISD::VGETLANEu;
14121 break;
14122 }
14123 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
14124 }
14125 }
14126
14127 if (ST->hasMVEIntegerOps())
14128 if (SDValue NewLoad = PerformSplittingToWideningLoad(N, DAG))
14129 return NewLoad;
14130
14131 return SDValue();
14132 }
14133
isPowerOf2Constant(SDValue V)14134 static const APInt *isPowerOf2Constant(SDValue V) {
14135 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
14136 if (!C)
14137 return nullptr;
14138 const APInt *CV = &C->getAPIntValue();
14139 return CV->isPowerOf2() ? CV : nullptr;
14140 }
14141
PerformCMOVToBFICombine(SDNode * CMOV,SelectionDAG & DAG) const14142 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
14143 // If we have a CMOV, OR and AND combination such as:
14144 // if (x & CN)
14145 // y |= CM;
14146 //
14147 // And:
14148 // * CN is a single bit;
14149 // * All bits covered by CM are known zero in y
14150 //
14151 // Then we can convert this into a sequence of BFI instructions. This will
14152 // always be a win if CM is a single bit, will always be no worse than the
14153 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
14154 // three bits (due to the extra IT instruction).
14155
14156 SDValue Op0 = CMOV->getOperand(0);
14157 SDValue Op1 = CMOV->getOperand(1);
14158 auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
14159 auto CC = CCNode->getAPIntValue().getLimitedValue();
14160 SDValue CmpZ = CMOV->getOperand(4);
14161
14162 // The compare must be against zero.
14163 if (!isNullConstant(CmpZ->getOperand(1)))
14164 return SDValue();
14165
14166 assert(CmpZ->getOpcode() == ARMISD::CMPZ);
14167 SDValue And = CmpZ->getOperand(0);
14168 if (And->getOpcode() != ISD::AND)
14169 return SDValue();
14170 const APInt *AndC = isPowerOf2Constant(And->getOperand(1));
14171 if (!AndC)
14172 return SDValue();
14173 SDValue X = And->getOperand(0);
14174
14175 if (CC == ARMCC::EQ) {
14176 // We're performing an "equal to zero" compare. Swap the operands so we
14177 // canonicalize on a "not equal to zero" compare.
14178 std::swap(Op0, Op1);
14179 } else {
14180 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
14181 }
14182
14183 if (Op1->getOpcode() != ISD::OR)
14184 return SDValue();
14185
14186 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
14187 if (!OrC)
14188 return SDValue();
14189 SDValue Y = Op1->getOperand(0);
14190
14191 if (Op0 != Y)
14192 return SDValue();
14193
14194 // Now, is it profitable to continue?
14195 APInt OrCI = OrC->getAPIntValue();
14196 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
14197 if (OrCI.countPopulation() > Heuristic)
14198 return SDValue();
14199
14200 // Lastly, can we determine that the bits defined by OrCI
14201 // are zero in Y?
14202 KnownBits Known = DAG.computeKnownBits(Y);
14203 if ((OrCI & Known.Zero) != OrCI)
14204 return SDValue();
14205
14206 // OK, we can do the combine.
14207 SDValue V = Y;
14208 SDLoc dl(X);
14209 EVT VT = X.getValueType();
14210 unsigned BitInX = AndC->logBase2();
14211
14212 if (BitInX != 0) {
14213 // We must shift X first.
14214 X = DAG.getNode(ISD::SRL, dl, VT, X,
14215 DAG.getConstant(BitInX, dl, VT));
14216 }
14217
14218 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
14219 BitInY < NumActiveBits; ++BitInY) {
14220 if (OrCI[BitInY] == 0)
14221 continue;
14222 APInt Mask(VT.getSizeInBits(), 0);
14223 Mask.setBit(BitInY);
14224 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
14225 // Confusingly, the operand is an *inverted* mask.
14226 DAG.getConstant(~Mask, dl, VT));
14227 }
14228
14229 return V;
14230 }
14231
14232 // Given N, the value controlling the conditional branch, search for the loop
14233 // intrinsic, returning it, along with how the value is used. We need to handle
14234 // patterns such as the following:
14235 // (brcond (xor (setcc (loop.decrement), 0, ne), 1), exit)
14236 // (brcond (setcc (loop.decrement), 0, eq), exit)
14237 // (brcond (setcc (loop.decrement), 0, ne), header)
SearchLoopIntrinsic(SDValue N,ISD::CondCode & CC,int & Imm,bool & Negate)14238 static SDValue SearchLoopIntrinsic(SDValue N, ISD::CondCode &CC, int &Imm,
14239 bool &Negate) {
14240 switch (N->getOpcode()) {
14241 default:
14242 break;
14243 case ISD::XOR: {
14244 if (!isa<ConstantSDNode>(N.getOperand(1)))
14245 return SDValue();
14246 if (!cast<ConstantSDNode>(N.getOperand(1))->isOne())
14247 return SDValue();
14248 Negate = !Negate;
14249 return SearchLoopIntrinsic(N.getOperand(0), CC, Imm, Negate);
14250 }
14251 case ISD::SETCC: {
14252 auto *Const = dyn_cast<ConstantSDNode>(N.getOperand(1));
14253 if (!Const)
14254 return SDValue();
14255 if (Const->isNullValue())
14256 Imm = 0;
14257 else if (Const->isOne())
14258 Imm = 1;
14259 else
14260 return SDValue();
14261 CC = cast<CondCodeSDNode>(N.getOperand(2))->get();
14262 return SearchLoopIntrinsic(N->getOperand(0), CC, Imm, Negate);
14263 }
14264 case ISD::INTRINSIC_W_CHAIN: {
14265 unsigned IntOp = cast<ConstantSDNode>(N.getOperand(1))->getZExtValue();
14266 if (IntOp != Intrinsic::test_set_loop_iterations &&
14267 IntOp != Intrinsic::loop_decrement_reg)
14268 return SDValue();
14269 return N;
14270 }
14271 }
14272 return SDValue();
14273 }
14274
PerformHWLoopCombine(SDNode * N,TargetLowering::DAGCombinerInfo & DCI,const ARMSubtarget * ST)14275 static SDValue PerformHWLoopCombine(SDNode *N,
14276 TargetLowering::DAGCombinerInfo &DCI,
14277 const ARMSubtarget *ST) {
14278
14279 // The hwloop intrinsics that we're interested are used for control-flow,
14280 // either for entering or exiting the loop:
14281 // - test.set.loop.iterations will test whether its operand is zero. If it
14282 // is zero, the proceeding branch should not enter the loop.
14283 // - loop.decrement.reg also tests whether its operand is zero. If it is
14284 // zero, the proceeding branch should not branch back to the beginning of
14285 // the loop.
14286 // So here, we need to check that how the brcond is using the result of each
14287 // of the intrinsics to ensure that we're branching to the right place at the
14288 // right time.
14289
14290 ISD::CondCode CC;
14291 SDValue Cond;
14292 int Imm = 1;
14293 bool Negate = false;
14294 SDValue Chain = N->getOperand(0);
14295 SDValue Dest;
14296
14297 if (N->getOpcode() == ISD::BRCOND) {
14298 CC = ISD::SETEQ;
14299 Cond = N->getOperand(1);
14300 Dest = N->getOperand(2);
14301 } else {
14302 assert(N->getOpcode() == ISD::BR_CC && "Expected BRCOND or BR_CC!");
14303 CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14304 Cond = N->getOperand(2);
14305 Dest = N->getOperand(4);
14306 if (auto *Const = dyn_cast<ConstantSDNode>(N->getOperand(3))) {
14307 if (!Const->isOne() && !Const->isNullValue())
14308 return SDValue();
14309 Imm = Const->getZExtValue();
14310 } else
14311 return SDValue();
14312 }
14313
14314 SDValue Int = SearchLoopIntrinsic(Cond, CC, Imm, Negate);
14315 if (!Int)
14316 return SDValue();
14317
14318 if (Negate)
14319 CC = ISD::getSetCCInverse(CC, /* Integer inverse */ MVT::i32);
14320
14321 auto IsTrueIfZero = [](ISD::CondCode CC, int Imm) {
14322 return (CC == ISD::SETEQ && Imm == 0) ||
14323 (CC == ISD::SETNE && Imm == 1) ||
14324 (CC == ISD::SETLT && Imm == 1) ||
14325 (CC == ISD::SETULT && Imm == 1);
14326 };
14327
14328 auto IsFalseIfZero = [](ISD::CondCode CC, int Imm) {
14329 return (CC == ISD::SETEQ && Imm == 1) ||
14330 (CC == ISD::SETNE && Imm == 0) ||
14331 (CC == ISD::SETGT && Imm == 0) ||
14332 (CC == ISD::SETUGT && Imm == 0) ||
14333 (CC == ISD::SETGE && Imm == 1) ||
14334 (CC == ISD::SETUGE && Imm == 1);
14335 };
14336
14337 assert((IsTrueIfZero(CC, Imm) || IsFalseIfZero(CC, Imm)) &&
14338 "unsupported condition");
14339
14340 SDLoc dl(Int);
14341 SelectionDAG &DAG = DCI.DAG;
14342 SDValue Elements = Int.getOperand(2);
14343 unsigned IntOp = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
14344 assert((N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BR)
14345 && "expected single br user");
14346 SDNode *Br = *N->use_begin();
14347 SDValue OtherTarget = Br->getOperand(1);
14348
14349 // Update the unconditional branch to branch to the given Dest.
14350 auto UpdateUncondBr = [](SDNode *Br, SDValue Dest, SelectionDAG &DAG) {
14351 SDValue NewBrOps[] = { Br->getOperand(0), Dest };
14352 SDValue NewBr = DAG.getNode(ISD::BR, SDLoc(Br), MVT::Other, NewBrOps);
14353 DAG.ReplaceAllUsesOfValueWith(SDValue(Br, 0), NewBr);
14354 };
14355
14356 if (IntOp == Intrinsic::test_set_loop_iterations) {
14357 SDValue Res;
14358 // We expect this 'instruction' to branch when the counter is zero.
14359 if (IsTrueIfZero(CC, Imm)) {
14360 SDValue Ops[] = { Chain, Elements, Dest };
14361 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
14362 } else {
14363 // The logic is the reverse of what we need for WLS, so find the other
14364 // basic block target: the target of the proceeding br.
14365 UpdateUncondBr(Br, Dest, DAG);
14366
14367 SDValue Ops[] = { Chain, Elements, OtherTarget };
14368 Res = DAG.getNode(ARMISD::WLS, dl, MVT::Other, Ops);
14369 }
14370 DAG.ReplaceAllUsesOfValueWith(Int.getValue(1), Int.getOperand(0));
14371 return Res;
14372 } else {
14373 SDValue Size = DAG.getTargetConstant(
14374 cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl, MVT::i32);
14375 SDValue Args[] = { Int.getOperand(0), Elements, Size, };
14376 SDValue LoopDec = DAG.getNode(ARMISD::LOOP_DEC, dl,
14377 DAG.getVTList(MVT::i32, MVT::Other), Args);
14378 DAG.ReplaceAllUsesWith(Int.getNode(), LoopDec.getNode());
14379
14380 // We expect this instruction to branch when the count is not zero.
14381 SDValue Target = IsFalseIfZero(CC, Imm) ? Dest : OtherTarget;
14382
14383 // Update the unconditional branch to target the loop preheader if we've
14384 // found the condition has been reversed.
14385 if (Target == OtherTarget)
14386 UpdateUncondBr(Br, Dest, DAG);
14387
14388 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14389 SDValue(LoopDec.getNode(), 1), Chain);
14390
14391 SDValue EndArgs[] = { Chain, SDValue(LoopDec.getNode(), 0), Target };
14392 return DAG.getNode(ARMISD::LE, dl, MVT::Other, EndArgs);
14393 }
14394 return SDValue();
14395 }
14396
14397 /// PerformBRCONDCombine - Target-specific DAG combining for ARMISD::BRCOND.
14398 SDValue
PerformBRCONDCombine(SDNode * N,SelectionDAG & DAG) const14399 ARMTargetLowering::PerformBRCONDCombine(SDNode *N, SelectionDAG &DAG) const {
14400 SDValue Cmp = N->getOperand(4);
14401 if (Cmp.getOpcode() != ARMISD::CMPZ)
14402 // Only looking at NE cases.
14403 return SDValue();
14404
14405 EVT VT = N->getValueType(0);
14406 SDLoc dl(N);
14407 SDValue LHS = Cmp.getOperand(0);
14408 SDValue RHS = Cmp.getOperand(1);
14409 SDValue Chain = N->getOperand(0);
14410 SDValue BB = N->getOperand(1);
14411 SDValue ARMcc = N->getOperand(2);
14412 ARMCC::CondCodes CC =
14413 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
14414
14415 // (brcond Chain BB ne CPSR (cmpz (and (cmov 0 1 CC CPSR Cmp) 1) 0))
14416 // -> (brcond Chain BB CC CPSR Cmp)
14417 if (CC == ARMCC::NE && LHS.getOpcode() == ISD::AND && LHS->hasOneUse() &&
14418 LHS->getOperand(0)->getOpcode() == ARMISD::CMOV &&
14419 LHS->getOperand(0)->hasOneUse()) {
14420 auto *LHS00C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(0));
14421 auto *LHS01C = dyn_cast<ConstantSDNode>(LHS->getOperand(0)->getOperand(1));
14422 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
14423 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
14424 if ((LHS00C && LHS00C->getZExtValue() == 0) &&
14425 (LHS01C && LHS01C->getZExtValue() == 1) &&
14426 (LHS1C && LHS1C->getZExtValue() == 1) &&
14427 (RHSC && RHSC->getZExtValue() == 0)) {
14428 return DAG.getNode(
14429 ARMISD::BRCOND, dl, VT, Chain, BB, LHS->getOperand(0)->getOperand(2),
14430 LHS->getOperand(0)->getOperand(3), LHS->getOperand(0)->getOperand(4));
14431 }
14432 }
14433
14434 return SDValue();
14435 }
14436
14437 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
14438 SDValue
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG) const14439 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
14440 SDValue Cmp = N->getOperand(4);
14441 if (Cmp.getOpcode() != ARMISD::CMPZ)
14442 // Only looking at EQ and NE cases.
14443 return SDValue();
14444
14445 EVT VT = N->getValueType(0);
14446 SDLoc dl(N);
14447 SDValue LHS = Cmp.getOperand(0);
14448 SDValue RHS = Cmp.getOperand(1);
14449 SDValue FalseVal = N->getOperand(0);
14450 SDValue TrueVal = N->getOperand(1);
14451 SDValue ARMcc = N->getOperand(2);
14452 ARMCC::CondCodes CC =
14453 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
14454
14455 // BFI is only available on V6T2+.
14456 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
14457 SDValue R = PerformCMOVToBFICombine(N, DAG);
14458 if (R)
14459 return R;
14460 }
14461
14462 // Simplify
14463 // mov r1, r0
14464 // cmp r1, x
14465 // mov r0, y
14466 // moveq r0, x
14467 // to
14468 // cmp r0, x
14469 // movne r0, y
14470 //
14471 // mov r1, r0
14472 // cmp r1, x
14473 // mov r0, x
14474 // movne r0, y
14475 // to
14476 // cmp r0, x
14477 // movne r0, y
14478 /// FIXME: Turn this into a target neutral optimization?
14479 SDValue Res;
14480 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
14481 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
14482 N->getOperand(3), Cmp);
14483 } else if (CC == ARMCC::EQ && TrueVal == RHS) {
14484 SDValue ARMcc;
14485 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
14486 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
14487 N->getOperand(3), NewCmp);
14488 }
14489
14490 // (cmov F T ne CPSR (cmpz (cmov 0 1 CC CPSR Cmp) 0))
14491 // -> (cmov F T CC CPSR Cmp)
14492 if (CC == ARMCC::NE && LHS.getOpcode() == ARMISD::CMOV && LHS->hasOneUse()) {
14493 auto *LHS0C = dyn_cast<ConstantSDNode>(LHS->getOperand(0));
14494 auto *LHS1C = dyn_cast<ConstantSDNode>(LHS->getOperand(1));
14495 auto *RHSC = dyn_cast<ConstantSDNode>(RHS);
14496 if ((LHS0C && LHS0C->getZExtValue() == 0) &&
14497 (LHS1C && LHS1C->getZExtValue() == 1) &&
14498 (RHSC && RHSC->getZExtValue() == 0)) {
14499 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
14500 LHS->getOperand(2), LHS->getOperand(3),
14501 LHS->getOperand(4));
14502 }
14503 }
14504
14505 if (!VT.isInteger())
14506 return SDValue();
14507
14508 // Materialize a boolean comparison for integers so we can avoid branching.
14509 if (isNullConstant(FalseVal)) {
14510 if (CC == ARMCC::EQ && isOneConstant(TrueVal)) {
14511 if (!Subtarget->isThumb1Only() && Subtarget->hasV5TOps()) {
14512 // If x == y then x - y == 0 and ARM's CLZ will return 32, shifting it
14513 // right 5 bits will make that 32 be 1, otherwise it will be 0.
14514 // CMOV 0, 1, ==, (CMPZ x, y) -> SRL (CTLZ (SUB x, y)), 5
14515 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
14516 Res = DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::CTLZ, dl, VT, Sub),
14517 DAG.getConstant(5, dl, MVT::i32));
14518 } else {
14519 // CMOV 0, 1, ==, (CMPZ x, y) ->
14520 // (ADDCARRY (SUB x, y), t:0, t:1)
14521 // where t = (SUBCARRY 0, (SUB x, y), 0)
14522 //
14523 // The SUBCARRY computes 0 - (x - y) and this will give a borrow when
14524 // x != y. In other words, a carry C == 1 when x == y, C == 0
14525 // otherwise.
14526 // The final ADDCARRY computes
14527 // x - y + (0 - (x - y)) + C == C
14528 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, LHS, RHS);
14529 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
14530 SDValue Neg = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, Sub);
14531 // ISD::SUBCARRY returns a borrow but we want the carry here
14532 // actually.
14533 SDValue Carry =
14534 DAG.getNode(ISD::SUB, dl, MVT::i32,
14535 DAG.getConstant(1, dl, MVT::i32), Neg.getValue(1));
14536 Res = DAG.getNode(ISD::ADDCARRY, dl, VTs, Sub, Neg, Carry);
14537 }
14538 } else if (CC == ARMCC::NE && !isNullConstant(RHS) &&
14539 (!Subtarget->isThumb1Only() || isPowerOf2Constant(TrueVal))) {
14540 // This seems pointless but will allow us to combine it further below.
14541 // CMOV 0, z, !=, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14542 SDValue Sub =
14543 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
14544 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
14545 Sub.getValue(1), SDValue());
14546 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, TrueVal, ARMcc,
14547 N->getOperand(3), CPSRGlue.getValue(1));
14548 FalseVal = Sub;
14549 }
14550 } else if (isNullConstant(TrueVal)) {
14551 if (CC == ARMCC::EQ && !isNullConstant(RHS) &&
14552 (!Subtarget->isThumb1Only() || isPowerOf2Constant(FalseVal))) {
14553 // This seems pointless but will allow us to combine it further below
14554 // Note that we change == for != as this is the dual for the case above.
14555 // CMOV z, 0, ==, (CMPZ x, y) -> CMOV (SUBS x, y), z, !=, (SUBS x, y):1
14556 SDValue Sub =
14557 DAG.getNode(ARMISD::SUBS, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS);
14558 SDValue CPSRGlue = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
14559 Sub.getValue(1), SDValue());
14560 Res = DAG.getNode(ARMISD::CMOV, dl, VT, Sub, FalseVal,
14561 DAG.getConstant(ARMCC::NE, dl, MVT::i32),
14562 N->getOperand(3), CPSRGlue.getValue(1));
14563 FalseVal = Sub;
14564 }
14565 }
14566
14567 // On Thumb1, the DAG above may be further combined if z is a power of 2
14568 // (z == 2 ^ K).
14569 // CMOV (SUBS x, y), z, !=, (SUBS x, y):1 ->
14570 // t1 = (USUBO (SUB x, y), 1)
14571 // t2 = (SUBCARRY (SUB x, y), t1:0, t1:1)
14572 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14573 //
14574 // This also handles the special case of comparing against zero; it's
14575 // essentially, the same pattern, except there's no SUBS:
14576 // CMOV x, z, !=, (CMPZ x, 0) ->
14577 // t1 = (USUBO x, 1)
14578 // t2 = (SUBCARRY x, t1:0, t1:1)
14579 // Result = if K != 0 then (SHL t2:0, K) else t2:0
14580 const APInt *TrueConst;
14581 if (Subtarget->isThumb1Only() && CC == ARMCC::NE &&
14582 ((FalseVal.getOpcode() == ARMISD::SUBS &&
14583 FalseVal.getOperand(0) == LHS && FalseVal.getOperand(1) == RHS) ||
14584 (FalseVal == LHS && isNullConstant(RHS))) &&
14585 (TrueConst = isPowerOf2Constant(TrueVal))) {
14586 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
14587 unsigned ShiftAmount = TrueConst->logBase2();
14588 if (ShiftAmount)
14589 TrueVal = DAG.getConstant(1, dl, VT);
14590 SDValue Subc = DAG.getNode(ISD::USUBO, dl, VTs, FalseVal, TrueVal);
14591 Res = DAG.getNode(ISD::SUBCARRY, dl, VTs, FalseVal, Subc, Subc.getValue(1));
14592
14593 if (ShiftAmount)
14594 Res = DAG.getNode(ISD::SHL, dl, VT, Res,
14595 DAG.getConstant(ShiftAmount, dl, MVT::i32));
14596 }
14597
14598 if (Res.getNode()) {
14599 KnownBits Known = DAG.computeKnownBits(SDValue(N,0));
14600 // Capture demanded bits information that would be otherwise lost.
14601 if (Known.Zero == 0xfffffffe)
14602 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
14603 DAG.getValueType(MVT::i1));
14604 else if (Known.Zero == 0xffffff00)
14605 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
14606 DAG.getValueType(MVT::i8));
14607 else if (Known.Zero == 0xffff0000)
14608 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
14609 DAG.getValueType(MVT::i16));
14610 }
14611
14612 return Res;
14613 }
14614
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const14615 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
14616 DAGCombinerInfo &DCI) const {
14617 switch (N->getOpcode()) {
14618 default: break;
14619 case ISD::ABS: return PerformABSCombine(N, DCI, Subtarget);
14620 case ARMISD::ADDE: return PerformADDECombine(N, DCI, Subtarget);
14621 case ARMISD::UMLAL: return PerformUMLALCombine(N, DCI.DAG, Subtarget);
14622 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
14623 case ISD::SUB: return PerformSUBCombine(N, DCI, Subtarget);
14624 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
14625 case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
14626 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
14627 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
14628 case ISD::BRCOND:
14629 case ISD::BR_CC: return PerformHWLoopCombine(N, DCI, Subtarget);
14630 case ARMISD::ADDC:
14631 case ARMISD::SUBC: return PerformAddcSubcCombine(N, DCI, Subtarget);
14632 case ARMISD::SUBE: return PerformAddeSubeCombine(N, DCI, Subtarget);
14633 case ARMISD::BFI: return PerformBFICombine(N, DCI);
14634 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
14635 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
14636 case ISD::STORE: return PerformSTORECombine(N, DCI, Subtarget);
14637 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
14638 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
14639 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
14640 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
14641 case ARMISD::VDUP: return PerformVDUPCombine(N, DCI, Subtarget);
14642 case ISD::FP_TO_SINT:
14643 case ISD::FP_TO_UINT:
14644 return PerformVCVTCombine(N, DCI.DAG, Subtarget);
14645 case ISD::FDIV:
14646 return PerformVDIVCombine(N, DCI.DAG, Subtarget);
14647 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
14648 case ISD::SHL:
14649 case ISD::SRA:
14650 case ISD::SRL:
14651 return PerformShiftCombine(N, DCI, Subtarget);
14652 case ISD::SIGN_EXTEND:
14653 case ISD::ZERO_EXTEND:
14654 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
14655 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
14656 case ARMISD::BRCOND: return PerformBRCONDCombine(N, DCI.DAG);
14657 case ISD::LOAD: return PerformLOADCombine(N, DCI);
14658 case ARMISD::VLD1DUP:
14659 case ARMISD::VLD2DUP:
14660 case ARMISD::VLD3DUP:
14661 case ARMISD::VLD4DUP:
14662 return PerformVLDCombine(N, DCI);
14663 case ARMISD::BUILD_VECTOR:
14664 return PerformARMBUILD_VECTORCombine(N, DCI);
14665 case ARMISD::PREDICATE_CAST:
14666 return PerformPREDICATE_CASTCombine(N, DCI);
14667 case ARMISD::VCMP:
14668 return PerformVCMPCombine(N, DCI, Subtarget);
14669 case ARMISD::SMULWB: {
14670 unsigned BitWidth = N->getValueType(0).getSizeInBits();
14671 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
14672 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
14673 return SDValue();
14674 break;
14675 }
14676 case ARMISD::SMULWT: {
14677 unsigned BitWidth = N->getValueType(0).getSizeInBits();
14678 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
14679 if (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI))
14680 return SDValue();
14681 break;
14682 }
14683 case ARMISD::SMLALBB:
14684 case ARMISD::QADD16b:
14685 case ARMISD::QSUB16b: {
14686 unsigned BitWidth = N->getValueType(0).getSizeInBits();
14687 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16);
14688 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
14689 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
14690 return SDValue();
14691 break;
14692 }
14693 case ARMISD::SMLALBT: {
14694 unsigned LowWidth = N->getOperand(0).getValueType().getSizeInBits();
14695 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
14696 unsigned HighWidth = N->getOperand(1).getValueType().getSizeInBits();
14697 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
14698 if ((SimplifyDemandedBits(N->getOperand(0), LowMask, DCI)) ||
14699 (SimplifyDemandedBits(N->getOperand(1), HighMask, DCI)))
14700 return SDValue();
14701 break;
14702 }
14703 case ARMISD::SMLALTB: {
14704 unsigned HighWidth = N->getOperand(0).getValueType().getSizeInBits();
14705 APInt HighMask = APInt::getHighBitsSet(HighWidth, 16);
14706 unsigned LowWidth = N->getOperand(1).getValueType().getSizeInBits();
14707 APInt LowMask = APInt::getLowBitsSet(LowWidth, 16);
14708 if ((SimplifyDemandedBits(N->getOperand(0), HighMask, DCI)) ||
14709 (SimplifyDemandedBits(N->getOperand(1), LowMask, DCI)))
14710 return SDValue();
14711 break;
14712 }
14713 case ARMISD::SMLALTT: {
14714 unsigned BitWidth = N->getValueType(0).getSizeInBits();
14715 APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 16);
14716 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
14717 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
14718 return SDValue();
14719 break;
14720 }
14721 case ARMISD::QADD8b:
14722 case ARMISD::QSUB8b: {
14723 unsigned BitWidth = N->getValueType(0).getSizeInBits();
14724 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8);
14725 if ((SimplifyDemandedBits(N->getOperand(0), DemandedMask, DCI)) ||
14726 (SimplifyDemandedBits(N->getOperand(1), DemandedMask, DCI)))
14727 return SDValue();
14728 break;
14729 }
14730 case ISD::INTRINSIC_VOID:
14731 case ISD::INTRINSIC_W_CHAIN:
14732 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14733 case Intrinsic::arm_neon_vld1:
14734 case Intrinsic::arm_neon_vld1x2:
14735 case Intrinsic::arm_neon_vld1x3:
14736 case Intrinsic::arm_neon_vld1x4:
14737 case Intrinsic::arm_neon_vld2:
14738 case Intrinsic::arm_neon_vld3:
14739 case Intrinsic::arm_neon_vld4:
14740 case Intrinsic::arm_neon_vld2lane:
14741 case Intrinsic::arm_neon_vld3lane:
14742 case Intrinsic::arm_neon_vld4lane:
14743 case Intrinsic::arm_neon_vld2dup:
14744 case Intrinsic::arm_neon_vld3dup:
14745 case Intrinsic::arm_neon_vld4dup:
14746 case Intrinsic::arm_neon_vst1:
14747 case Intrinsic::arm_neon_vst1x2:
14748 case Intrinsic::arm_neon_vst1x3:
14749 case Intrinsic::arm_neon_vst1x4:
14750 case Intrinsic::arm_neon_vst2:
14751 case Intrinsic::arm_neon_vst3:
14752 case Intrinsic::arm_neon_vst4:
14753 case Intrinsic::arm_neon_vst2lane:
14754 case Intrinsic::arm_neon_vst3lane:
14755 case Intrinsic::arm_neon_vst4lane:
14756 return PerformVLDCombine(N, DCI);
14757 default: break;
14758 }
14759 break;
14760 }
14761 return SDValue();
14762 }
14763
isDesirableToTransformToIntegerOp(unsigned Opc,EVT VT) const14764 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
14765 EVT VT) const {
14766 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
14767 }
14768
allowsMisalignedMemoryAccesses(EVT VT,unsigned,unsigned Alignment,MachineMemOperand::Flags,bool * Fast) const14769 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned,
14770 unsigned Alignment,
14771 MachineMemOperand::Flags,
14772 bool *Fast) const {
14773 // Depends what it gets converted into if the type is weird.
14774 if (!VT.isSimple())
14775 return false;
14776
14777 // The AllowsUnaligned flag models the SCTLR.A setting in ARM cpus
14778 bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
14779 auto Ty = VT.getSimpleVT().SimpleTy;
14780
14781 if (Ty == MVT::i8 || Ty == MVT::i16 || Ty == MVT::i32) {
14782 // Unaligned access can use (for example) LRDB, LRDH, LDR
14783 if (AllowsUnaligned) {
14784 if (Fast)
14785 *Fast = Subtarget->hasV7Ops();
14786 return true;
14787 }
14788 }
14789
14790 if (Ty == MVT::f64 || Ty == MVT::v2f64) {
14791 // For any little-endian targets with neon, we can support unaligned ld/st
14792 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
14793 // A big-endian target may also explicitly support unaligned accesses
14794 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
14795 if (Fast)
14796 *Fast = true;
14797 return true;
14798 }
14799 }
14800
14801 if (!Subtarget->hasMVEIntegerOps())
14802 return false;
14803
14804 // These are for predicates
14805 if ((Ty == MVT::v16i1 || Ty == MVT::v8i1 || Ty == MVT::v4i1)) {
14806 if (Fast)
14807 *Fast = true;
14808 return true;
14809 }
14810
14811 // These are for truncated stores/narrowing loads. They are fine so long as
14812 // the alignment is at least the size of the item being loaded
14813 if ((Ty == MVT::v4i8 || Ty == MVT::v8i8 || Ty == MVT::v4i16) &&
14814 Alignment >= VT.getScalarSizeInBits() / 8) {
14815 if (Fast)
14816 *Fast = true;
14817 return true;
14818 }
14819
14820 // In little-endian MVE, the store instructions VSTRB.U8, VSTRH.U16 and
14821 // VSTRW.U32 all store the vector register in exactly the same format, and
14822 // differ only in the range of their immediate offset field and the required
14823 // alignment. So there is always a store that can be used, regardless of
14824 // actual type.
14825 //
14826 // For big endian, that is not the case. But can still emit a (VSTRB.U8;
14827 // VREV64.8) pair and get the same effect. This will likely be better than
14828 // aligning the vector through the stack.
14829 if (Ty == MVT::v16i8 || Ty == MVT::v8i16 || Ty == MVT::v8f16 ||
14830 Ty == MVT::v4i32 || Ty == MVT::v4f32 || Ty == MVT::v2i64 ||
14831 Ty == MVT::v2f64) {
14832 if (Fast)
14833 *Fast = true;
14834 return true;
14835 }
14836
14837 return false;
14838 }
14839
memOpAlign(unsigned DstAlign,unsigned SrcAlign,unsigned AlignCheck)14840 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
14841 unsigned AlignCheck) {
14842 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
14843 (DstAlign == 0 || DstAlign % AlignCheck == 0));
14844 }
14845
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool IsMemset,bool ZeroMemset,bool MemcpyStrSrc,const AttributeList & FuncAttributes) const14846 EVT ARMTargetLowering::getOptimalMemOpType(
14847 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
14848 bool ZeroMemset, bool MemcpyStrSrc,
14849 const AttributeList &FuncAttributes) const {
14850 // See if we can use NEON instructions for this...
14851 if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
14852 !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
14853 bool Fast;
14854 if (Size >= 16 &&
14855 (memOpAlign(SrcAlign, DstAlign, 16) ||
14856 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1,
14857 MachineMemOperand::MONone, &Fast) &&
14858 Fast))) {
14859 return MVT::v2f64;
14860 } else if (Size >= 8 &&
14861 (memOpAlign(SrcAlign, DstAlign, 8) ||
14862 (allowsMisalignedMemoryAccesses(
14863 MVT::f64, 0, 1, MachineMemOperand::MONone, &Fast) &&
14864 Fast))) {
14865 return MVT::f64;
14866 }
14867 }
14868
14869 // Let the target-independent logic figure it out.
14870 return MVT::Other;
14871 }
14872
14873 // 64-bit integers are split into their high and low parts and held in two
14874 // different registers, so the trunc is free since the low register can just
14875 // be used.
isTruncateFree(Type * SrcTy,Type * DstTy) const14876 bool ARMTargetLowering::isTruncateFree(Type *SrcTy, Type *DstTy) const {
14877 if (!SrcTy->isIntegerTy() || !DstTy->isIntegerTy())
14878 return false;
14879 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();
14880 unsigned DestBits = DstTy->getPrimitiveSizeInBits();
14881 return (SrcBits == 64 && DestBits == 32);
14882 }
14883
isTruncateFree(EVT SrcVT,EVT DstVT) const14884 bool ARMTargetLowering::isTruncateFree(EVT SrcVT, EVT DstVT) const {
14885 if (SrcVT.isVector() || DstVT.isVector() || !SrcVT.isInteger() ||
14886 !DstVT.isInteger())
14887 return false;
14888 unsigned SrcBits = SrcVT.getSizeInBits();
14889 unsigned DestBits = DstVT.getSizeInBits();
14890 return (SrcBits == 64 && DestBits == 32);
14891 }
14892
isZExtFree(SDValue Val,EVT VT2) const14893 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
14894 if (Val.getOpcode() != ISD::LOAD)
14895 return false;
14896
14897 EVT VT1 = Val.getValueType();
14898 if (!VT1.isSimple() || !VT1.isInteger() ||
14899 !VT2.isSimple() || !VT2.isInteger())
14900 return false;
14901
14902 switch (VT1.getSimpleVT().SimpleTy) {
14903 default: break;
14904 case MVT::i1:
14905 case MVT::i8:
14906 case MVT::i16:
14907 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
14908 return true;
14909 }
14910
14911 return false;
14912 }
14913
isFNegFree(EVT VT) const14914 bool ARMTargetLowering::isFNegFree(EVT VT) const {
14915 if (!VT.isSimple())
14916 return false;
14917
14918 // There are quite a few FP16 instructions (e.g. VNMLA, VNMLS, etc.) that
14919 // negate values directly (fneg is free). So, we don't want to let the DAG
14920 // combiner rewrite fneg into xors and some other instructions. For f16 and
14921 // FullFP16 argument passing, some bitcast nodes may be introduced,
14922 // triggering this DAG combine rewrite, so we are avoiding that with this.
14923 switch (VT.getSimpleVT().SimpleTy) {
14924 default: break;
14925 case MVT::f16:
14926 return Subtarget->hasFullFP16();
14927 }
14928
14929 return false;
14930 }
14931
14932 /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth
14933 /// of the vector elements.
areExtractExts(Value * Ext1,Value * Ext2)14934 static bool areExtractExts(Value *Ext1, Value *Ext2) {
14935 auto areExtDoubled = [](Instruction *Ext) {
14936 return Ext->getType()->getScalarSizeInBits() ==
14937 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits();
14938 };
14939
14940 if (!match(Ext1, m_ZExtOrSExt(m_Value())) ||
14941 !match(Ext2, m_ZExtOrSExt(m_Value())) ||
14942 !areExtDoubled(cast<Instruction>(Ext1)) ||
14943 !areExtDoubled(cast<Instruction>(Ext2)))
14944 return false;
14945
14946 return true;
14947 }
14948
14949 /// Check if sinking \p I's operands to I's basic block is profitable, because
14950 /// the operands can be folded into a target instruction, e.g.
14951 /// sext/zext can be folded into vsubl.
shouldSinkOperands(Instruction * I,SmallVectorImpl<Use * > & Ops) const14952 bool ARMTargetLowering::shouldSinkOperands(Instruction *I,
14953 SmallVectorImpl<Use *> &Ops) const {
14954 if (!I->getType()->isVectorTy())
14955 return false;
14956
14957 if (Subtarget->hasNEON()) {
14958 switch (I->getOpcode()) {
14959 case Instruction::Sub:
14960 case Instruction::Add: {
14961 if (!areExtractExts(I->getOperand(0), I->getOperand(1)))
14962 return false;
14963 Ops.push_back(&I->getOperandUse(0));
14964 Ops.push_back(&I->getOperandUse(1));
14965 return true;
14966 }
14967 default:
14968 return false;
14969 }
14970 }
14971
14972 if (!Subtarget->hasMVEIntegerOps())
14973 return false;
14974
14975 auto IsSinker = [](Instruction *I, int Operand) {
14976 switch (I->getOpcode()) {
14977 case Instruction::Add:
14978 case Instruction::Mul:
14979 case Instruction::ICmp:
14980 return true;
14981 case Instruction::Sub:
14982 case Instruction::Shl:
14983 case Instruction::LShr:
14984 case Instruction::AShr:
14985 return Operand == 1;
14986 default:
14987 return false;
14988 }
14989 };
14990
14991 int Op = 0;
14992 if (!isa<ShuffleVectorInst>(I->getOperand(Op)))
14993 Op = 1;
14994 if (!IsSinker(I, Op))
14995 return false;
14996 if (!match(I->getOperand(Op),
14997 m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_ZeroInt()),
14998 m_Undef(), m_Zero()))) {
14999 return false;
15000 }
15001 Instruction *Shuffle = cast<Instruction>(I->getOperand(Op));
15002 // All uses of the shuffle should be sunk to avoid duplicating it across gpr
15003 // and vector registers
15004 for (Use &U : Shuffle->uses()) {
15005 Instruction *Insn = cast<Instruction>(U.getUser());
15006 if (!IsSinker(Insn, U.getOperandNo()))
15007 return false;
15008 }
15009 Ops.push_back(&Shuffle->getOperandUse(0));
15010 Ops.push_back(&I->getOperandUse(Op));
15011 return true;
15012 }
15013
isVectorLoadExtDesirable(SDValue ExtVal) const15014 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
15015 EVT VT = ExtVal.getValueType();
15016
15017 if (!isTypeLegal(VT))
15018 return false;
15019
15020 if (auto *Ld = dyn_cast<MaskedLoadSDNode>(ExtVal.getOperand(0))) {
15021 if (Ld->isExpandingLoad())
15022 return false;
15023 }
15024
15025 // Don't create a loadext if we can fold the extension into a wide/long
15026 // instruction.
15027 // If there's more than one user instruction, the loadext is desirable no
15028 // matter what. There can be two uses by the same instruction.
15029 if (ExtVal->use_empty() ||
15030 !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
15031 return true;
15032
15033 SDNode *U = *ExtVal->use_begin();
15034 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
15035 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHLIMM))
15036 return false;
15037
15038 return true;
15039 }
15040
allowTruncateForTailCall(Type * Ty1,Type * Ty2) const15041 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
15042 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15043 return false;
15044
15045 if (!isTypeLegal(EVT::getEVT(Ty1)))
15046 return false;
15047
15048 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
15049
15050 // Assuming the caller doesn't have a zeroext or signext return parameter,
15051 // truncation all the way down to i1 is valid.
15052 return true;
15053 }
15054
getScalingFactorCost(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS) const15055 int ARMTargetLowering::getScalingFactorCost(const DataLayout &DL,
15056 const AddrMode &AM, Type *Ty,
15057 unsigned AS) const {
15058 if (isLegalAddressingMode(DL, AM, Ty, AS)) {
15059 if (Subtarget->hasFPAO())
15060 return AM.Scale < 0 ? 1 : 0; // positive offsets execute faster
15061 return 0;
15062 }
15063 return -1;
15064 }
15065
15066 /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
15067 /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
15068 /// expanded to FMAs when this method returns true, otherwise fmuladd is
15069 /// expanded to fmul + fadd.
15070 ///
15071 /// ARM supports both fused and unfused multiply-add operations; we already
15072 /// lower a pair of fmul and fadd to the latter so it's not clear that there
15073 /// would be a gain or that the gain would be worthwhile enough to risk
15074 /// correctness bugs.
15075 ///
15076 /// For MVE, we set this to true as it helps simplify the need for some
15077 /// patterns (and we don't have the non-fused floating point instruction).
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const15078 bool ARMTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15079 EVT VT) const {
15080 if (!VT.isSimple())
15081 return false;
15082
15083 switch (VT.getSimpleVT().SimpleTy) {
15084 case MVT::v4f32:
15085 case MVT::v8f16:
15086 return Subtarget->hasMVEFloatOps();
15087 case MVT::f16:
15088 return Subtarget->useFPVFMx16();
15089 case MVT::f32:
15090 return Subtarget->useFPVFMx();
15091 case MVT::f64:
15092 return Subtarget->useFPVFMx64();
15093 default:
15094 break;
15095 }
15096
15097 return false;
15098 }
15099
isLegalT1AddressImmediate(int64_t V,EVT VT)15100 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
15101 if (V < 0)
15102 return false;
15103
15104 unsigned Scale = 1;
15105 switch (VT.getSimpleVT().SimpleTy) {
15106 case MVT::i1:
15107 case MVT::i8:
15108 // Scale == 1;
15109 break;
15110 case MVT::i16:
15111 // Scale == 2;
15112 Scale = 2;
15113 break;
15114 default:
15115 // On thumb1 we load most things (i32, i64, floats, etc) with a LDR
15116 // Scale == 4;
15117 Scale = 4;
15118 break;
15119 }
15120
15121 if ((V & (Scale - 1)) != 0)
15122 return false;
15123 return isUInt<5>(V / Scale);
15124 }
15125
isLegalT2AddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)15126 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
15127 const ARMSubtarget *Subtarget) {
15128 if (!VT.isInteger() && !VT.isFloatingPoint())
15129 return false;
15130 if (VT.isVector() && Subtarget->hasNEON())
15131 return false;
15132 if (VT.isVector() && VT.isFloatingPoint() && Subtarget->hasMVEIntegerOps() &&
15133 !Subtarget->hasMVEFloatOps())
15134 return false;
15135
15136 bool IsNeg = false;
15137 if (V < 0) {
15138 IsNeg = true;
15139 V = -V;
15140 }
15141
15142 unsigned NumBytes = std::max((unsigned)VT.getSizeInBits() / 8, 1U);
15143
15144 // MVE: size * imm7
15145 if (VT.isVector() && Subtarget->hasMVEIntegerOps()) {
15146 switch (VT.getSimpleVT().getVectorElementType().SimpleTy) {
15147 case MVT::i32:
15148 case MVT::f32:
15149 return isShiftedUInt<7,2>(V);
15150 case MVT::i16:
15151 case MVT::f16:
15152 return isShiftedUInt<7,1>(V);
15153 case MVT::i8:
15154 return isUInt<7>(V);
15155 default:
15156 return false;
15157 }
15158 }
15159
15160 // half VLDR: 2 * imm8
15161 if (VT.isFloatingPoint() && NumBytes == 2 && Subtarget->hasFPRegs16())
15162 return isShiftedUInt<8, 1>(V);
15163 // VLDR and LDRD: 4 * imm8
15164 if ((VT.isFloatingPoint() && Subtarget->hasVFP2Base()) || NumBytes == 8)
15165 return isShiftedUInt<8, 2>(V);
15166
15167 if (NumBytes == 1 || NumBytes == 2 || NumBytes == 4) {
15168 // + imm12 or - imm8
15169 if (IsNeg)
15170 return isUInt<8>(V);
15171 return isUInt<12>(V);
15172 }
15173
15174 return false;
15175 }
15176
15177 /// isLegalAddressImmediate - Return true if the integer value can be used
15178 /// as the offset of the target addressing mode for load / store of the
15179 /// given type.
isLegalAddressImmediate(int64_t V,EVT VT,const ARMSubtarget * Subtarget)15180 static bool isLegalAddressImmediate(int64_t V, EVT VT,
15181 const ARMSubtarget *Subtarget) {
15182 if (V == 0)
15183 return true;
15184
15185 if (!VT.isSimple())
15186 return false;
15187
15188 if (Subtarget->isThumb1Only())
15189 return isLegalT1AddressImmediate(V, VT);
15190 else if (Subtarget->isThumb2())
15191 return isLegalT2AddressImmediate(V, VT, Subtarget);
15192
15193 // ARM mode.
15194 if (V < 0)
15195 V = - V;
15196 switch (VT.getSimpleVT().SimpleTy) {
15197 default: return false;
15198 case MVT::i1:
15199 case MVT::i8:
15200 case MVT::i32:
15201 // +- imm12
15202 return isUInt<12>(V);
15203 case MVT::i16:
15204 // +- imm8
15205 return isUInt<8>(V);
15206 case MVT::f32:
15207 case MVT::f64:
15208 if (!Subtarget->hasVFP2Base()) // FIXME: NEON?
15209 return false;
15210 return isShiftedUInt<8, 2>(V);
15211 }
15212 }
15213
isLegalT2ScaledAddressingMode(const AddrMode & AM,EVT VT) const15214 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
15215 EVT VT) const {
15216 int Scale = AM.Scale;
15217 if (Scale < 0)
15218 return false;
15219
15220 switch (VT.getSimpleVT().SimpleTy) {
15221 default: return false;
15222 case MVT::i1:
15223 case MVT::i8:
15224 case MVT::i16:
15225 case MVT::i32:
15226 if (Scale == 1)
15227 return true;
15228 // r + r << imm
15229 Scale = Scale & ~1;
15230 return Scale == 2 || Scale == 4 || Scale == 8;
15231 case MVT::i64:
15232 // FIXME: What are we trying to model here? ldrd doesn't have an r + r
15233 // version in Thumb mode.
15234 // r + r
15235 if (Scale == 1)
15236 return true;
15237 // r * 2 (this can be lowered to r + r).
15238 if (!AM.HasBaseReg && Scale == 2)
15239 return true;
15240 return false;
15241 case MVT::isVoid:
15242 // Note, we allow "void" uses (basically, uses that aren't loads or
15243 // stores), because arm allows folding a scale into many arithmetic
15244 // operations. This should be made more precise and revisited later.
15245
15246 // Allow r << imm, but the imm has to be a multiple of two.
15247 if (Scale & 1) return false;
15248 return isPowerOf2_32(Scale);
15249 }
15250 }
15251
isLegalT1ScaledAddressingMode(const AddrMode & AM,EVT VT) const15252 bool ARMTargetLowering::isLegalT1ScaledAddressingMode(const AddrMode &AM,
15253 EVT VT) const {
15254 const int Scale = AM.Scale;
15255
15256 // Negative scales are not supported in Thumb1.
15257 if (Scale < 0)
15258 return false;
15259
15260 // Thumb1 addressing modes do not support register scaling excepting the
15261 // following cases:
15262 // 1. Scale == 1 means no scaling.
15263 // 2. Scale == 2 this can be lowered to r + r if there is no base register.
15264 return (Scale == 1) || (!AM.HasBaseReg && Scale == 2);
15265 }
15266
15267 /// isLegalAddressingMode - Return true if the addressing mode represented
15268 /// by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const15269 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
15270 const AddrMode &AM, Type *Ty,
15271 unsigned AS, Instruction *I) const {
15272 EVT VT = getValueType(DL, Ty, true);
15273 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
15274 return false;
15275
15276 // Can never fold addr of global into load/store.
15277 if (AM.BaseGV)
15278 return false;
15279
15280 switch (AM.Scale) {
15281 case 0: // no scale reg, must be "r+i" or "r", or "i".
15282 break;
15283 default:
15284 // ARM doesn't support any R+R*scale+imm addr modes.
15285 if (AM.BaseOffs)
15286 return false;
15287
15288 if (!VT.isSimple())
15289 return false;
15290
15291 if (Subtarget->isThumb1Only())
15292 return isLegalT1ScaledAddressingMode(AM, VT);
15293
15294 if (Subtarget->isThumb2())
15295 return isLegalT2ScaledAddressingMode(AM, VT);
15296
15297 int Scale = AM.Scale;
15298 switch (VT.getSimpleVT().SimpleTy) {
15299 default: return false;
15300 case MVT::i1:
15301 case MVT::i8:
15302 case MVT::i32:
15303 if (Scale < 0) Scale = -Scale;
15304 if (Scale == 1)
15305 return true;
15306 // r + r << imm
15307 return isPowerOf2_32(Scale & ~1);
15308 case MVT::i16:
15309 case MVT::i64:
15310 // r +/- r
15311 if (Scale == 1 || (AM.HasBaseReg && Scale == -1))
15312 return true;
15313 // r * 2 (this can be lowered to r + r).
15314 if (!AM.HasBaseReg && Scale == 2)
15315 return true;
15316 return false;
15317
15318 case MVT::isVoid:
15319 // Note, we allow "void" uses (basically, uses that aren't loads or
15320 // stores), because arm allows folding a scale into many arithmetic
15321 // operations. This should be made more precise and revisited later.
15322
15323 // Allow r << imm, but the imm has to be a multiple of two.
15324 if (Scale & 1) return false;
15325 return isPowerOf2_32(Scale);
15326 }
15327 }
15328 return true;
15329 }
15330
15331 /// isLegalICmpImmediate - Return true if the specified immediate is legal
15332 /// icmp immediate, that is the target has icmp instructions which can compare
15333 /// a register against the immediate without having to materialize the
15334 /// immediate into a register.
isLegalICmpImmediate(int64_t Imm) const15335 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15336 // Thumb2 and ARM modes can use cmn for negative immediates.
15337 if (!Subtarget->isThumb())
15338 return ARM_AM::getSOImmVal((uint32_t)Imm) != -1 ||
15339 ARM_AM::getSOImmVal(-(uint32_t)Imm) != -1;
15340 if (Subtarget->isThumb2())
15341 return ARM_AM::getT2SOImmVal((uint32_t)Imm) != -1 ||
15342 ARM_AM::getT2SOImmVal(-(uint32_t)Imm) != -1;
15343 // Thumb1 doesn't have cmn, and only 8-bit immediates.
15344 return Imm >= 0 && Imm <= 255;
15345 }
15346
15347 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
15348 /// *or sub* immediate, that is the target has add or sub instructions which can
15349 /// add a register with the immediate without having to materialize the
15350 /// immediate into a register.
isLegalAddImmediate(int64_t Imm) const15351 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15352 // Same encoding for add/sub, just flip the sign.
15353 int64_t AbsImm = std::abs(Imm);
15354 if (!Subtarget->isThumb())
15355 return ARM_AM::getSOImmVal(AbsImm) != -1;
15356 if (Subtarget->isThumb2())
15357 return ARM_AM::getT2SOImmVal(AbsImm) != -1;
15358 // Thumb1 only has 8-bit unsigned immediate.
15359 return AbsImm >= 0 && AbsImm <= 255;
15360 }
15361
getARMIndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)15362 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
15363 bool isSEXTLoad, SDValue &Base,
15364 SDValue &Offset, bool &isInc,
15365 SelectionDAG &DAG) {
15366 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
15367 return false;
15368
15369 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
15370 // AddressingMode 3
15371 Base = Ptr->getOperand(0);
15372 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
15373 int RHSC = (int)RHS->getZExtValue();
15374 if (RHSC < 0 && RHSC > -256) {
15375 assert(Ptr->getOpcode() == ISD::ADD);
15376 isInc = false;
15377 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15378 return true;
15379 }
15380 }
15381 isInc = (Ptr->getOpcode() == ISD::ADD);
15382 Offset = Ptr->getOperand(1);
15383 return true;
15384 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
15385 // AddressingMode 2
15386 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
15387 int RHSC = (int)RHS->getZExtValue();
15388 if (RHSC < 0 && RHSC > -0x1000) {
15389 assert(Ptr->getOpcode() == ISD::ADD);
15390 isInc = false;
15391 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15392 Base = Ptr->getOperand(0);
15393 return true;
15394 }
15395 }
15396
15397 if (Ptr->getOpcode() == ISD::ADD) {
15398 isInc = true;
15399 ARM_AM::ShiftOpc ShOpcVal=
15400 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
15401 if (ShOpcVal != ARM_AM::no_shift) {
15402 Base = Ptr->getOperand(1);
15403 Offset = Ptr->getOperand(0);
15404 } else {
15405 Base = Ptr->getOperand(0);
15406 Offset = Ptr->getOperand(1);
15407 }
15408 return true;
15409 }
15410
15411 isInc = (Ptr->getOpcode() == ISD::ADD);
15412 Base = Ptr->getOperand(0);
15413 Offset = Ptr->getOperand(1);
15414 return true;
15415 }
15416
15417 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
15418 return false;
15419 }
15420
getT2IndexedAddressParts(SDNode * Ptr,EVT VT,bool isSEXTLoad,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)15421 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
15422 bool isSEXTLoad, SDValue &Base,
15423 SDValue &Offset, bool &isInc,
15424 SelectionDAG &DAG) {
15425 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
15426 return false;
15427
15428 Base = Ptr->getOperand(0);
15429 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
15430 int RHSC = (int)RHS->getZExtValue();
15431 if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
15432 assert(Ptr->getOpcode() == ISD::ADD);
15433 isInc = false;
15434 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15435 return true;
15436 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
15437 isInc = Ptr->getOpcode() == ISD::ADD;
15438 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
15439 return true;
15440 }
15441 }
15442
15443 return false;
15444 }
15445
getMVEIndexedAddressParts(SDNode * Ptr,EVT VT,unsigned Align,bool isSEXTLoad,bool IsMasked,bool isLE,SDValue & Base,SDValue & Offset,bool & isInc,SelectionDAG & DAG)15446 static bool getMVEIndexedAddressParts(SDNode *Ptr, EVT VT, unsigned Align,
15447 bool isSEXTLoad, bool IsMasked, bool isLE,
15448 SDValue &Base, SDValue &Offset,
15449 bool &isInc, SelectionDAG &DAG) {
15450 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
15451 return false;
15452 if (!isa<ConstantSDNode>(Ptr->getOperand(1)))
15453 return false;
15454
15455 // We allow LE non-masked loads to change the type (for example use a vldrb.8
15456 // as opposed to a vldrw.32). This can allow extra addressing modes or
15457 // alignments for what is otherwise an equivalent instruction.
15458 bool CanChangeType = isLE && !IsMasked;
15459
15460 ConstantSDNode *RHS = cast<ConstantSDNode>(Ptr->getOperand(1));
15461 int RHSC = (int)RHS->getZExtValue();
15462
15463 auto IsInRange = [&](int RHSC, int Limit, int Scale) {
15464 if (RHSC < 0 && RHSC > -Limit * Scale && RHSC % Scale == 0) {
15465 assert(Ptr->getOpcode() == ISD::ADD);
15466 isInc = false;
15467 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
15468 return true;
15469 } else if (RHSC > 0 && RHSC < Limit * Scale && RHSC % Scale == 0) {
15470 isInc = Ptr->getOpcode() == ISD::ADD;
15471 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
15472 return true;
15473 }
15474 return false;
15475 };
15476
15477 // Try to find a matching instruction based on s/zext, Alignment, Offset and
15478 // (in BE/masked) type.
15479 Base = Ptr->getOperand(0);
15480 if (VT == MVT::v4i16) {
15481 if (Align >= 2 && IsInRange(RHSC, 0x80, 2))
15482 return true;
15483 } else if (VT == MVT::v4i8 || VT == MVT::v8i8) {
15484 if (IsInRange(RHSC, 0x80, 1))
15485 return true;
15486 } else if (Align >= 4 &&
15487 (CanChangeType || VT == MVT::v4i32 || VT == MVT::v4f32) &&
15488 IsInRange(RHSC, 0x80, 4))
15489 return true;
15490 else if (Align >= 2 &&
15491 (CanChangeType || VT == MVT::v8i16 || VT == MVT::v8f16) &&
15492 IsInRange(RHSC, 0x80, 2))
15493 return true;
15494 else if ((CanChangeType || VT == MVT::v16i8) && IsInRange(RHSC, 0x80, 1))
15495 return true;
15496 return false;
15497 }
15498
15499 /// getPreIndexedAddressParts - returns true by value, base pointer and
15500 /// offset pointer and addressing mode by reference if the node's address
15501 /// can be legally represented as pre-indexed load / store address.
15502 bool
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const15503 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
15504 SDValue &Offset,
15505 ISD::MemIndexedMode &AM,
15506 SelectionDAG &DAG) const {
15507 if (Subtarget->isThumb1Only())
15508 return false;
15509
15510 EVT VT;
15511 SDValue Ptr;
15512 unsigned Align;
15513 bool isSEXTLoad = false;
15514 bool IsMasked = false;
15515 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
15516 Ptr = LD->getBasePtr();
15517 VT = LD->getMemoryVT();
15518 Align = LD->getAlignment();
15519 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15520 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
15521 Ptr = ST->getBasePtr();
15522 VT = ST->getMemoryVT();
15523 Align = ST->getAlignment();
15524 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
15525 Ptr = LD->getBasePtr();
15526 VT = LD->getMemoryVT();
15527 Align = LD->getAlignment();
15528 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15529 IsMasked = true;
15530 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
15531 Ptr = ST->getBasePtr();
15532 VT = ST->getMemoryVT();
15533 Align = ST->getAlignment();
15534 IsMasked = true;
15535 } else
15536 return false;
15537
15538 bool isInc;
15539 bool isLegal = false;
15540 if (VT.isVector())
15541 isLegal = Subtarget->hasMVEIntegerOps() &&
15542 getMVEIndexedAddressParts(Ptr.getNode(), VT, Align, isSEXTLoad,
15543 IsMasked, Subtarget->isLittle(), Base,
15544 Offset, isInc, DAG);
15545 else {
15546 if (Subtarget->isThumb2())
15547 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
15548 Offset, isInc, DAG);
15549 else
15550 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
15551 Offset, isInc, DAG);
15552 }
15553 if (!isLegal)
15554 return false;
15555
15556 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
15557 return true;
15558 }
15559
15560 /// getPostIndexedAddressParts - returns true by value, base pointer and
15561 /// offset pointer and addressing mode by reference if this node can be
15562 /// combined with a load / store to form a post-indexed load / store.
getPostIndexedAddressParts(SDNode * N,SDNode * Op,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const15563 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
15564 SDValue &Base,
15565 SDValue &Offset,
15566 ISD::MemIndexedMode &AM,
15567 SelectionDAG &DAG) const {
15568 EVT VT;
15569 SDValue Ptr;
15570 unsigned Align;
15571 bool isSEXTLoad = false, isNonExt;
15572 bool IsMasked = false;
15573 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
15574 VT = LD->getMemoryVT();
15575 Ptr = LD->getBasePtr();
15576 Align = LD->getAlignment();
15577 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15578 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
15579 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
15580 VT = ST->getMemoryVT();
15581 Ptr = ST->getBasePtr();
15582 Align = ST->getAlignment();
15583 isNonExt = !ST->isTruncatingStore();
15584 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
15585 VT = LD->getMemoryVT();
15586 Ptr = LD->getBasePtr();
15587 Align = LD->getAlignment();
15588 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
15589 isNonExt = LD->getExtensionType() == ISD::NON_EXTLOAD;
15590 IsMasked = true;
15591 } else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
15592 VT = ST->getMemoryVT();
15593 Ptr = ST->getBasePtr();
15594 Align = ST->getAlignment();
15595 isNonExt = !ST->isTruncatingStore();
15596 IsMasked = true;
15597 } else
15598 return false;
15599
15600 if (Subtarget->isThumb1Only()) {
15601 // Thumb-1 can do a limited post-inc load or store as an updating LDM. It
15602 // must be non-extending/truncating, i32, with an offset of 4.
15603 assert(Op->getValueType(0) == MVT::i32 && "Non-i32 post-inc op?!");
15604 if (Op->getOpcode() != ISD::ADD || !isNonExt)
15605 return false;
15606 auto *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1));
15607 if (!RHS || RHS->getZExtValue() != 4)
15608 return false;
15609
15610 Offset = Op->getOperand(1);
15611 Base = Op->getOperand(0);
15612 AM = ISD::POST_INC;
15613 return true;
15614 }
15615
15616 bool isInc;
15617 bool isLegal = false;
15618 if (VT.isVector())
15619 isLegal = Subtarget->hasMVEIntegerOps() &&
15620 getMVEIndexedAddressParts(Op, VT, Align, isSEXTLoad, IsMasked,
15621 Subtarget->isLittle(), Base, Offset,
15622 isInc, DAG);
15623 else {
15624 if (Subtarget->isThumb2())
15625 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
15626 isInc, DAG);
15627 else
15628 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
15629 isInc, DAG);
15630 }
15631 if (!isLegal)
15632 return false;
15633
15634 if (Ptr != Base) {
15635 // Swap base ptr and offset to catch more post-index load / store when
15636 // it's legal. In Thumb2 mode, offset must be an immediate.
15637 if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
15638 !Subtarget->isThumb2())
15639 std::swap(Base, Offset);
15640
15641 // Post-indexed load / store update the base pointer.
15642 if (Ptr != Base)
15643 return false;
15644 }
15645
15646 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
15647 return true;
15648 }
15649
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const15650 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
15651 KnownBits &Known,
15652 const APInt &DemandedElts,
15653 const SelectionDAG &DAG,
15654 unsigned Depth) const {
15655 unsigned BitWidth = Known.getBitWidth();
15656 Known.resetAll();
15657 switch (Op.getOpcode()) {
15658 default: break;
15659 case ARMISD::ADDC:
15660 case ARMISD::ADDE:
15661 case ARMISD::SUBC:
15662 case ARMISD::SUBE:
15663 // Special cases when we convert a carry to a boolean.
15664 if (Op.getResNo() == 0) {
15665 SDValue LHS = Op.getOperand(0);
15666 SDValue RHS = Op.getOperand(1);
15667 // (ADDE 0, 0, C) will give us a single bit.
15668 if (Op->getOpcode() == ARMISD::ADDE && isNullConstant(LHS) &&
15669 isNullConstant(RHS)) {
15670 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
15671 return;
15672 }
15673 }
15674 break;
15675 case ARMISD::CMOV: {
15676 // Bits are known zero/one if known on the LHS and RHS.
15677 Known = DAG.computeKnownBits(Op.getOperand(0), Depth+1);
15678 if (Known.isUnknown())
15679 return;
15680
15681 KnownBits KnownRHS = DAG.computeKnownBits(Op.getOperand(1), Depth+1);
15682 Known.Zero &= KnownRHS.Zero;
15683 Known.One &= KnownRHS.One;
15684 return;
15685 }
15686 case ISD::INTRINSIC_W_CHAIN: {
15687 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
15688 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
15689 switch (IntID) {
15690 default: return;
15691 case Intrinsic::arm_ldaex:
15692 case Intrinsic::arm_ldrex: {
15693 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
15694 unsigned MemBits = VT.getScalarSizeInBits();
15695 Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
15696 return;
15697 }
15698 }
15699 }
15700 case ARMISD::BFI: {
15701 // Conservatively, we can recurse down the first operand
15702 // and just mask out all affected bits.
15703 Known = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
15704
15705 // The operand to BFI is already a mask suitable for removing the bits it
15706 // sets.
15707 ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
15708 const APInt &Mask = CI->getAPIntValue();
15709 Known.Zero &= Mask;
15710 Known.One &= Mask;
15711 return;
15712 }
15713 case ARMISD::VGETLANEs:
15714 case ARMISD::VGETLANEu: {
15715 const SDValue &SrcSV = Op.getOperand(0);
15716 EVT VecVT = SrcSV.getValueType();
15717 assert(VecVT.isVector() && "VGETLANE expected a vector type");
15718 const unsigned NumSrcElts = VecVT.getVectorNumElements();
15719 ConstantSDNode *Pos = cast<ConstantSDNode>(Op.getOperand(1).getNode());
15720 assert(Pos->getAPIntValue().ult(NumSrcElts) &&
15721 "VGETLANE index out of bounds");
15722 unsigned Idx = Pos->getZExtValue();
15723 APInt DemandedElt = APInt::getOneBitSet(NumSrcElts, Idx);
15724 Known = DAG.computeKnownBits(SrcSV, DemandedElt, Depth + 1);
15725
15726 EVT VT = Op.getValueType();
15727 const unsigned DstSz = VT.getScalarSizeInBits();
15728 const unsigned SrcSz = VecVT.getVectorElementType().getSizeInBits();
15729 (void)SrcSz;
15730 assert(SrcSz == Known.getBitWidth());
15731 assert(DstSz > SrcSz);
15732 if (Op.getOpcode() == ARMISD::VGETLANEs)
15733 Known = Known.sext(DstSz);
15734 else {
15735 Known = Known.zext(DstSz, true /* extended bits are known zero */);
15736 }
15737 assert(DstSz == Known.getBitWidth());
15738 break;
15739 }
15740 }
15741 }
15742
15743 bool
targetShrinkDemandedConstant(SDValue Op,const APInt & DemandedAPInt,TargetLoweringOpt & TLO) const15744 ARMTargetLowering::targetShrinkDemandedConstant(SDValue Op,
15745 const APInt &DemandedAPInt,
15746 TargetLoweringOpt &TLO) const {
15747 // Delay optimization, so we don't have to deal with illegal types, or block
15748 // optimizations.
15749 if (!TLO.LegalOps)
15750 return false;
15751
15752 // Only optimize AND for now.
15753 if (Op.getOpcode() != ISD::AND)
15754 return false;
15755
15756 EVT VT = Op.getValueType();
15757
15758 // Ignore vectors.
15759 if (VT.isVector())
15760 return false;
15761
15762 assert(VT == MVT::i32 && "Unexpected integer type");
15763
15764 // Make sure the RHS really is a constant.
15765 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
15766 if (!C)
15767 return false;
15768
15769 unsigned Mask = C->getZExtValue();
15770
15771 unsigned Demanded = DemandedAPInt.getZExtValue();
15772 unsigned ShrunkMask = Mask & Demanded;
15773 unsigned ExpandedMask = Mask | ~Demanded;
15774
15775 // If the mask is all zeros, let the target-independent code replace the
15776 // result with zero.
15777 if (ShrunkMask == 0)
15778 return false;
15779
15780 // If the mask is all ones, erase the AND. (Currently, the target-independent
15781 // code won't do this, so we have to do it explicitly to avoid an infinite
15782 // loop in obscure cases.)
15783 if (ExpandedMask == ~0U)
15784 return TLO.CombineTo(Op, Op.getOperand(0));
15785
15786 auto IsLegalMask = [ShrunkMask, ExpandedMask](unsigned Mask) -> bool {
15787 return (ShrunkMask & Mask) == ShrunkMask && (~ExpandedMask & Mask) == 0;
15788 };
15789 auto UseMask = [Mask, Op, VT, &TLO](unsigned NewMask) -> bool {
15790 if (NewMask == Mask)
15791 return true;
15792 SDLoc DL(Op);
15793 SDValue NewC = TLO.DAG.getConstant(NewMask, DL, VT);
15794 SDValue NewOp = TLO.DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), NewC);
15795 return TLO.CombineTo(Op, NewOp);
15796 };
15797
15798 // Prefer uxtb mask.
15799 if (IsLegalMask(0xFF))
15800 return UseMask(0xFF);
15801
15802 // Prefer uxth mask.
15803 if (IsLegalMask(0xFFFF))
15804 return UseMask(0xFFFF);
15805
15806 // [1, 255] is Thumb1 movs+ands, legal immediate for ARM/Thumb2.
15807 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15808 if (ShrunkMask < 256)
15809 return UseMask(ShrunkMask);
15810
15811 // [-256, -2] is Thumb1 movs+bics, legal immediate for ARM/Thumb2.
15812 // FIXME: Prefer a contiguous sequence of bits for other optimizations.
15813 if ((int)ExpandedMask <= -2 && (int)ExpandedMask >= -256)
15814 return UseMask(ExpandedMask);
15815
15816 // Potential improvements:
15817 //
15818 // We could try to recognize lsls+lsrs or lsrs+lsls pairs here.
15819 // We could try to prefer Thumb1 immediates which can be lowered to a
15820 // two-instruction sequence.
15821 // We could try to recognize more legal ARM/Thumb2 immediates here.
15822
15823 return false;
15824 }
15825
15826
15827 //===----------------------------------------------------------------------===//
15828 // ARM Inline Assembly Support
15829 //===----------------------------------------------------------------------===//
15830
ExpandInlineAsm(CallInst * CI) const15831 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
15832 // Looking for "rev" which is V6+.
15833 if (!Subtarget->hasV6Ops())
15834 return false;
15835
15836 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
15837 std::string AsmStr = IA->getAsmString();
15838 SmallVector<StringRef, 4> AsmPieces;
15839 SplitString(AsmStr, AsmPieces, ";\n");
15840
15841 switch (AsmPieces.size()) {
15842 default: return false;
15843 case 1:
15844 AsmStr = AsmPieces[0];
15845 AsmPieces.clear();
15846 SplitString(AsmStr, AsmPieces, " \t,");
15847
15848 // rev $0, $1
15849 if (AsmPieces.size() == 3 &&
15850 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
15851 IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
15852 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
15853 if (Ty && Ty->getBitWidth() == 32)
15854 return IntrinsicLowering::LowerToByteSwap(CI);
15855 }
15856 break;
15857 }
15858
15859 return false;
15860 }
15861
LowerXConstraint(EVT ConstraintVT) const15862 const char *ARMTargetLowering::LowerXConstraint(EVT ConstraintVT) const {
15863 // At this point, we have to lower this constraint to something else, so we
15864 // lower it to an "r" or "w". However, by doing this we will force the result
15865 // to be in register, while the X constraint is much more permissive.
15866 //
15867 // Although we are correct (we are free to emit anything, without
15868 // constraints), we might break use cases that would expect us to be more
15869 // efficient and emit something else.
15870 if (!Subtarget->hasVFP2Base())
15871 return "r";
15872 if (ConstraintVT.isFloatingPoint())
15873 return "w";
15874 if (ConstraintVT.isVector() && Subtarget->hasNEON() &&
15875 (ConstraintVT.getSizeInBits() == 64 ||
15876 ConstraintVT.getSizeInBits() == 128))
15877 return "w";
15878
15879 return "r";
15880 }
15881
15882 /// getConstraintType - Given a constraint letter, return the type of
15883 /// constraint it is for this target.
15884 ARMTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const15885 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
15886 unsigned S = Constraint.size();
15887 if (S == 1) {
15888 switch (Constraint[0]) {
15889 default: break;
15890 case 'l': return C_RegisterClass;
15891 case 'w': return C_RegisterClass;
15892 case 'h': return C_RegisterClass;
15893 case 'x': return C_RegisterClass;
15894 case 't': return C_RegisterClass;
15895 case 'j': return C_Immediate; // Constant for movw.
15896 // An address with a single base register. Due to the way we
15897 // currently handle addresses it is the same as an 'r' memory constraint.
15898 case 'Q': return C_Memory;
15899 }
15900 } else if (S == 2) {
15901 switch (Constraint[0]) {
15902 default: break;
15903 case 'T': return C_RegisterClass;
15904 // All 'U+' constraints are addresses.
15905 case 'U': return C_Memory;
15906 }
15907 }
15908 return TargetLowering::getConstraintType(Constraint);
15909 }
15910
15911 /// Examine constraint type and operand type and determine a weight value.
15912 /// This object must already have been set up with the operand type
15913 /// and the current alternative constraint selected.
15914 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const15915 ARMTargetLowering::getSingleConstraintMatchWeight(
15916 AsmOperandInfo &info, const char *constraint) const {
15917 ConstraintWeight weight = CW_Invalid;
15918 Value *CallOperandVal = info.CallOperandVal;
15919 // If we don't have a value, we can't do a match,
15920 // but allow it at the lowest weight.
15921 if (!CallOperandVal)
15922 return CW_Default;
15923 Type *type = CallOperandVal->getType();
15924 // Look at the constraint type.
15925 switch (*constraint) {
15926 default:
15927 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
15928 break;
15929 case 'l':
15930 if (type->isIntegerTy()) {
15931 if (Subtarget->isThumb())
15932 weight = CW_SpecificReg;
15933 else
15934 weight = CW_Register;
15935 }
15936 break;
15937 case 'w':
15938 if (type->isFloatingPointTy())
15939 weight = CW_Register;
15940 break;
15941 }
15942 return weight;
15943 }
15944
15945 using RCPair = std::pair<unsigned, const TargetRegisterClass *>;
15946
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const15947 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
15948 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
15949 switch (Constraint.size()) {
15950 case 1:
15951 // GCC ARM Constraint Letters
15952 switch (Constraint[0]) {
15953 case 'l': // Low regs or general regs.
15954 if (Subtarget->isThumb())
15955 return RCPair(0U, &ARM::tGPRRegClass);
15956 return RCPair(0U, &ARM::GPRRegClass);
15957 case 'h': // High regs or no regs.
15958 if (Subtarget->isThumb())
15959 return RCPair(0U, &ARM::hGPRRegClass);
15960 break;
15961 case 'r':
15962 if (Subtarget->isThumb1Only())
15963 return RCPair(0U, &ARM::tGPRRegClass);
15964 return RCPair(0U, &ARM::GPRRegClass);
15965 case 'w':
15966 if (VT == MVT::Other)
15967 break;
15968 if (VT == MVT::f32)
15969 return RCPair(0U, &ARM::SPRRegClass);
15970 if (VT.getSizeInBits() == 64)
15971 return RCPair(0U, &ARM::DPRRegClass);
15972 if (VT.getSizeInBits() == 128)
15973 return RCPair(0U, &ARM::QPRRegClass);
15974 break;
15975 case 'x':
15976 if (VT == MVT::Other)
15977 break;
15978 if (VT == MVT::f32)
15979 return RCPair(0U, &ARM::SPR_8RegClass);
15980 if (VT.getSizeInBits() == 64)
15981 return RCPair(0U, &ARM::DPR_8RegClass);
15982 if (VT.getSizeInBits() == 128)
15983 return RCPair(0U, &ARM::QPR_8RegClass);
15984 break;
15985 case 't':
15986 if (VT == MVT::Other)
15987 break;
15988 if (VT == MVT::f32 || VT == MVT::i32)
15989 return RCPair(0U, &ARM::SPRRegClass);
15990 if (VT.getSizeInBits() == 64)
15991 return RCPair(0U, &ARM::DPR_VFP2RegClass);
15992 if (VT.getSizeInBits() == 128)
15993 return RCPair(0U, &ARM::QPR_VFP2RegClass);
15994 break;
15995 }
15996 break;
15997
15998 case 2:
15999 if (Constraint[0] == 'T') {
16000 switch (Constraint[1]) {
16001 default:
16002 break;
16003 case 'e':
16004 return RCPair(0U, &ARM::tGPREvenRegClass);
16005 case 'o':
16006 return RCPair(0U, &ARM::tGPROddRegClass);
16007 }
16008 }
16009 break;
16010
16011 default:
16012 break;
16013 }
16014
16015 if (StringRef("{cc}").equals_lower(Constraint))
16016 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
16017
16018 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16019 }
16020
16021 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16022 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const16023 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16024 std::string &Constraint,
16025 std::vector<SDValue>&Ops,
16026 SelectionDAG &DAG) const {
16027 SDValue Result;
16028
16029 // Currently only support length 1 constraints.
16030 if (Constraint.length() != 1) return;
16031
16032 char ConstraintLetter = Constraint[0];
16033 switch (ConstraintLetter) {
16034 default: break;
16035 case 'j':
16036 case 'I': case 'J': case 'K': case 'L':
16037 case 'M': case 'N': case 'O':
16038 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
16039 if (!C)
16040 return;
16041
16042 int64_t CVal64 = C->getSExtValue();
16043 int CVal = (int) CVal64;
16044 // None of these constraints allow values larger than 32 bits. Check
16045 // that the value fits in an int.
16046 if (CVal != CVal64)
16047 return;
16048
16049 switch (ConstraintLetter) {
16050 case 'j':
16051 // Constant suitable for movw, must be between 0 and
16052 // 65535.
16053 if (Subtarget->hasV6T2Ops() || (Subtarget->hasV8MBaselineOps()))
16054 if (CVal >= 0 && CVal <= 65535)
16055 break;
16056 return;
16057 case 'I':
16058 if (Subtarget->isThumb1Only()) {
16059 // This must be a constant between 0 and 255, for ADD
16060 // immediates.
16061 if (CVal >= 0 && CVal <= 255)
16062 break;
16063 } else if (Subtarget->isThumb2()) {
16064 // A constant that can be used as an immediate value in a
16065 // data-processing instruction.
16066 if (ARM_AM::getT2SOImmVal(CVal) != -1)
16067 break;
16068 } else {
16069 // A constant that can be used as an immediate value in a
16070 // data-processing instruction.
16071 if (ARM_AM::getSOImmVal(CVal) != -1)
16072 break;
16073 }
16074 return;
16075
16076 case 'J':
16077 if (Subtarget->isThumb1Only()) {
16078 // This must be a constant between -255 and -1, for negated ADD
16079 // immediates. This can be used in GCC with an "n" modifier that
16080 // prints the negated value, for use with SUB instructions. It is
16081 // not useful otherwise but is implemented for compatibility.
16082 if (CVal >= -255 && CVal <= -1)
16083 break;
16084 } else {
16085 // This must be a constant between -4095 and 4095. It is not clear
16086 // what this constraint is intended for. Implemented for
16087 // compatibility with GCC.
16088 if (CVal >= -4095 && CVal <= 4095)
16089 break;
16090 }
16091 return;
16092
16093 case 'K':
16094 if (Subtarget->isThumb1Only()) {
16095 // A 32-bit value where only one byte has a nonzero value. Exclude
16096 // zero to match GCC. This constraint is used by GCC internally for
16097 // constants that can be loaded with a move/shift combination.
16098 // It is not useful otherwise but is implemented for compatibility.
16099 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
16100 break;
16101 } else if (Subtarget->isThumb2()) {
16102 // A constant whose bitwise inverse can be used as an immediate
16103 // value in a data-processing instruction. This can be used in GCC
16104 // with a "B" modifier that prints the inverted value, for use with
16105 // BIC and MVN instructions. It is not useful otherwise but is
16106 // implemented for compatibility.
16107 if (ARM_AM::getT2SOImmVal(~CVal) != -1)
16108 break;
16109 } else {
16110 // A constant whose bitwise inverse can be used as an immediate
16111 // value in a data-processing instruction. This can be used in GCC
16112 // with a "B" modifier that prints the inverted value, for use with
16113 // BIC and MVN instructions. It is not useful otherwise but is
16114 // implemented for compatibility.
16115 if (ARM_AM::getSOImmVal(~CVal) != -1)
16116 break;
16117 }
16118 return;
16119
16120 case 'L':
16121 if (Subtarget->isThumb1Only()) {
16122 // This must be a constant between -7 and 7,
16123 // for 3-operand ADD/SUB immediate instructions.
16124 if (CVal >= -7 && CVal < 7)
16125 break;
16126 } else if (Subtarget->isThumb2()) {
16127 // A constant whose negation can be used as an immediate value in a
16128 // data-processing instruction. This can be used in GCC with an "n"
16129 // modifier that prints the negated value, for use with SUB
16130 // instructions. It is not useful otherwise but is implemented for
16131 // compatibility.
16132 if (ARM_AM::getT2SOImmVal(-CVal) != -1)
16133 break;
16134 } else {
16135 // A constant whose negation can be used as an immediate value in a
16136 // data-processing instruction. This can be used in GCC with an "n"
16137 // modifier that prints the negated value, for use with SUB
16138 // instructions. It is not useful otherwise but is implemented for
16139 // compatibility.
16140 if (ARM_AM::getSOImmVal(-CVal) != -1)
16141 break;
16142 }
16143 return;
16144
16145 case 'M':
16146 if (Subtarget->isThumb1Only()) {
16147 // This must be a multiple of 4 between 0 and 1020, for
16148 // ADD sp + immediate.
16149 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
16150 break;
16151 } else {
16152 // A power of two or a constant between 0 and 32. This is used in
16153 // GCC for the shift amount on shifted register operands, but it is
16154 // useful in general for any shift amounts.
16155 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
16156 break;
16157 }
16158 return;
16159
16160 case 'N':
16161 if (Subtarget->isThumb1Only()) {
16162 // This must be a constant between 0 and 31, for shift amounts.
16163 if (CVal >= 0 && CVal <= 31)
16164 break;
16165 }
16166 return;
16167
16168 case 'O':
16169 if (Subtarget->isThumb1Only()) {
16170 // This must be a multiple of 4 between -508 and 508, for
16171 // ADD/SUB sp = sp + immediate.
16172 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
16173 break;
16174 }
16175 return;
16176 }
16177 Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
16178 break;
16179 }
16180
16181 if (Result.getNode()) {
16182 Ops.push_back(Result);
16183 return;
16184 }
16185 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16186 }
16187
getDivRemLibcall(const SDNode * N,MVT::SimpleValueType SVT)16188 static RTLIB::Libcall getDivRemLibcall(
16189 const SDNode *N, MVT::SimpleValueType SVT) {
16190 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
16191 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
16192 "Unhandled Opcode in getDivRemLibcall");
16193 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
16194 N->getOpcode() == ISD::SREM;
16195 RTLIB::Libcall LC;
16196 switch (SVT) {
16197 default: llvm_unreachable("Unexpected request for libcall!");
16198 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
16199 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
16200 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
16201 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
16202 }
16203 return LC;
16204 }
16205
getDivRemArgList(const SDNode * N,LLVMContext * Context,const ARMSubtarget * Subtarget)16206 static TargetLowering::ArgListTy getDivRemArgList(
16207 const SDNode *N, LLVMContext *Context, const ARMSubtarget *Subtarget) {
16208 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
16209 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
16210 "Unhandled Opcode in getDivRemArgList");
16211 bool isSigned = N->getOpcode() == ISD::SDIVREM ||
16212 N->getOpcode() == ISD::SREM;
16213 TargetLowering::ArgListTy Args;
16214 TargetLowering::ArgListEntry Entry;
16215 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
16216 EVT ArgVT = N->getOperand(i).getValueType();
16217 Type *ArgTy = ArgVT.getTypeForEVT(*Context);
16218 Entry.Node = N->getOperand(i);
16219 Entry.Ty = ArgTy;
16220 Entry.IsSExt = isSigned;
16221 Entry.IsZExt = !isSigned;
16222 Args.push_back(Entry);
16223 }
16224 if (Subtarget->isTargetWindows() && Args.size() >= 2)
16225 std::swap(Args[0], Args[1]);
16226 return Args;
16227 }
16228
LowerDivRem(SDValue Op,SelectionDAG & DAG) const16229 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
16230 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
16231 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
16232 Subtarget->isTargetWindows()) &&
16233 "Register-based DivRem lowering only");
16234 unsigned Opcode = Op->getOpcode();
16235 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
16236 "Invalid opcode for Div/Rem lowering");
16237 bool isSigned = (Opcode == ISD::SDIVREM);
16238 EVT VT = Op->getValueType(0);
16239 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
16240 SDLoc dl(Op);
16241
16242 // If the target has hardware divide, use divide + multiply + subtract:
16243 // div = a / b
16244 // rem = a - b * div
16245 // return {div, rem}
16246 // This should be lowered into UDIV/SDIV + MLS later on.
16247 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
16248 : Subtarget->hasDivideInARMMode();
16249 if (hasDivide && Op->getValueType(0).isSimple() &&
16250 Op->getSimpleValueType(0) == MVT::i32) {
16251 unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
16252 const SDValue Dividend = Op->getOperand(0);
16253 const SDValue Divisor = Op->getOperand(1);
16254 SDValue Div = DAG.getNode(DivOpcode, dl, VT, Dividend, Divisor);
16255 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Div, Divisor);
16256 SDValue Rem = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
16257
16258 SDValue Values[2] = {Div, Rem};
16259 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VT, VT), Values);
16260 }
16261
16262 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
16263 VT.getSimpleVT().SimpleTy);
16264 SDValue InChain = DAG.getEntryNode();
16265
16266 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
16267 DAG.getContext(),
16268 Subtarget);
16269
16270 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
16271 getPointerTy(DAG.getDataLayout()));
16272
16273 Type *RetTy = StructType::get(Ty, Ty);
16274
16275 if (Subtarget->isTargetWindows())
16276 InChain = WinDBZCheckDenominator(DAG, Op.getNode(), InChain);
16277
16278 TargetLowering::CallLoweringInfo CLI(DAG);
16279 CLI.setDebugLoc(dl).setChain(InChain)
16280 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
16281 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
16282
16283 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
16284 return CallInfo.first;
16285 }
16286
16287 // Lowers REM using divmod helpers
16288 // see RTABI section 4.2/4.3
LowerREM(SDNode * N,SelectionDAG & DAG) const16289 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
16290 // Build return types (div and rem)
16291 std::vector<Type*> RetTyParams;
16292 Type *RetTyElement;
16293
16294 switch (N->getValueType(0).getSimpleVT().SimpleTy) {
16295 default: llvm_unreachable("Unexpected request for libcall!");
16296 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
16297 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
16298 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
16299 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
16300 }
16301
16302 RetTyParams.push_back(RetTyElement);
16303 RetTyParams.push_back(RetTyElement);
16304 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
16305 Type *RetTy = StructType::get(*DAG.getContext(), ret);
16306
16307 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
16308 SimpleTy);
16309 SDValue InChain = DAG.getEntryNode();
16310 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext(),
16311 Subtarget);
16312 bool isSigned = N->getOpcode() == ISD::SREM;
16313 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
16314 getPointerTy(DAG.getDataLayout()));
16315
16316 if (Subtarget->isTargetWindows())
16317 InChain = WinDBZCheckDenominator(DAG, N, InChain);
16318
16319 // Lower call
16320 CallLoweringInfo CLI(DAG);
16321 CLI.setChain(InChain)
16322 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args))
16323 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
16324 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
16325
16326 // Return second (rem) result operand (first contains div)
16327 SDNode *ResNode = CallResult.first.getNode();
16328 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
16329 return ResNode->getOperand(1);
16330 }
16331
16332 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const16333 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
16334 assert(Subtarget->isTargetWindows() && "unsupported target platform");
16335 SDLoc DL(Op);
16336
16337 // Get the inputs.
16338 SDValue Chain = Op.getOperand(0);
16339 SDValue Size = Op.getOperand(1);
16340
16341 if (DAG.getMachineFunction().getFunction().hasFnAttribute(
16342 "no-stack-arg-probe")) {
16343 unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
16344 SDValue SP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
16345 Chain = SP.getValue(1);
16346 SP = DAG.getNode(ISD::SUB, DL, MVT::i32, SP, Size);
16347 if (Align)
16348 SP = DAG.getNode(ISD::AND, DL, MVT::i32, SP.getValue(0),
16349 DAG.getConstant(-(uint64_t)Align, DL, MVT::i32));
16350 Chain = DAG.getCopyToReg(Chain, DL, ARM::SP, SP);
16351 SDValue Ops[2] = { SP, Chain };
16352 return DAG.getMergeValues(Ops, DL);
16353 }
16354
16355 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
16356 DAG.getConstant(2, DL, MVT::i32));
16357
16358 SDValue Flag;
16359 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
16360 Flag = Chain.getValue(1);
16361
16362 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
16363 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
16364
16365 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
16366 Chain = NewSP.getValue(1);
16367
16368 SDValue Ops[2] = { NewSP, Chain };
16369 return DAG.getMergeValues(Ops, DL);
16370 }
16371
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const16372 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
16373 bool IsStrict = Op->isStrictFPOpcode();
16374 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
16375 const unsigned DstSz = Op.getValueType().getSizeInBits();
16376 const unsigned SrcSz = SrcVal.getValueType().getSizeInBits();
16377 assert(DstSz > SrcSz && DstSz <= 64 && SrcSz >= 16 &&
16378 "Unexpected type for custom-lowering FP_EXTEND");
16379
16380 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
16381 "With both FP DP and 16, any FP conversion is legal!");
16382
16383 assert(!(DstSz == 32 && Subtarget->hasFP16()) &&
16384 "With FP16, 16 to 32 conversion is legal!");
16385
16386 // Converting from 32 -> 64 is valid if we have FP64.
16387 if (SrcSz == 32 && DstSz == 64 && Subtarget->hasFP64()) {
16388 // FIXME: Remove this when we have strict fp instruction selection patterns
16389 if (IsStrict) {
16390 SDLoc Loc(Op);
16391 SDValue Result = DAG.getNode(ISD::FP_EXTEND,
16392 Loc, Op.getValueType(), SrcVal);
16393 return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
16394 }
16395 return Op;
16396 }
16397
16398 // Either we are converting from 16 -> 64, without FP16 and/or
16399 // FP.double-precision or without Armv8-fp. So we must do it in two
16400 // steps.
16401 // Or we are converting from 32 -> 64 without fp.double-precision or 16 -> 32
16402 // without FP16. So we must do a function call.
16403 SDLoc Loc(Op);
16404 RTLIB::Libcall LC;
16405 MakeLibCallOptions CallOptions;
16406 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
16407 for (unsigned Sz = SrcSz; Sz <= 32 && Sz < DstSz; Sz *= 2) {
16408 bool Supported = (Sz == 16 ? Subtarget->hasFP16() : Subtarget->hasFP64());
16409 MVT SrcVT = (Sz == 16 ? MVT::f16 : MVT::f32);
16410 MVT DstVT = (Sz == 16 ? MVT::f32 : MVT::f64);
16411 if (Supported) {
16412 if (IsStrict) {
16413 SrcVal = DAG.getNode(ISD::STRICT_FP_EXTEND, Loc,
16414 {DstVT, MVT::Other}, {Chain, SrcVal});
16415 Chain = SrcVal.getValue(1);
16416 } else {
16417 SrcVal = DAG.getNode(ISD::FP_EXTEND, Loc, DstVT, SrcVal);
16418 }
16419 } else {
16420 LC = RTLIB::getFPEXT(SrcVT, DstVT);
16421 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
16422 "Unexpected type for custom-lowering FP_EXTEND");
16423 std::tie(SrcVal, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
16424 Loc, Chain);
16425 }
16426 }
16427
16428 return IsStrict ? DAG.getMergeValues({SrcVal, Chain}, Loc) : SrcVal;
16429 }
16430
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const16431 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
16432 bool IsStrict = Op->isStrictFPOpcode();
16433
16434 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
16435 EVT SrcVT = SrcVal.getValueType();
16436 EVT DstVT = Op.getValueType();
16437 const unsigned DstSz = Op.getValueType().getSizeInBits();
16438 const unsigned SrcSz = SrcVT.getSizeInBits();
16439 (void)DstSz;
16440 assert(DstSz < SrcSz && SrcSz <= 64 && DstSz >= 16 &&
16441 "Unexpected type for custom-lowering FP_ROUND");
16442
16443 assert((!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) &&
16444 "With both FP DP and 16, any FP conversion is legal!");
16445
16446 SDLoc Loc(Op);
16447
16448 // Instruction from 32 -> 16 if hasFP16 is valid
16449 if (SrcSz == 32 && Subtarget->hasFP16())
16450 return Op;
16451
16452 // Lib call from 32 -> 16 / 64 -> [32, 16]
16453 RTLIB::Libcall LC = RTLIB::getFPROUND(SrcVT, DstVT);
16454 assert(LC != RTLIB::UNKNOWN_LIBCALL &&
16455 "Unexpected type for custom-lowering FP_ROUND");
16456 MakeLibCallOptions CallOptions;
16457 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
16458 SDValue Result;
16459 std::tie(Result, Chain) = makeLibCall(DAG, LC, DstVT, SrcVal, CallOptions,
16460 Loc, Chain);
16461 return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
16462 }
16463
lowerABS(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const16464 void ARMTargetLowering::lowerABS(SDNode *N, SmallVectorImpl<SDValue> &Results,
16465 SelectionDAG &DAG) const {
16466 assert(N->getValueType(0) == MVT::i64 && "Unexpected type (!= i64) on ABS.");
16467 MVT HalfT = MVT::i32;
16468 SDLoc dl(N);
16469 SDValue Hi, Lo, Tmp;
16470
16471 if (!isOperationLegalOrCustom(ISD::ADDCARRY, HalfT) ||
16472 !isOperationLegalOrCustom(ISD::UADDO, HalfT))
16473 return ;
16474
16475 unsigned OpTypeBits = HalfT.getScalarSizeInBits();
16476 SDVTList VTList = DAG.getVTList(HalfT, MVT::i1);
16477
16478 Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
16479 DAG.getConstant(0, dl, HalfT));
16480 Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(0),
16481 DAG.getConstant(1, dl, HalfT));
16482
16483 Tmp = DAG.getNode(ISD::SRA, dl, HalfT, Hi,
16484 DAG.getConstant(OpTypeBits - 1, dl,
16485 getShiftAmountTy(HalfT, DAG.getDataLayout())));
16486 Lo = DAG.getNode(ISD::UADDO, dl, VTList, Tmp, Lo);
16487 Hi = DAG.getNode(ISD::ADDCARRY, dl, VTList, Tmp, Hi,
16488 SDValue(Lo.getNode(), 1));
16489 Hi = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Hi);
16490 Lo = DAG.getNode(ISD::XOR, dl, HalfT, Tmp, Lo);
16491
16492 Results.push_back(Lo);
16493 Results.push_back(Hi);
16494 }
16495
16496 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const16497 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16498 // The ARM target isn't yet aware of offsets.
16499 return false;
16500 }
16501
isBitFieldInvertedMask(unsigned v)16502 bool ARM::isBitFieldInvertedMask(unsigned v) {
16503 if (v == 0xffffffff)
16504 return false;
16505
16506 // there can be 1's on either or both "outsides", all the "inside"
16507 // bits must be 0's
16508 return isShiftedMask_32(~v);
16509 }
16510
16511 /// isFPImmLegal - Returns true if the target can instruction select the
16512 /// specified FP immediate natively. If false, the legalizer will
16513 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const16514 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
16515 bool ForCodeSize) const {
16516 if (!Subtarget->hasVFP3Base())
16517 return false;
16518 if (VT == MVT::f16 && Subtarget->hasFullFP16())
16519 return ARM_AM::getFP16Imm(Imm) != -1;
16520 if (VT == MVT::f32)
16521 return ARM_AM::getFP32Imm(Imm) != -1;
16522 if (VT == MVT::f64 && Subtarget->hasFP64())
16523 return ARM_AM::getFP64Imm(Imm) != -1;
16524 return false;
16525 }
16526
16527 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
16528 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
16529 /// specified in the intrinsic calls.
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const16530 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16531 const CallInst &I,
16532 MachineFunction &MF,
16533 unsigned Intrinsic) const {
16534 switch (Intrinsic) {
16535 case Intrinsic::arm_neon_vld1:
16536 case Intrinsic::arm_neon_vld2:
16537 case Intrinsic::arm_neon_vld3:
16538 case Intrinsic::arm_neon_vld4:
16539 case Intrinsic::arm_neon_vld2lane:
16540 case Intrinsic::arm_neon_vld3lane:
16541 case Intrinsic::arm_neon_vld4lane:
16542 case Intrinsic::arm_neon_vld2dup:
16543 case Intrinsic::arm_neon_vld3dup:
16544 case Intrinsic::arm_neon_vld4dup: {
16545 Info.opc = ISD::INTRINSIC_W_CHAIN;
16546 // Conservatively set memVT to the entire set of vectors loaded.
16547 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16548 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
16549 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16550 Info.ptrVal = I.getArgOperand(0);
16551 Info.offset = 0;
16552 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
16553 Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
16554 // volatile loads with NEON intrinsics not supported
16555 Info.flags = MachineMemOperand::MOLoad;
16556 return true;
16557 }
16558 case Intrinsic::arm_neon_vld1x2:
16559 case Intrinsic::arm_neon_vld1x3:
16560 case Intrinsic::arm_neon_vld1x4: {
16561 Info.opc = ISD::INTRINSIC_W_CHAIN;
16562 // Conservatively set memVT to the entire set of vectors loaded.
16563 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16564 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
16565 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16566 Info.ptrVal = I.getArgOperand(I.getNumArgOperands() - 1);
16567 Info.offset = 0;
16568 Info.align.reset();
16569 // volatile loads with NEON intrinsics not supported
16570 Info.flags = MachineMemOperand::MOLoad;
16571 return true;
16572 }
16573 case Intrinsic::arm_neon_vst1:
16574 case Intrinsic::arm_neon_vst2:
16575 case Intrinsic::arm_neon_vst3:
16576 case Intrinsic::arm_neon_vst4:
16577 case Intrinsic::arm_neon_vst2lane:
16578 case Intrinsic::arm_neon_vst3lane:
16579 case Intrinsic::arm_neon_vst4lane: {
16580 Info.opc = ISD::INTRINSIC_VOID;
16581 // Conservatively set memVT to the entire set of vectors stored.
16582 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16583 unsigned NumElts = 0;
16584 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
16585 Type *ArgTy = I.getArgOperand(ArgI)->getType();
16586 if (!ArgTy->isVectorTy())
16587 break;
16588 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
16589 }
16590 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16591 Info.ptrVal = I.getArgOperand(0);
16592 Info.offset = 0;
16593 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
16594 Info.align = MaybeAlign(cast<ConstantInt>(AlignArg)->getZExtValue());
16595 // volatile stores with NEON intrinsics not supported
16596 Info.flags = MachineMemOperand::MOStore;
16597 return true;
16598 }
16599 case Intrinsic::arm_neon_vst1x2:
16600 case Intrinsic::arm_neon_vst1x3:
16601 case Intrinsic::arm_neon_vst1x4: {
16602 Info.opc = ISD::INTRINSIC_VOID;
16603 // Conservatively set memVT to the entire set of vectors stored.
16604 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16605 unsigned NumElts = 0;
16606 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
16607 Type *ArgTy = I.getArgOperand(ArgI)->getType();
16608 if (!ArgTy->isVectorTy())
16609 break;
16610 NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
16611 }
16612 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
16613 Info.ptrVal = I.getArgOperand(0);
16614 Info.offset = 0;
16615 Info.align.reset();
16616 // volatile stores with NEON intrinsics not supported
16617 Info.flags = MachineMemOperand::MOStore;
16618 return true;
16619 }
16620 case Intrinsic::arm_ldaex:
16621 case Intrinsic::arm_ldrex: {
16622 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16623 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
16624 Info.opc = ISD::INTRINSIC_W_CHAIN;
16625 Info.memVT = MVT::getVT(PtrTy->getElementType());
16626 Info.ptrVal = I.getArgOperand(0);
16627 Info.offset = 0;
16628 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
16629 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16630 return true;
16631 }
16632 case Intrinsic::arm_stlex:
16633 case Intrinsic::arm_strex: {
16634 auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
16635 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
16636 Info.opc = ISD::INTRINSIC_W_CHAIN;
16637 Info.memVT = MVT::getVT(PtrTy->getElementType());
16638 Info.ptrVal = I.getArgOperand(1);
16639 Info.offset = 0;
16640 Info.align = MaybeAlign(DL.getABITypeAlignment(PtrTy->getElementType()));
16641 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16642 return true;
16643 }
16644 case Intrinsic::arm_stlexd:
16645 case Intrinsic::arm_strexd:
16646 Info.opc = ISD::INTRINSIC_W_CHAIN;
16647 Info.memVT = MVT::i64;
16648 Info.ptrVal = I.getArgOperand(2);
16649 Info.offset = 0;
16650 Info.align = Align(8);
16651 Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
16652 return true;
16653
16654 case Intrinsic::arm_ldaexd:
16655 case Intrinsic::arm_ldrexd:
16656 Info.opc = ISD::INTRINSIC_W_CHAIN;
16657 Info.memVT = MVT::i64;
16658 Info.ptrVal = I.getArgOperand(0);
16659 Info.offset = 0;
16660 Info.align = Align(8);
16661 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
16662 return true;
16663
16664 default:
16665 break;
16666 }
16667
16668 return false;
16669 }
16670
16671 /// Returns true if it is beneficial to convert a load of a constant
16672 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const16673 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
16674 Type *Ty) const {
16675 assert(Ty->isIntegerTy());
16676
16677 unsigned Bits = Ty->getPrimitiveSizeInBits();
16678 if (Bits == 0 || Bits > 32)
16679 return false;
16680 return true;
16681 }
16682
isExtractSubvectorCheap(EVT ResVT,EVT SrcVT,unsigned Index) const16683 bool ARMTargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
16684 unsigned Index) const {
16685 if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
16686 return false;
16687
16688 return (Index == 0 || Index == ResVT.getVectorNumElements());
16689 }
16690
makeDMB(IRBuilder<> & Builder,ARM_MB::MemBOpt Domain) const16691 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
16692 ARM_MB::MemBOpt Domain) const {
16693 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16694
16695 // First, if the target has no DMB, see what fallback we can use.
16696 if (!Subtarget->hasDataBarrier()) {
16697 // Some ARMv6 cpus can support data barriers with an mcr instruction.
16698 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
16699 // here.
16700 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
16701 Function *MCR = Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
16702 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
16703 Builder.getInt32(0), Builder.getInt32(7),
16704 Builder.getInt32(10), Builder.getInt32(5)};
16705 return Builder.CreateCall(MCR, args);
16706 } else {
16707 // Instead of using barriers, atomic accesses on these subtargets use
16708 // libcalls.
16709 llvm_unreachable("makeDMB on a target so old that it has no barriers");
16710 }
16711 } else {
16712 Function *DMB = Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
16713 // Only a full system barrier exists in the M-class architectures.
16714 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
16715 Constant *CDomain = Builder.getInt32(Domain);
16716 return Builder.CreateCall(DMB, CDomain);
16717 }
16718 }
16719
16720 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const16721 Instruction *ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
16722 Instruction *Inst,
16723 AtomicOrdering Ord) const {
16724 switch (Ord) {
16725 case AtomicOrdering::NotAtomic:
16726 case AtomicOrdering::Unordered:
16727 llvm_unreachable("Invalid fence: unordered/non-atomic");
16728 case AtomicOrdering::Monotonic:
16729 case AtomicOrdering::Acquire:
16730 return nullptr; // Nothing to do
16731 case AtomicOrdering::SequentiallyConsistent:
16732 if (!Inst->hasAtomicStore())
16733 return nullptr; // Nothing to do
16734 LLVM_FALLTHROUGH;
16735 case AtomicOrdering::Release:
16736 case AtomicOrdering::AcquireRelease:
16737 if (Subtarget->preferISHSTBarriers())
16738 return makeDMB(Builder, ARM_MB::ISHST);
16739 // FIXME: add a comment with a link to documentation justifying this.
16740 else
16741 return makeDMB(Builder, ARM_MB::ISH);
16742 }
16743 llvm_unreachable("Unknown fence ordering in emitLeadingFence");
16744 }
16745
emitTrailingFence(IRBuilder<> & Builder,Instruction * Inst,AtomicOrdering Ord) const16746 Instruction *ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
16747 Instruction *Inst,
16748 AtomicOrdering Ord) const {
16749 switch (Ord) {
16750 case AtomicOrdering::NotAtomic:
16751 case AtomicOrdering::Unordered:
16752 llvm_unreachable("Invalid fence: unordered/not-atomic");
16753 case AtomicOrdering::Monotonic:
16754 case AtomicOrdering::Release:
16755 return nullptr; // Nothing to do
16756 case AtomicOrdering::Acquire:
16757 case AtomicOrdering::AcquireRelease:
16758 case AtomicOrdering::SequentiallyConsistent:
16759 return makeDMB(Builder, ARM_MB::ISH);
16760 }
16761 llvm_unreachable("Unknown fence ordering in emitTrailingFence");
16762 }
16763
16764 // Loads and stores less than 64-bits are already atomic; ones above that
16765 // are doomed anyway, so defer to the default libcall and blame the OS when
16766 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16767 // anything for those.
shouldExpandAtomicStoreInIR(StoreInst * SI) const16768 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
16769 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
16770 return (Size == 64) && !Subtarget->isMClass();
16771 }
16772
16773 // Loads and stores less than 64-bits are already atomic; ones above that
16774 // are doomed anyway, so defer to the default libcall and blame the OS when
16775 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
16776 // anything for those.
16777 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
16778 // guarantee, see DDI0406C ARM architecture reference manual,
16779 // sections A8.8.72-74 LDRD)
16780 TargetLowering::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst * LI) const16781 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
16782 unsigned Size = LI->getType()->getPrimitiveSizeInBits();
16783 return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
16784 : AtomicExpansionKind::None;
16785 }
16786
16787 // For the real atomic operations, we have ldrex/strex up to 32 bits,
16788 // and up to 64 bits on the non-M profiles
16789 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const16790 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
16791 if (AI->isFloatingPointOperation())
16792 return AtomicExpansionKind::CmpXChg;
16793
16794 unsigned Size = AI->getType()->getPrimitiveSizeInBits();
16795 bool hasAtomicRMW = !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
16796 return (Size <= (Subtarget->isMClass() ? 32U : 64U) && hasAtomicRMW)
16797 ? AtomicExpansionKind::LLSC
16798 : AtomicExpansionKind::None;
16799 }
16800
16801 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const16802 ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
16803 // At -O0, fast-regalloc cannot cope with the live vregs necessary to
16804 // implement cmpxchg without spilling. If the address being exchanged is also
16805 // on the stack and close enough to the spill slot, this can lead to a
16806 // situation where the monitor always gets cleared and the atomic operation
16807 // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead.
16808 bool HasAtomicCmpXchg =
16809 !Subtarget->isThumb() || Subtarget->hasV8MBaselineOps();
16810 if (getTargetMachine().getOptLevel() != 0 && HasAtomicCmpXchg)
16811 return AtomicExpansionKind::LLSC;
16812 return AtomicExpansionKind::None;
16813 }
16814
shouldInsertFencesForAtomic(const Instruction * I) const16815 bool ARMTargetLowering::shouldInsertFencesForAtomic(
16816 const Instruction *I) const {
16817 return InsertFencesForAtomic;
16818 }
16819
16820 // This has so far only been implemented for MachO.
useLoadStackGuardNode() const16821 bool ARMTargetLowering::useLoadStackGuardNode() const {
16822 return Subtarget->isTargetMachO();
16823 }
16824
insertSSPDeclarations(Module & M) const16825 void ARMTargetLowering::insertSSPDeclarations(Module &M) const {
16826 if (!Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
16827 return TargetLowering::insertSSPDeclarations(M);
16828
16829 // MSVC CRT has a global variable holding security cookie.
16830 M.getOrInsertGlobal("__security_cookie",
16831 Type::getInt8PtrTy(M.getContext()));
16832
16833 // MSVC CRT has a function to validate security cookie.
16834 FunctionCallee SecurityCheckCookie = M.getOrInsertFunction(
16835 "__security_check_cookie", Type::getVoidTy(M.getContext()),
16836 Type::getInt8PtrTy(M.getContext()));
16837 if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee()))
16838 F->addAttribute(1, Attribute::AttrKind::InReg);
16839 }
16840
getSDagStackGuard(const Module & M) const16841 Value *ARMTargetLowering::getSDagStackGuard(const Module &M) const {
16842 // MSVC CRT has a global variable holding security cookie.
16843 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
16844 return M.getGlobalVariable("__security_cookie");
16845 return TargetLowering::getSDagStackGuard(M);
16846 }
16847
getSSPStackGuardCheck(const Module & M) const16848 Function *ARMTargetLowering::getSSPStackGuardCheck(const Module &M) const {
16849 // MSVC CRT has a function to validate security cookie.
16850 if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment())
16851 return M.getFunction("__security_check_cookie");
16852 return TargetLowering::getSSPStackGuardCheck(M);
16853 }
16854
canCombineStoreAndExtract(Type * VectorTy,Value * Idx,unsigned & Cost) const16855 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
16856 unsigned &Cost) const {
16857 // If we do not have NEON, vector types are not natively supported.
16858 if (!Subtarget->hasNEON())
16859 return false;
16860
16861 // Floating point values and vector values map to the same register file.
16862 // Therefore, although we could do a store extract of a vector type, this is
16863 // better to leave at float as we have more freedom in the addressing mode for
16864 // those.
16865 if (VectorTy->isFPOrFPVectorTy())
16866 return false;
16867
16868 // If the index is unknown at compile time, this is very expensive to lower
16869 // and it is not possible to combine the store with the extract.
16870 if (!isa<ConstantInt>(Idx))
16871 return false;
16872
16873 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
16874 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
16875 // We can do a store + vector extract on any vector that fits perfectly in a D
16876 // or Q register.
16877 if (BitWidth == 64 || BitWidth == 128) {
16878 Cost = 0;
16879 return true;
16880 }
16881 return false;
16882 }
16883
isCheapToSpeculateCttz() const16884 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
16885 return Subtarget->hasV6T2Ops();
16886 }
16887
isCheapToSpeculateCtlz() const16888 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
16889 return Subtarget->hasV6T2Ops();
16890 }
16891
shouldExpandShift(SelectionDAG & DAG,SDNode * N) const16892 bool ARMTargetLowering::shouldExpandShift(SelectionDAG &DAG, SDNode *N) const {
16893 return !Subtarget->hasMinSize() || Subtarget->isTargetWindows();
16894 }
16895
emitLoadLinked(IRBuilder<> & Builder,Value * Addr,AtomicOrdering Ord) const16896 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
16897 AtomicOrdering Ord) const {
16898 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16899 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
16900 bool IsAcquire = isAcquireOrStronger(Ord);
16901
16902 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
16903 // intrinsic must return {i32, i32} and we have to recombine them into a
16904 // single i64 here.
16905 if (ValTy->getPrimitiveSizeInBits() == 64) {
16906 Intrinsic::ID Int =
16907 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
16908 Function *Ldrex = Intrinsic::getDeclaration(M, Int);
16909
16910 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16911 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
16912
16913 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
16914 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
16915 if (!Subtarget->isLittle())
16916 std::swap (Lo, Hi);
16917 Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
16918 Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
16919 return Builder.CreateOr(
16920 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
16921 }
16922
16923 Type *Tys[] = { Addr->getType() };
16924 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
16925 Function *Ldrex = Intrinsic::getDeclaration(M, Int, Tys);
16926
16927 return Builder.CreateTruncOrBitCast(
16928 Builder.CreateCall(Ldrex, Addr),
16929 cast<PointerType>(Addr->getType())->getElementType());
16930 }
16931
emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> & Builder) const16932 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
16933 IRBuilder<> &Builder) const {
16934 if (!Subtarget->hasV7Ops())
16935 return;
16936 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16937 Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
16938 }
16939
emitStoreConditional(IRBuilder<> & Builder,Value * Val,Value * Addr,AtomicOrdering Ord) const16940 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
16941 Value *Addr,
16942 AtomicOrdering Ord) const {
16943 Module *M = Builder.GetInsertBlock()->getParent()->getParent();
16944 bool IsRelease = isReleaseOrStronger(Ord);
16945
16946 // Since the intrinsics must have legal type, the i64 intrinsics take two
16947 // parameters: "i32, i32". We must marshal Val into the appropriate form
16948 // before the call.
16949 if (Val->getType()->getPrimitiveSizeInBits() == 64) {
16950 Intrinsic::ID Int =
16951 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
16952 Function *Strex = Intrinsic::getDeclaration(M, Int);
16953 Type *Int32Ty = Type::getInt32Ty(M->getContext());
16954
16955 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
16956 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
16957 if (!Subtarget->isLittle())
16958 std::swap(Lo, Hi);
16959 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
16960 return Builder.CreateCall(Strex, {Lo, Hi, Addr});
16961 }
16962
16963 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
16964 Type *Tys[] = { Addr->getType() };
16965 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
16966
16967 return Builder.CreateCall(
16968 Strex, {Builder.CreateZExtOrBitCast(
16969 Val, Strex->getFunctionType()->getParamType(0)),
16970 Addr});
16971 }
16972
16973
alignLoopsWithOptSize() const16974 bool ARMTargetLowering::alignLoopsWithOptSize() const {
16975 return Subtarget->isMClass();
16976 }
16977
16978 /// A helper function for determining the number of interleaved accesses we
16979 /// will generate when lowering accesses of the given type.
16980 unsigned
getNumInterleavedAccesses(VectorType * VecTy,const DataLayout & DL) const16981 ARMTargetLowering::getNumInterleavedAccesses(VectorType *VecTy,
16982 const DataLayout &DL) const {
16983 return (DL.getTypeSizeInBits(VecTy) + 127) / 128;
16984 }
16985
isLegalInterleavedAccessType(unsigned Factor,VectorType * VecTy,const DataLayout & DL) const16986 bool ARMTargetLowering::isLegalInterleavedAccessType(
16987 unsigned Factor, VectorType *VecTy, const DataLayout &DL) const {
16988
16989 unsigned VecSize = DL.getTypeSizeInBits(VecTy);
16990 unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType());
16991
16992 if (!Subtarget->hasNEON() && !Subtarget->hasMVEIntegerOps())
16993 return false;
16994
16995 // Ensure the vector doesn't have f16 elements. Even though we could do an
16996 // i16 vldN, we can't hold the f16 vectors and will end up converting via
16997 // f32.
16998 if (Subtarget->hasNEON() && VecTy->getElementType()->isHalfTy())
16999 return false;
17000 if (Subtarget->hasMVEIntegerOps() && Factor == 3)
17001 return false;
17002
17003 // Ensure the number of vector elements is greater than 1.
17004 if (VecTy->getNumElements() < 2)
17005 return false;
17006
17007 // Ensure the element type is legal.
17008 if (ElSize != 8 && ElSize != 16 && ElSize != 32)
17009 return false;
17010
17011 // Ensure the total vector size is 64 or a multiple of 128. Types larger than
17012 // 128 will be split into multiple interleaved accesses.
17013 if (Subtarget->hasNEON() && VecSize == 64)
17014 return true;
17015 return VecSize % 128 == 0;
17016 }
17017
getMaxSupportedInterleaveFactor() const17018 unsigned ARMTargetLowering::getMaxSupportedInterleaveFactor() const {
17019 if (Subtarget->hasNEON())
17020 return 4;
17021 if (Subtarget->hasMVEIntegerOps())
17022 return MVEMaxSupportedInterleaveFactor;
17023 return TargetLoweringBase::getMaxSupportedInterleaveFactor();
17024 }
17025
17026 /// Lower an interleaved load into a vldN intrinsic.
17027 ///
17028 /// E.g. Lower an interleaved load (Factor = 2):
17029 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
17030 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
17031 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
17032 ///
17033 /// Into:
17034 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
17035 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
17036 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
lowerInterleavedLoad(LoadInst * LI,ArrayRef<ShuffleVectorInst * > Shuffles,ArrayRef<unsigned> Indices,unsigned Factor) const17037 bool ARMTargetLowering::lowerInterleavedLoad(
17038 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
17039 ArrayRef<unsigned> Indices, unsigned Factor) const {
17040 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
17041 "Invalid interleave factor");
17042 assert(!Shuffles.empty() && "Empty shufflevector input");
17043 assert(Shuffles.size() == Indices.size() &&
17044 "Unmatched number of shufflevectors and indices");
17045
17046 VectorType *VecTy = Shuffles[0]->getType();
17047 Type *EltTy = VecTy->getVectorElementType();
17048
17049 const DataLayout &DL = LI->getModule()->getDataLayout();
17050
17051 // Skip if we do not have NEON and skip illegal vector types. We can
17052 // "legalize" wide vector types into multiple interleaved accesses as long as
17053 // the vector types are divisible by 128.
17054 if (!isLegalInterleavedAccessType(Factor, VecTy, DL))
17055 return false;
17056
17057 unsigned NumLoads = getNumInterleavedAccesses(VecTy, DL);
17058
17059 // A pointer vector can not be the return type of the ldN intrinsics. Need to
17060 // load integer vectors first and then convert to pointer vectors.
17061 if (EltTy->isPointerTy())
17062 VecTy =
17063 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
17064
17065 IRBuilder<> Builder(LI);
17066
17067 // The base address of the load.
17068 Value *BaseAddr = LI->getPointerOperand();
17069
17070 if (NumLoads > 1) {
17071 // If we're going to generate more than one load, reset the sub-vector type
17072 // to something legal.
17073 VecTy = VectorType::get(VecTy->getVectorElementType(),
17074 VecTy->getVectorNumElements() / NumLoads);
17075
17076 // We will compute the pointer operand of each load from the original base
17077 // address using GEPs. Cast the base address to a pointer to the scalar
17078 // element type.
17079 BaseAddr = Builder.CreateBitCast(
17080 BaseAddr, VecTy->getVectorElementType()->getPointerTo(
17081 LI->getPointerAddressSpace()));
17082 }
17083
17084 assert(isTypeLegal(EVT::getEVT(VecTy)) && "Illegal vldN vector type!");
17085
17086 auto createLoadIntrinsic = [&](Value *BaseAddr) {
17087 if (Subtarget->hasNEON()) {
17088 Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
17089 Type *Tys[] = {VecTy, Int8Ptr};
17090 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
17091 Intrinsic::arm_neon_vld3,
17092 Intrinsic::arm_neon_vld4};
17093 Function *VldnFunc =
17094 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
17095
17096 SmallVector<Value *, 2> Ops;
17097 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
17098 Ops.push_back(Builder.getInt32(LI->getAlignment()));
17099
17100 return Builder.CreateCall(VldnFunc, Ops, "vldN");
17101 } else {
17102 assert((Factor == 2 || Factor == 4) &&
17103 "expected interleave factor of 2 or 4 for MVE");
17104 Intrinsic::ID LoadInts =
17105 Factor == 2 ? Intrinsic::arm_mve_vld2q : Intrinsic::arm_mve_vld4q;
17106 Type *VecEltTy = VecTy->getVectorElementType()->getPointerTo(
17107 LI->getPointerAddressSpace());
17108 Type *Tys[] = {VecTy, VecEltTy};
17109 Function *VldnFunc =
17110 Intrinsic::getDeclaration(LI->getModule(), LoadInts, Tys);
17111
17112 SmallVector<Value *, 2> Ops;
17113 Ops.push_back(Builder.CreateBitCast(BaseAddr, VecEltTy));
17114 return Builder.CreateCall(VldnFunc, Ops, "vldN");
17115 }
17116 };
17117
17118 // Holds sub-vectors extracted from the load intrinsic return values. The
17119 // sub-vectors are associated with the shufflevector instructions they will
17120 // replace.
17121 DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs;
17122
17123 for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) {
17124 // If we're generating more than one load, compute the base address of
17125 // subsequent loads as an offset from the previous.
17126 if (LoadCount > 0)
17127 BaseAddr =
17128 Builder.CreateConstGEP1_32(VecTy->getVectorElementType(), BaseAddr,
17129 VecTy->getVectorNumElements() * Factor);
17130
17131 CallInst *VldN = createLoadIntrinsic(BaseAddr);
17132
17133 // Replace uses of each shufflevector with the corresponding vector loaded
17134 // by ldN.
17135 for (unsigned i = 0; i < Shuffles.size(); i++) {
17136 ShuffleVectorInst *SV = Shuffles[i];
17137 unsigned Index = Indices[i];
17138
17139 Value *SubVec = Builder.CreateExtractValue(VldN, Index);
17140
17141 // Convert the integer vector to pointer vector if the element is pointer.
17142 if (EltTy->isPointerTy())
17143 SubVec = Builder.CreateIntToPtr(
17144 SubVec, VectorType::get(SV->getType()->getVectorElementType(),
17145 VecTy->getVectorNumElements()));
17146
17147 SubVecs[SV].push_back(SubVec);
17148 }
17149 }
17150
17151 // Replace uses of the shufflevector instructions with the sub-vectors
17152 // returned by the load intrinsic. If a shufflevector instruction is
17153 // associated with more than one sub-vector, those sub-vectors will be
17154 // concatenated into a single wide vector.
17155 for (ShuffleVectorInst *SVI : Shuffles) {
17156 auto &SubVec = SubVecs[SVI];
17157 auto *WideVec =
17158 SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0];
17159 SVI->replaceAllUsesWith(WideVec);
17160 }
17161
17162 return true;
17163 }
17164
17165 /// Lower an interleaved store into a vstN intrinsic.
17166 ///
17167 /// E.g. Lower an interleaved store (Factor = 3):
17168 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
17169 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
17170 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
17171 ///
17172 /// Into:
17173 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
17174 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
17175 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
17176 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
17177 ///
17178 /// Note that the new shufflevectors will be removed and we'll only generate one
17179 /// vst3 instruction in CodeGen.
17180 ///
17181 /// Example for a more general valid mask (Factor 3). Lower:
17182 /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1,
17183 /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
17184 /// store <12 x i32> %i.vec, <12 x i32>* %ptr
17185 ///
17186 /// Into:
17187 /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7>
17188 /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35>
17189 /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19>
17190 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
lowerInterleavedStore(StoreInst * SI,ShuffleVectorInst * SVI,unsigned Factor) const17191 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
17192 ShuffleVectorInst *SVI,
17193 unsigned Factor) const {
17194 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
17195 "Invalid interleave factor");
17196
17197 VectorType *VecTy = SVI->getType();
17198 assert(VecTy->getVectorNumElements() % Factor == 0 &&
17199 "Invalid interleaved store");
17200
17201 unsigned LaneLen = VecTy->getVectorNumElements() / Factor;
17202 Type *EltTy = VecTy->getVectorElementType();
17203 VectorType *SubVecTy = VectorType::get(EltTy, LaneLen);
17204
17205 const DataLayout &DL = SI->getModule()->getDataLayout();
17206
17207 // Skip if we do not have NEON and skip illegal vector types. We can
17208 // "legalize" wide vector types into multiple interleaved accesses as long as
17209 // the vector types are divisible by 128.
17210 if (!isLegalInterleavedAccessType(Factor, SubVecTy, DL))
17211 return false;
17212
17213 unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL);
17214
17215 Value *Op0 = SVI->getOperand(0);
17216 Value *Op1 = SVI->getOperand(1);
17217 IRBuilder<> Builder(SI);
17218
17219 // StN intrinsics don't support pointer vectors as arguments. Convert pointer
17220 // vectors to integer vectors.
17221 if (EltTy->isPointerTy()) {
17222 Type *IntTy = DL.getIntPtrType(EltTy);
17223
17224 // Convert to the corresponding integer vector.
17225 Type *IntVecTy =
17226 VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
17227 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
17228 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
17229
17230 SubVecTy = VectorType::get(IntTy, LaneLen);
17231 }
17232
17233 // The base address of the store.
17234 Value *BaseAddr = SI->getPointerOperand();
17235
17236 if (NumStores > 1) {
17237 // If we're going to generate more than one store, reset the lane length
17238 // and sub-vector type to something legal.
17239 LaneLen /= NumStores;
17240 SubVecTy = VectorType::get(SubVecTy->getVectorElementType(), LaneLen);
17241
17242 // We will compute the pointer operand of each store from the original base
17243 // address using GEPs. Cast the base address to a pointer to the scalar
17244 // element type.
17245 BaseAddr = Builder.CreateBitCast(
17246 BaseAddr, SubVecTy->getVectorElementType()->getPointerTo(
17247 SI->getPointerAddressSpace()));
17248 }
17249
17250 assert(isTypeLegal(EVT::getEVT(SubVecTy)) && "Illegal vstN vector type!");
17251
17252 auto Mask = SVI->getShuffleMask();
17253
17254 auto createStoreIntrinsic = [&](Value *BaseAddr,
17255 SmallVectorImpl<Value *> &Shuffles) {
17256 if (Subtarget->hasNEON()) {
17257 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
17258 Intrinsic::arm_neon_vst3,
17259 Intrinsic::arm_neon_vst4};
17260 Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
17261 Type *Tys[] = {Int8Ptr, SubVecTy};
17262
17263 Function *VstNFunc = Intrinsic::getDeclaration(
17264 SI->getModule(), StoreInts[Factor - 2], Tys);
17265
17266 SmallVector<Value *, 6> Ops;
17267 Ops.push_back(Builder.CreateBitCast(BaseAddr, Int8Ptr));
17268 for (auto S : Shuffles)
17269 Ops.push_back(S);
17270 Ops.push_back(Builder.getInt32(SI->getAlignment()));
17271 Builder.CreateCall(VstNFunc, Ops);
17272 } else {
17273 assert((Factor == 2 || Factor == 4) &&
17274 "expected interleave factor of 2 or 4 for MVE");
17275 Intrinsic::ID StoreInts =
17276 Factor == 2 ? Intrinsic::arm_mve_vst2q : Intrinsic::arm_mve_vst4q;
17277 Type *EltPtrTy = SubVecTy->getVectorElementType()->getPointerTo(
17278 SI->getPointerAddressSpace());
17279 Type *Tys[] = {EltPtrTy, SubVecTy};
17280 Function *VstNFunc =
17281 Intrinsic::getDeclaration(SI->getModule(), StoreInts, Tys);
17282
17283 SmallVector<Value *, 6> Ops;
17284 Ops.push_back(Builder.CreateBitCast(BaseAddr, EltPtrTy));
17285 for (auto S : Shuffles)
17286 Ops.push_back(S);
17287 for (unsigned F = 0; F < Factor; F++) {
17288 Ops.push_back(Builder.getInt32(F));
17289 Builder.CreateCall(VstNFunc, Ops);
17290 Ops.pop_back();
17291 }
17292 }
17293 };
17294
17295 for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) {
17296 // If we generating more than one store, we compute the base address of
17297 // subsequent stores as an offset from the previous.
17298 if (StoreCount > 0)
17299 BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getVectorElementType(),
17300 BaseAddr, LaneLen * Factor);
17301
17302 SmallVector<Value *, 4> Shuffles;
17303
17304 // Split the shufflevector operands into sub vectors for the new vstN call.
17305 for (unsigned i = 0; i < Factor; i++) {
17306 unsigned IdxI = StoreCount * LaneLen * Factor + i;
17307 if (Mask[IdxI] >= 0) {
17308 Shuffles.push_back(Builder.CreateShuffleVector(
17309 Op0, Op1, createSequentialMask(Builder, Mask[IdxI], LaneLen, 0)));
17310 } else {
17311 unsigned StartMask = 0;
17312 for (unsigned j = 1; j < LaneLen; j++) {
17313 unsigned IdxJ = StoreCount * LaneLen * Factor + j;
17314 if (Mask[IdxJ * Factor + IdxI] >= 0) {
17315 StartMask = Mask[IdxJ * Factor + IdxI] - IdxJ;
17316 break;
17317 }
17318 }
17319 // Note: If all elements in a chunk are undefs, StartMask=0!
17320 // Note: Filling undef gaps with random elements is ok, since
17321 // those elements were being written anyway (with undefs).
17322 // In the case of all undefs we're defaulting to using elems from 0
17323 // Note: StartMask cannot be negative, it's checked in
17324 // isReInterleaveMask
17325 Shuffles.push_back(Builder.CreateShuffleVector(
17326 Op0, Op1, createSequentialMask(Builder, StartMask, LaneLen, 0)));
17327 }
17328 }
17329
17330 createStoreIntrinsic(BaseAddr, Shuffles);
17331 }
17332 return true;
17333 }
17334
17335 enum HABaseType {
17336 HA_UNKNOWN = 0,
17337 HA_FLOAT,
17338 HA_DOUBLE,
17339 HA_VECT64,
17340 HA_VECT128
17341 };
17342
isHomogeneousAggregate(Type * Ty,HABaseType & Base,uint64_t & Members)17343 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
17344 uint64_t &Members) {
17345 if (auto *ST = dyn_cast<StructType>(Ty)) {
17346 for (unsigned i = 0; i < ST->getNumElements(); ++i) {
17347 uint64_t SubMembers = 0;
17348 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
17349 return false;
17350 Members += SubMembers;
17351 }
17352 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
17353 uint64_t SubMembers = 0;
17354 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
17355 return false;
17356 Members += SubMembers * AT->getNumElements();
17357 } else if (Ty->isFloatTy()) {
17358 if (Base != HA_UNKNOWN && Base != HA_FLOAT)
17359 return false;
17360 Members = 1;
17361 Base = HA_FLOAT;
17362 } else if (Ty->isDoubleTy()) {
17363 if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
17364 return false;
17365 Members = 1;
17366 Base = HA_DOUBLE;
17367 } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
17368 Members = 1;
17369 switch (Base) {
17370 case HA_FLOAT:
17371 case HA_DOUBLE:
17372 return false;
17373 case HA_VECT64:
17374 return VT->getBitWidth() == 64;
17375 case HA_VECT128:
17376 return VT->getBitWidth() == 128;
17377 case HA_UNKNOWN:
17378 switch (VT->getBitWidth()) {
17379 case 64:
17380 Base = HA_VECT64;
17381 return true;
17382 case 128:
17383 Base = HA_VECT128;
17384 return true;
17385 default:
17386 return false;
17387 }
17388 }
17389 }
17390
17391 return (Members > 0 && Members <= 4);
17392 }
17393
17394 /// Return the correct alignment for the current calling convention.
getABIAlignmentForCallingConv(Type * ArgTy,DataLayout DL) const17395 Align ARMTargetLowering::getABIAlignmentForCallingConv(Type *ArgTy,
17396 DataLayout DL) const {
17397 const Align ABITypeAlign(DL.getABITypeAlignment(ArgTy));
17398 if (!ArgTy->isVectorTy())
17399 return ABITypeAlign;
17400
17401 // Avoid over-aligning vector parameters. It would require realigning the
17402 // stack and waste space for no real benefit.
17403 return std::min(ABITypeAlign, DL.getStackAlignment());
17404 }
17405
17406 /// Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
17407 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
17408 /// passing according to AAPCS rules.
functionArgumentNeedsConsecutiveRegisters(Type * Ty,CallingConv::ID CallConv,bool isVarArg) const17409 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
17410 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
17411 if (getEffectiveCallingConv(CallConv, isVarArg) !=
17412 CallingConv::ARM_AAPCS_VFP)
17413 return false;
17414
17415 HABaseType Base = HA_UNKNOWN;
17416 uint64_t Members = 0;
17417 bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
17418 LLVM_DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
17419
17420 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
17421 return IsHA || IsIntArray;
17422 }
17423
getExceptionPointerRegister(const Constant * PersonalityFn) const17424 unsigned ARMTargetLowering::getExceptionPointerRegister(
17425 const Constant *PersonalityFn) const {
17426 // Platforms which do not use SjLj EH may return values in these registers
17427 // via the personality function.
17428 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
17429 }
17430
getExceptionSelectorRegister(const Constant * PersonalityFn) const17431 unsigned ARMTargetLowering::getExceptionSelectorRegister(
17432 const Constant *PersonalityFn) const {
17433 // Platforms which do not use SjLj EH may return values in these registers
17434 // via the personality function.
17435 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
17436 }
17437
initializeSplitCSR(MachineBasicBlock * Entry) const17438 void ARMTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
17439 // Update IsSplitCSR in ARMFunctionInfo.
17440 ARMFunctionInfo *AFI = Entry->getParent()->getInfo<ARMFunctionInfo>();
17441 AFI->setIsSplitCSR(true);
17442 }
17443
insertCopiesSplitCSR(MachineBasicBlock * Entry,const SmallVectorImpl<MachineBasicBlock * > & Exits) const17444 void ARMTargetLowering::insertCopiesSplitCSR(
17445 MachineBasicBlock *Entry,
17446 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
17447 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
17448 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
17449 if (!IStart)
17450 return;
17451
17452 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
17453 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
17454 MachineBasicBlock::iterator MBBI = Entry->begin();
17455 for (const MCPhysReg *I = IStart; *I; ++I) {
17456 const TargetRegisterClass *RC = nullptr;
17457 if (ARM::GPRRegClass.contains(*I))
17458 RC = &ARM::GPRRegClass;
17459 else if (ARM::DPRRegClass.contains(*I))
17460 RC = &ARM::DPRRegClass;
17461 else
17462 llvm_unreachable("Unexpected register class in CSRsViaCopy!");
17463
17464 Register NewVR = MRI->createVirtualRegister(RC);
17465 // Create copy from CSR to a virtual register.
17466 // FIXME: this currently does not emit CFI pseudo-instructions, it works
17467 // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
17468 // nounwind. If we want to generalize this later, we may need to emit
17469 // CFI pseudo-instructions.
17470 assert(Entry->getParent()->getFunction().hasFnAttribute(
17471 Attribute::NoUnwind) &&
17472 "Function should be nounwind in insertCopiesSplitCSR!");
17473 Entry->addLiveIn(*I);
17474 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
17475 .addReg(*I);
17476
17477 // Insert the copy-back instructions right before the terminator.
17478 for (auto *Exit : Exits)
17479 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
17480 TII->get(TargetOpcode::COPY), *I)
17481 .addReg(NewVR);
17482 }
17483 }
17484
finalizeLowering(MachineFunction & MF) const17485 void ARMTargetLowering::finalizeLowering(MachineFunction &MF) const {
17486 MF.getFrameInfo().computeMaxCallFrameSize(MF);
17487 TargetLoweringBase::finalizeLowering(MF);
17488 }
17489