• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020-2023 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "minddata/dataset/kernels/tensor_op.h"
17 
18 #include <memory>
19 #include <vector>
20 
21 namespace mindspore {
22 namespace dataset {
23 // Name: Compute()
24 // Description: This Compute() take 1 Tensor and produce 1 Tensor.
25 //              The derived class should override this function otherwise error.
Compute(const std::shared_ptr<Tensor> & input,std::shared_ptr<Tensor> * output)26 Status TensorOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
27   IO_CHECK(input, output);
28   if (!OneToOne()) {
29     RETURN_STATUS_UNEXPECTED("Wrong Compute() function is called. This is not 1-1 TensorOp.");
30   } else {
31     RETURN_STATUS_UNEXPECTED("Is this TensorOp 1-1? If yes, please implement this Compute() in the derived class.");
32   }
33 }
34 
35 // Name: Compute()
36 // Description: This Compute() take multiple Tensors from different columns and produce multiple Tensors too.
37 //              The derived class should override this function otherwise error.
Compute(const TensorRow & input,TensorRow * output)38 Status TensorOp::Compute(const TensorRow &input, TensorRow *output) {
39   IO_CHECK_VECTOR(input, output);
40   if (OneToOne()) {
41     CHECK_FAIL_RETURN_UNEXPECTED(input.size() == 1, "The op is OneToOne, can only accept one tensor as input.");
42     output->resize(1);
43     return Compute(input[0], &(*output)[0]);
44   }
45 
46   RETURN_STATUS_UNEXPECTED("Is this TensorOp oneToOne? If no, please implement this Compute() in the derived class.");
47 }
48 
Compute(const std::shared_ptr<DeviceTensor> & input,std::shared_ptr<DeviceTensor> * output)49 Status TensorOp::Compute(const std::shared_ptr<DeviceTensor> &input, std::shared_ptr<DeviceTensor> *output) {
50   IO_CHECK(input, output);
51   RETURN_STATUS_UNEXPECTED(
52     "Wrong Compute() function is called. This is a function for operators which can be executed by"
53     " Ascend310 device. If so, please implement it in the derived class.");
54 }
55 
56 #if !defined(BUILD_LITE) && defined(ENABLE_D)
Compute(const std::vector<std::shared_ptr<DeviceTensorAscend910B>> & input,std::vector<std::shared_ptr<DeviceTensorAscend910B>> * output)57 Status TensorOp::Compute(const std::vector<std::shared_ptr<DeviceTensorAscend910B>> &input,
58                          std::vector<std::shared_ptr<DeviceTensorAscend910B>> *output) {
59   IO_CHECK_VECTOR(input, output);
60   if (OneToOne()) {
61     CHECK_FAIL_RETURN_UNEXPECTED(input.size() == 1, "The op is OneToOne, can only accept one tensor as input.");
62     output->resize(1);
63     return Compute(input[0], &(*output)[0]);
64   }
65 
66   RETURN_STATUS_UNEXPECTED("Is this TensorOp oneToOne? If no, please implement this Compute() in the derived class.");
67 }
68 
Compute(const std::shared_ptr<DeviceTensorAscend910B> & input,std::shared_ptr<DeviceTensorAscend910B> * output)69 Status TensorOp::Compute(const std::shared_ptr<DeviceTensorAscend910B> &input,
70                          std::shared_ptr<DeviceTensorAscend910B> *output) {
71   IO_CHECK(input, output);
72   RETURN_STATUS_UNEXPECTED(
73     "Wrong Compute() function is called. This is a function for operators which can be executed by"
74     " Ascend910B device. If so, please implement it in the derived class.");
75 }
76 #endif
77 
OutputShape(const std::vector<TensorShape> & inputs,std::vector<TensorShape> & outputs)78 Status TensorOp::OutputShape(const std::vector<TensorShape> &inputs, std::vector<TensorShape> &outputs) {
79   if (inputs.size() != NumInput()) {
80     RETURN_STATUS_UNEXPECTED("The size of the input argument vector does not match the number of inputs");
81   }
82   outputs = inputs;
83   return Status::OK();
84 }
85 
OutputType(const std::vector<DataType> & inputs,std::vector<DataType> & outputs)86 Status TensorOp::OutputType(const std::vector<DataType> &inputs, std::vector<DataType> &outputs) {
87   if (inputs.size() != NumInput()) {
88     RETURN_STATUS_UNEXPECTED("The size of the input argument vector does not match the number of inputs");
89   }
90   outputs = inputs;
91   return Status::OK();
92 }
93 
SetAscendResource(const std::shared_ptr<DeviceResource> & resource)94 Status TensorOp::SetAscendResource(const std::shared_ptr<DeviceResource> &resource) {
95   RETURN_STATUS_UNEXPECTED("This is a CPU operator which doesn't have Ascend Resource. Please verify your context");
96 }
97 
RandomTensorOp()98 RandomTensorOp::RandomTensorOp() {
99   is_deterministic_ = false;
100   random_generator_.seed(GetSeed());
101 }
102 
SetSeed(uint32_t seed)103 void RandomTensorOp::SetSeed(uint32_t seed) { random_generator_.seed(seed); }
104 }  // namespace dataset
105 }  // namespace mindspore
106