• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2021-2023 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "minddata/dataset/kernels/ir/vision/random_crop_with_bbox_ir.h"
18 
19 #include <algorithm>
20 
21 #ifndef ENABLE_ANDROID
22 #include "minddata/dataset/kernels/image/random_crop_with_bbox_op.h"
23 #endif
24 #include "minddata/dataset/kernels/ir/validators.h"
25 #include "minddata/dataset/util/validators.h"
26 
27 namespace mindspore {
28 namespace dataset {
29 namespace vision {
30 #ifndef ENABLE_ANDROID
31 // RandomCropWithBBoxOperation
RandomCropWithBBoxOperation(const std::vector<int32_t> & size,const std::vector<int32_t> & padding,bool pad_if_needed,const std::vector<uint8_t> & fill_value,BorderType padding_mode)32 RandomCropWithBBoxOperation::RandomCropWithBBoxOperation(const std::vector<int32_t> &size,
33                                                          const std::vector<int32_t> &padding, bool pad_if_needed,
34                                                          const std::vector<uint8_t> &fill_value,
35                                                          BorderType padding_mode)
36     : TensorOperation(true),
37       size_(size),
38       padding_(padding),
39       pad_if_needed_(pad_if_needed),
40       fill_value_(fill_value),
41       padding_mode_(padding_mode) {}
42 
43 RandomCropWithBBoxOperation::~RandomCropWithBBoxOperation() = default;
44 
Name() const45 std::string RandomCropWithBBoxOperation::Name() const { return kRandomCropWithBBoxOperation; }
46 
ValidateParams()47 Status RandomCropWithBBoxOperation::ValidateParams() {
48   // size
49   RETURN_IF_NOT_OK(ValidateVectorSize("RandomCropWithBBox", size_));
50   // padding
51   RETURN_IF_NOT_OK(ValidateVectorPadding("RandomCropWithBBox", padding_));
52   // fill_value
53   RETURN_IF_NOT_OK(ValidateVectorFillvalue("RandomCropWithBBox", fill_value_));
54   // padding_mode
55   if (padding_mode_ != BorderType::kConstant && padding_mode_ != BorderType::kEdge &&
56       padding_mode_ != BorderType::kReflect && padding_mode_ != BorderType::kSymmetric) {
57     std::string err_msg = "RandomCropWithBBox: Invalid BorderType, check input value of enum.";
58     LOG_AND_RETURN_STATUS_SYNTAX_ERROR(err_msg);
59   }
60   return Status::OK();
61 }
62 
Build()63 std::shared_ptr<TensorOp> RandomCropWithBBoxOperation::Build() {
64   constexpr size_t dimension_zero = 0;
65   constexpr size_t dimension_one = 1;
66   constexpr size_t dimension_two = 2;
67   constexpr size_t dimension_three = 3;
68   constexpr size_t size_one = 1;
69   constexpr size_t size_two = 2;
70   constexpr size_t size_three = 3;
71 
72   int32_t crop_height = size_[dimension_zero];
73   int32_t crop_width = size_[dimension_zero];
74 
75   // User has specified the crop_width value.
76   if (size_.size() == size_two) {
77     crop_width = size_[dimension_one];
78   }
79 
80   int32_t pad_top, pad_bottom, pad_left, pad_right;
81   switch (padding_.size()) {
82     case size_one:
83       pad_left = padding_[dimension_zero];
84       pad_top = padding_[dimension_zero];
85       pad_right = padding_[dimension_zero];
86       pad_bottom = padding_[dimension_zero];
87       break;
88     case size_two:
89       pad_left = padding_[dimension_zero];
90       pad_right = padding_[dimension_zero];
91       pad_top = padding_[dimension_one];
92       pad_bottom = padding_[dimension_one];
93       break;
94     default:
95       pad_left = padding_[dimension_zero];
96       pad_top = padding_[dimension_one];
97       pad_right = padding_[dimension_two];
98       pad_bottom = padding_[dimension_three];
99   }
100 
101   uint8_t fill_r, fill_g, fill_b;
102   fill_r = fill_value_[dimension_zero];
103   fill_g = fill_value_[dimension_zero];
104   fill_b = fill_value_[dimension_zero];
105 
106   if (fill_value_.size() == size_three) {
107     fill_r = fill_value_[dimension_zero];
108     fill_g = fill_value_[dimension_one];
109     fill_b = fill_value_[dimension_two];
110   }
111 
112   auto tensor_op =
113     std::make_shared<RandomCropWithBBoxOp>(crop_height, crop_width, pad_top, pad_bottom, pad_left, pad_right,
114                                            pad_if_needed_, padding_mode_, fill_r, fill_g, fill_b);
115   return tensor_op;
116 }
117 
to_json(nlohmann::json * out_json)118 Status RandomCropWithBBoxOperation::to_json(nlohmann::json *out_json) {
119   RETURN_UNEXPECTED_IF_NULL(out_json);
120   nlohmann::json args;
121   args["size"] = size_;
122   args["padding"] = padding_;
123   args["pad_if_needed"] = pad_if_needed_;
124   args["fill_value"] = fill_value_;
125   args["padding_mode"] = padding_mode_;
126   *out_json = args;
127   return Status::OK();
128 }
129 
from_json(nlohmann::json op_params,std::shared_ptr<TensorOperation> * operation)130 Status RandomCropWithBBoxOperation::from_json(nlohmann::json op_params, std::shared_ptr<TensorOperation> *operation) {
131   RETURN_UNEXPECTED_IF_NULL(operation);
132   RETURN_IF_NOT_OK(ValidateParamInJson(op_params, "size", kRandomCropWithBBoxOperation));
133   RETURN_IF_NOT_OK(ValidateParamInJson(op_params, "padding", kRandomCropWithBBoxOperation));
134   RETURN_IF_NOT_OK(ValidateParamInJson(op_params, "pad_if_needed", kRandomCropWithBBoxOperation));
135   RETURN_IF_NOT_OK(ValidateParamInJson(op_params, "fill_value", kRandomCropWithBBoxOperation));
136   RETURN_IF_NOT_OK(ValidateParamInJson(op_params, "padding_mode", kRandomCropWithBBoxOperation));
137   std::vector<int32_t> size = op_params["size"];
138   std::vector<int32_t> padding = op_params["padding"];
139   bool pad_if_needed = op_params["pad_if_needed"];
140   std::vector<uint8_t> fill_value = op_params["fill_value"];
141   auto padding_mode = static_cast<BorderType>(op_params["padding_mode"]);
142   *operation =
143     std::make_shared<vision::RandomCropWithBBoxOperation>(size, padding, pad_if_needed, fill_value, padding_mode);
144   return Status::OK();
145 }
146 #endif
147 }  // namespace vision
148 }  // namespace dataset
149 }  // namespace mindspore
150