• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "nnacl/infer/pooling_infer.h"
18 #include <math.h>
19 #include "nnacl/infer/infer_register.h"
20 
ComputePadList(PoolingParameter * param,int input_h,int input_w,int output_h,int output_w)21 int ComputePadList(PoolingParameter *param, int input_h, int input_w, int output_h, int output_w) {
22   if (param == NULL) {
23     return NNACL_NULL_PTR;
24   }
25   int pad_h_all = ((output_h - 1) * param->stride_h_ + (param->window_h_ - 1) + 1 - input_h);
26   int pad_w_all = ((output_w - 1) * param->stride_w_ + (param->window_w_ - 1) + 1 - input_w);
27   if (pad_h_all < 0) {
28     param->pad_u_ = param->pad_d_ = 0;
29   } else {
30     param->pad_u_ = pad_h_all / 2;
31     param->pad_d_ = pad_h_all - param->pad_u_;
32   }
33   if (pad_w_all < 0) {
34     param->pad_l_ = param->pad_r_ = 0;
35   } else {
36     param->pad_l_ = pad_w_all / 2;
37     param->pad_r_ = pad_w_all - param->pad_l_;
38   }
39   return NNACL_OK;
40 }
41 
PoolingInferShape(const TensorC * const * inputs,size_t inputs_size,TensorC ** outputs,size_t outputs_size,OpParameter * parameter)42 int PoolingInferShape(const TensorC *const *inputs, size_t inputs_size, TensorC **outputs, size_t outputs_size,
43                       OpParameter *parameter) {
44   int check_ret = CheckAugmentWithMinSize(inputs, inputs_size, outputs, outputs_size, parameter, 1, 1);
45   if (check_ret != NNACL_OK) {
46     return check_ret;
47   }
48 
49   const TensorC *input = inputs[0];
50   NNACL_CHECK_TRUE_RET(input->format_ == Format_NHWC, NNACL_FORMAT_ERROR);
51   for (size_t i = 0; i < outputs_size; i++) {
52     TensorC *output = outputs[i];
53     SetDataTypeFormat(output, input);
54   }
55   PoolingParameter *param = (PoolingParameter *)parameter;
56   if (!InferFlag(inputs, inputs_size)) {
57     return NNACL_INFER_INVALID;
58   }
59   if (input->shape_size_ < 3 || input->shape_size_ > MAX_SHAPE_SIZE) {
60     return NNACL_INPUT_TENSOR_ERROR;
61   }
62   int input_h = input->shape_[1];
63   int input_w = input->shape_[2];
64 
65   int window_h = param->window_h_;
66   int window_w = param->window_w_;
67   if (param->global_) {
68     param->window_h_ = window_h = input_h;
69     param->window_w_ = window_w = input_w;
70   }
71   int output_h = 0;
72   int output_w = 0;
73   if ((param->stride_h_ == 0 || param->stride_w_ == 0) && !param->global_) {
74     return NNACL_PARAM_INVALID;
75   }
76   if (param->pad_mode_ == Pad_same) {
77     output_w = ceil((float)(input_w) / (float)(param->stride_w_));
78     output_h = ceil((float)(input_h) / (float)(param->stride_h_));
79     if (ComputePadList(param, input_h, input_w, output_h, output_w) != NNACL_OK) {
80       return NNACL_NULL_PTR;
81     }
82   } else {
83     int round_mode = (RoundType)param->round_type_;
84     if (round_mode == RoundType_Floor) {
85       output_h = floor((float)(input_h + param->pad_u_ + param->pad_d_ - window_h) / param->stride_h_) + 1;
86       output_w = floor((float)(input_w + param->pad_l_ + param->pad_r_ - window_w) / param->stride_w_) + 1;
87     } else if (round_mode == RoundType_Ceil) {
88       output_h = ceil((float)(input_h + param->pad_u_ + param->pad_d_ - window_h) / param->stride_h_) + 1;
89       output_w = ceil((float)(input_w + param->pad_l_ + param->pad_r_ - window_w) / param->stride_w_) + 1;
90     } else {
91       return NNACL_ERR;
92     }
93   }
94   int input_shape[MAX_SHAPE_SIZE];
95   size_t input_shape_size = 0;
96   ShapeSet(input_shape, &input_shape_size, input->shape_, input->shape_size_);
97   input_shape[1] = output_h > 0 ? output_h : 1;
98   input_shape[2] = output_w > 0 ? output_w : 1;
99   for (size_t i = 0; i < outputs_size; i++) {
100     TensorC *output = outputs[i];
101     SetShapeArray(output, input_shape, input_shape_size);
102   }
103   return NNACL_OK;
104 }
105 
106 REG_INFER(MaxPool, PrimType_MaxPoolFusion, PoolingInferShape)
107 REG_INFER(AvgPool, PrimType_AvgPoolFusion, PoolingInferShape)
108