• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2019-2021 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "common.h"
17 #include <algorithm>
18 #include <fstream>
19 #include <string>
20 #include <vector>
21 #include "minddata/dataset/core/client.h"
22 #include "minddata/dataset/core/config_manager.h"
23 #include "minddata/dataset/core/pybind_support.h"
24 #include "minddata/dataset/core/tensor.h"
25 #include "minddata/dataset/core/tensor_shape.h"
26 #include "minddata/dataset/engine/datasetops/batch_op.h"
27 #include "minddata/dataset/engine/datasetops/repeat_op.h"
28 #include "minddata/dataset/engine/datasetops/source/tf_reader_op.h"
29 
30 namespace UT {
31 #ifdef __cplusplus
32 #if __cplusplus
33 extern "C" {
34 #endif
35 #endif
36 
SetUp()37 void DatasetOpTesting::SetUp() {
38   std::string install_home = "data/dataset";
39   datasets_root_path_ = install_home;
40   mindrecord_root_path_ = "data/mindrecord";
41 }
42 
ToTensorShapeVec(const std::vector<std::vector<int64_t>> & v)43 std::vector<mindspore::dataset::TensorShape> DatasetOpTesting::ToTensorShapeVec(
44   const std::vector<std::vector<int64_t>> &v) {
45   std::vector<mindspore::dataset::TensorShape> ret_v;
46   std::transform(v.begin(), v.end(), std::back_inserter(ret_v),
47                  [](const auto &s) { return mindspore::dataset::TensorShape(s); });
48   return ret_v;
49 }
50 
ToDETypes(const std::vector<mindspore::DataType> & t)51 std::vector<mindspore::dataset::DataType> DatasetOpTesting::ToDETypes(const std::vector<mindspore::DataType> &t) {
52   std::vector<mindspore::dataset::DataType> ret_t;
53   std::transform(t.begin(), t.end(), std::back_inserter(ret_t), [](const mindspore::DataType &t) {
54     return mindspore::dataset::MSTypeToDEType(static_cast<mindspore::TypeId>(t));
55   });
56   return ret_t;
57 }
58 
59 // Function to read a file into an MSTensor
60 // Note: This provides the analogous support for DETensor's CreateFromFile.
ReadFileToTensor(const std::string & file)61 mindspore::MSTensor DatasetOpTesting::ReadFileToTensor(const std::string &file) {
62   if (file.empty()) {
63     MS_LOG(ERROR) << "Pointer file is nullptr; return an empty Tensor.";
64     return mindspore::MSTensor();
65   }
66   std::ifstream ifs(file);
67   if (!ifs.good()) {
68     MS_LOG(ERROR) << "File: " << file << " does not exist; return an empty Tensor.";
69     return mindspore::MSTensor();
70   }
71   if (!ifs.is_open()) {
72     MS_LOG(ERROR) << "File: " << file << " open failed; return an empty Tensor.";
73     return mindspore::MSTensor();
74   }
75 
76   ifs.seekg(0, std::ios::end);
77   size_t size = ifs.tellg();
78   mindspore::MSTensor buf("file", mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
79 
80   ifs.seekg(0, std::ios::beg);
81   ifs.read(reinterpret_cast<char *>(buf.MutableData()), size);
82   ifs.close();
83 
84   return buf;
85 }
86 
87 // Helper function to create a batch op
Batch(int32_t batch_size,bool drop,mindspore::dataset::PadInfo pad_map)88 std::shared_ptr<mindspore::dataset::BatchOp> DatasetOpTesting::Batch(int32_t batch_size, bool drop,
89                                                                      mindspore::dataset::PadInfo pad_map) {
90   std::shared_ptr<mindspore::dataset::ConfigManager> cfg = mindspore::dataset::GlobalContext::config_manager();
91   int32_t num_workers = cfg->num_parallel_workers();
92   int32_t op_connector_size = cfg->op_connector_size();
93   std::vector<std::string> output_columns = {};
94   std::vector<std::string> input_columns = {};
95   mindspore::dataset::py::function batch_size_func;
96   mindspore::dataset::py::function batch_map_func;
97   bool pad = false;
98   if (!pad_map.empty()) {
99     pad = true;
100   }
101   std::shared_ptr<mindspore::dataset::BatchOp> op =
102     std::make_shared<mindspore::dataset::BatchOp>(batch_size, drop, pad, op_connector_size, num_workers, input_columns,
103                                                   output_columns, batch_size_func, batch_map_func, pad_map);
104   return op;
105 }
106 
Repeat(int repeat_cnt)107 std::shared_ptr<mindspore::dataset::RepeatOp> DatasetOpTesting::Repeat(int repeat_cnt) {
108   std::shared_ptr<mindspore::dataset::RepeatOp> op = std::make_shared<mindspore::dataset::RepeatOp>(repeat_cnt);
109   return op;
110 }
111 
TFReader(std::string file,int num_works)112 std::shared_ptr<mindspore::dataset::TFReaderOp> DatasetOpTesting::TFReader(std::string file, int num_works) {
113   std::shared_ptr<mindspore::dataset::ConfigManager> config_manager =
114     mindspore::dataset::GlobalContext::config_manager();
115   auto op_connector_size = config_manager->op_connector_size();
116   auto worker_connector_size = config_manager->worker_connector_size();
117   std::vector<std::string> columns_to_load = {};
118   std::vector<std::string> files = {file};
119   std::shared_ptr<mindspore::dataset::TFReaderOp> so = std::make_shared<mindspore::dataset::TFReaderOp>(
120     num_works, worker_connector_size, 0, files, std::make_unique<mindspore::dataset::DataSchema>(), op_connector_size,
121     columns_to_load, false, 1, 0, false, CompressionType::NONE, true);
122   (void)so->Init();
123   return so;
124 }
125 
Build(std::vector<std::shared_ptr<mindspore::dataset::DatasetOp>> ops)126 std::shared_ptr<mindspore::dataset::ExecutionTree> DatasetOpTesting::Build(
127   std::vector<std::shared_ptr<mindspore::dataset::DatasetOp>> ops) {
128   std::shared_ptr<mindspore::dataset::ExecutionTree> tree = std::make_shared<mindspore::dataset::ExecutionTree>();
129   for (int i = 0; i < ops.size(); i++) {
130     tree->AssociateNode(ops[i]);
131     if (i > 0) {
132       ops[i]->AddChild(std::move(ops[i - 1]));
133     }
134     if (i == ops.size() - 1) {
135       tree->AssignRoot(ops[i]);
136     }
137   }
138   return tree;
139 }
140 
141 #ifdef __cplusplus
142 #if __cplusplus
143 }
144 #endif
145 #endif
146 }  // namespace UT
147 
148 // Helper function to get the session id from SESSION_ID env variable
GetSessionFromEnv(uint32_t * session_id)149 Status GetSessionFromEnv(uint32_t *session_id) {
150   RETURN_UNEXPECTED_IF_NULL(session_id);
151   if (const char *session_env = std::getenv("SESSION_ID")) {
152     std::string session_id_str(session_env);
153     try {
154       *session_id = std::stoul(session_id_str);
155     } catch (const std::exception &e) {
156       std::string err_msg = "Invalid numeric value for session id in env var: " + session_id_str;
157       return Status(StatusCode::kMDSyntaxError, err_msg);
158     }
159   } else {
160     RETURN_STATUS_UNEXPECTED("Test case requires a session id to be provided via SESSION_ID environment variable.");
161   }
162   return Status::OK();
163 }
164 
165 namespace mindspore {
166 namespace dataset {
Predicate1(MSTensorVec in)167 MSTensorVec Predicate1(MSTensorVec in) {
168   // Return true if input is equal to 3
169   uint64_t input_value;
170   TensorRow input = VecToRow(in);
171   (void)input.at(0)->GetItemAt(&input_value, {0});
172   bool result = (input_value == 3);
173 
174   // Convert from boolean to TensorRow
175   TensorRow output;
176   std::shared_ptr<Tensor> out;
177   (void)Tensor::CreateEmpty(TensorShape({}), DataType(DataType::Type::DE_BOOL), &out);
178   (void)out->SetItemAt({}, result);
179   output.push_back(out);
180 
181   return RowToVec(output);
182 }
183 
Predicate2(MSTensorVec in)184 MSTensorVec Predicate2(MSTensorVec in) {
185   // Return true if label is more than 1
186   // The index of label in input is 1
187   uint64_t input_value;
188   TensorRow input = VecToRow(in);
189   (void)input.at(1)->GetItemAt(&input_value, {0});
190   bool result = (input_value > 1);
191 
192   // Convert from boolean to TensorRow
193   TensorRow output;
194   std::shared_ptr<Tensor> out;
195   (void)Tensor::CreateEmpty(TensorShape({}), DataType(mindspore::dataset::DataType::Type::DE_BOOL), &out);
196   (void)out->SetItemAt({}, result);
197   output.push_back(out);
198 
199   return RowToVec(output);
200 }
201 
Predicate3(MSTensorVec in)202 MSTensorVec Predicate3(MSTensorVec in) {
203   // Return true if label is non-negative (don't filter!)
204   uint64_t input_value;
205   TensorRow input = VecToRow(in);
206   (void)input.at(0)->GetItemAt(&input_value, {0});
207   bool result = (input_value >= 0);
208 
209   // Convert from boolean to TensorRow
210   TensorRow output;
211   std::shared_ptr<Tensor> out;
212   (void)Tensor::CreateEmpty(TensorShape({}), DataType(mindspore::dataset::DataType::Type::DE_BOOL), &out);
213   (void)out->SetItemAt({}, result);
214   output.push_back(out);
215 
216   return RowToVec(output);
217 }
218 
BGRToRGB(const cv::Mat & img)219 cv::Mat BGRToRGB(const cv::Mat &img) {
220   cv::Mat image(img.rows, img.cols, CV_8UC3);
221   for (int i = 0; i < img.rows; ++i) {
222     auto p1 = img.ptr<cv::Vec3b>(i);
223     auto p2 = image.ptr<cv::Vec3b>(i);
224     for (int j = 0; j < img.cols; ++j) {
225       p2[j][2] = p1[j][0];
226       p2[j][1] = p1[j][1];
227       p2[j][0] = p1[j][2];
228     }
229   }
230   return image;
231 }
232 }  // namespace dataset
233 }  // namespace mindspore
234