1 pub use self::at::DefineOpaqueTypes;
2 pub use self::freshen::TypeFreshener;
3 pub use self::lexical_region_resolve::RegionResolutionError;
4 pub use self::LateBoundRegionConversionTime::*;
5 pub use self::RegionVariableOrigin::*;
6 pub use self::SubregionOrigin::*;
7 pub use self::ValuePairs::*;
8 pub use combine::ObligationEmittingRelation;
9 use rustc_data_structures::undo_log::UndoLogs;
10
11 use self::opaque_types::OpaqueTypeStorage;
12 pub(crate) use self::undo_log::{InferCtxtUndoLogs, Snapshot, UndoLog};
13
14 use crate::traits::{self, ObligationCause, PredicateObligations, TraitEngine, TraitEngineExt};
15
16 use rustc_data_structures::fx::FxIndexMap;
17 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
18 use rustc_data_structures::sync::Lrc;
19 use rustc_data_structures::undo_log::Rollback;
20 use rustc_data_structures::unify as ut;
21 use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed};
22 use rustc_hir::def_id::{DefId, LocalDefId};
23 use rustc_middle::infer::canonical::{Canonical, CanonicalVarValues};
24 use rustc_middle::infer::unify_key::{ConstVarValue, ConstVariableValue};
25 use rustc_middle::infer::unify_key::{ConstVariableOrigin, ConstVariableOriginKind, ToType};
26 use rustc_middle::mir::interpret::{ErrorHandled, EvalToValTreeResult};
27 use rustc_middle::mir::ConstraintCategory;
28 use rustc_middle::traits::{select, DefiningAnchor};
29 use rustc_middle::ty::error::{ExpectedFound, TypeError};
30 use rustc_middle::ty::fold::BoundVarReplacerDelegate;
31 use rustc_middle::ty::fold::{TypeFoldable, TypeFolder, TypeSuperFoldable};
32 use rustc_middle::ty::relate::RelateResult;
33 use rustc_middle::ty::subst::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef};
34 use rustc_middle::ty::visit::{TypeVisitable, TypeVisitableExt};
35 pub use rustc_middle::ty::IntVarValue;
36 use rustc_middle::ty::{self, GenericParamDefKind, InferConst, InferTy, Ty, TyCtxt};
37 use rustc_middle::ty::{ConstVid, FloatVid, IntVid, TyVid};
38 use rustc_span::symbol::Symbol;
39 use rustc_span::Span;
40
41 use std::cell::{Cell, RefCell};
42 use std::fmt;
43
44 use self::combine::CombineFields;
45 use self::error_reporting::TypeErrCtxt;
46 use self::free_regions::RegionRelations;
47 use self::lexical_region_resolve::LexicalRegionResolutions;
48 use self::region_constraints::{GenericKind, VarInfos, VerifyBound};
49 use self::region_constraints::{
50 RegionConstraintCollector, RegionConstraintStorage, RegionSnapshot,
51 };
52 use self::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
53
54 pub mod at;
55 pub mod canonical;
56 mod combine;
57 mod equate;
58 pub mod error_reporting;
59 pub mod free_regions;
60 mod freshen;
61 mod fudge;
62 mod generalize;
63 mod glb;
64 mod higher_ranked;
65 pub mod lattice;
66 mod lexical_region_resolve;
67 mod lub;
68 pub mod nll_relate;
69 pub mod opaque_types;
70 pub mod outlives;
71 mod projection;
72 pub mod region_constraints;
73 pub mod resolve;
74 mod sub;
75 pub mod type_variable;
76 mod undo_log;
77
78 #[must_use]
79 #[derive(Debug)]
80 pub struct InferOk<'tcx, T> {
81 pub value: T,
82 pub obligations: PredicateObligations<'tcx>,
83 }
84 pub type InferResult<'tcx, T> = Result<InferOk<'tcx, T>, TypeError<'tcx>>;
85
86 pub type UnitResult<'tcx> = RelateResult<'tcx, ()>; // "unify result"
87 pub type FixupResult<'tcx, T> = Result<T, FixupError<'tcx>>; // "fixup result"
88
89 pub(crate) type UnificationTable<'a, 'tcx, T> = ut::UnificationTable<
90 ut::InPlace<T, &'a mut ut::UnificationStorage<T>, &'a mut InferCtxtUndoLogs<'tcx>>,
91 >;
92
93 /// This type contains all the things within `InferCtxt` that sit within a
94 /// `RefCell` and are involved with taking/rolling back snapshots. Snapshot
95 /// operations are hot enough that we want only one call to `borrow_mut` per
96 /// call to `start_snapshot` and `rollback_to`.
97 #[derive(Clone)]
98 pub struct InferCtxtInner<'tcx> {
99 /// Cache for projections.
100 ///
101 /// This cache is snapshotted along with the infcx.
102 projection_cache: traits::ProjectionCacheStorage<'tcx>,
103
104 /// We instantiate `UnificationTable` with `bounds<Ty>` because the types
105 /// that might instantiate a general type variable have an order,
106 /// represented by its upper and lower bounds.
107 type_variable_storage: type_variable::TypeVariableStorage<'tcx>,
108
109 /// Map from const parameter variable to the kind of const it represents.
110 const_unification_storage: ut::UnificationTableStorage<ty::ConstVid<'tcx>>,
111
112 /// Map from integral variable to the kind of integer it represents.
113 int_unification_storage: ut::UnificationTableStorage<ty::IntVid>,
114
115 /// Map from floating variable to the kind of float it represents.
116 float_unification_storage: ut::UnificationTableStorage<ty::FloatVid>,
117
118 /// Tracks the set of region variables and the constraints between them.
119 ///
120 /// This is initially `Some(_)` but when
121 /// `resolve_regions_and_report_errors` is invoked, this gets set to `None`
122 /// -- further attempts to perform unification, etc., may fail if new
123 /// region constraints would've been added.
124 region_constraint_storage: Option<RegionConstraintStorage<'tcx>>,
125
126 /// A set of constraints that regionck must validate.
127 ///
128 /// Each constraint has the form `T:'a`, meaning "some type `T` must
129 /// outlive the lifetime 'a". These constraints derive from
130 /// instantiated type parameters. So if you had a struct defined
131 /// like the following:
132 /// ```ignore (illustrative)
133 /// struct Foo<T: 'static> { ... }
134 /// ```
135 /// In some expression `let x = Foo { ... }`, it will
136 /// instantiate the type parameter `T` with a fresh type `$0`. At
137 /// the same time, it will record a region obligation of
138 /// `$0: 'static`. This will get checked later by regionck. (We
139 /// can't generally check these things right away because we have
140 /// to wait until types are resolved.)
141 ///
142 /// These are stored in a map keyed to the id of the innermost
143 /// enclosing fn body / static initializer expression. This is
144 /// because the location where the obligation was incurred can be
145 /// relevant with respect to which sublifetime assumptions are in
146 /// place. The reason that we store under the fn-id, and not
147 /// something more fine-grained, is so that it is easier for
148 /// regionck to be sure that it has found *all* the region
149 /// obligations (otherwise, it's easy to fail to walk to a
150 /// particular node-id).
151 ///
152 /// Before running `resolve_regions_and_report_errors`, the creator
153 /// of the inference context is expected to invoke
154 /// [`InferCtxt::process_registered_region_obligations`]
155 /// for each body-id in this map, which will process the
156 /// obligations within. This is expected to be done 'late enough'
157 /// that all type inference variables have been bound and so forth.
158 region_obligations: Vec<RegionObligation<'tcx>>,
159
160 undo_log: InferCtxtUndoLogs<'tcx>,
161
162 /// Caches for opaque type inference.
163 opaque_type_storage: OpaqueTypeStorage<'tcx>,
164 }
165
166 impl<'tcx> InferCtxtInner<'tcx> {
new() -> InferCtxtInner<'tcx>167 fn new() -> InferCtxtInner<'tcx> {
168 InferCtxtInner {
169 projection_cache: Default::default(),
170 type_variable_storage: type_variable::TypeVariableStorage::new(),
171 undo_log: InferCtxtUndoLogs::default(),
172 const_unification_storage: ut::UnificationTableStorage::new(),
173 int_unification_storage: ut::UnificationTableStorage::new(),
174 float_unification_storage: ut::UnificationTableStorage::new(),
175 region_constraint_storage: Some(RegionConstraintStorage::new()),
176 region_obligations: vec![],
177 opaque_type_storage: Default::default(),
178 }
179 }
180
181 #[inline]
region_obligations(&self) -> &[RegionObligation<'tcx>]182 pub fn region_obligations(&self) -> &[RegionObligation<'tcx>] {
183 &self.region_obligations
184 }
185
186 #[inline]
projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx>187 pub fn projection_cache(&mut self) -> traits::ProjectionCache<'_, 'tcx> {
188 self.projection_cache.with_log(&mut self.undo_log)
189 }
190
191 #[inline]
try_type_variables_probe_ref( &self, vid: ty::TyVid, ) -> Option<&type_variable::TypeVariableValue<'tcx>>192 fn try_type_variables_probe_ref(
193 &self,
194 vid: ty::TyVid,
195 ) -> Option<&type_variable::TypeVariableValue<'tcx>> {
196 // Uses a read-only view of the unification table, this way we don't
197 // need an undo log.
198 self.type_variable_storage.eq_relations_ref().try_probe_value(vid)
199 }
200
201 #[inline]
type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx>202 fn type_variables(&mut self) -> type_variable::TypeVariableTable<'_, 'tcx> {
203 self.type_variable_storage.with_log(&mut self.undo_log)
204 }
205
206 #[inline]
opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx>207 pub fn opaque_types(&mut self) -> opaque_types::OpaqueTypeTable<'_, 'tcx> {
208 self.opaque_type_storage.with_log(&mut self.undo_log)
209 }
210
211 #[inline]
int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid>212 fn int_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::IntVid> {
213 self.int_unification_storage.with_log(&mut self.undo_log)
214 }
215
216 #[inline]
float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid>217 fn float_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::FloatVid> {
218 self.float_unification_storage.with_log(&mut self.undo_log)
219 }
220
221 #[inline]
const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::ConstVid<'tcx>>222 fn const_unification_table(&mut self) -> UnificationTable<'_, 'tcx, ty::ConstVid<'tcx>> {
223 self.const_unification_storage.with_log(&mut self.undo_log)
224 }
225
226 #[inline]
unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx>227 pub fn unwrap_region_constraints(&mut self) -> RegionConstraintCollector<'_, 'tcx> {
228 self.region_constraint_storage
229 .as_mut()
230 .expect("region constraints already solved")
231 .with_log(&mut self.undo_log)
232 }
233 }
234
235 pub struct InferCtxt<'tcx> {
236 pub tcx: TyCtxt<'tcx>,
237
238 /// The `DefId` of the item in whose context we are performing inference or typeck.
239 /// It is used to check whether an opaque type use is a defining use.
240 ///
241 /// If it is `DefiningAnchor::Bubble`, we can't resolve opaque types here and need to bubble up
242 /// the obligation. This frequently happens for
243 /// short lived InferCtxt within queries. The opaque type obligations are forwarded
244 /// to the outside until the end up in an `InferCtxt` for typeck or borrowck.
245 ///
246 /// Its default value is `DefiningAnchor::Error`, this way it is easier to catch errors that
247 /// might come up during inference or typeck.
248 pub defining_use_anchor: DefiningAnchor,
249
250 /// Whether this inference context should care about region obligations in
251 /// the root universe. Most notably, this is used during hir typeck as region
252 /// solving is left to borrowck instead.
253 pub considering_regions: bool,
254
255 /// If set, this flag causes us to skip the 'leak check' during
256 /// higher-ranked subtyping operations. This flag is a temporary one used
257 /// to manage the removal of the leak-check: for the time being, we still run the
258 /// leak-check, but we issue warnings.
259 skip_leak_check: bool,
260
261 pub inner: RefCell<InferCtxtInner<'tcx>>,
262
263 /// Once region inference is done, the values for each variable.
264 lexical_region_resolutions: RefCell<Option<LexicalRegionResolutions<'tcx>>>,
265
266 /// Caches the results of trait selection. This cache is used
267 /// for things that have to do with the parameters in scope.
268 pub selection_cache: select::SelectionCache<'tcx>,
269
270 /// Caches the results of trait evaluation.
271 pub evaluation_cache: select::EvaluationCache<'tcx>,
272
273 /// The set of predicates on which errors have been reported, to
274 /// avoid reporting the same error twice.
275 pub reported_trait_errors: RefCell<FxIndexMap<Span, Vec<ty::Predicate<'tcx>>>>,
276
277 pub reported_closure_mismatch: RefCell<FxHashSet<(Span, Option<Span>)>>,
278
279 /// When an error occurs, we want to avoid reporting "derived"
280 /// errors that are due to this original failure. Normally, we
281 /// handle this with the `err_count_on_creation` count, which
282 /// basically just tracks how many errors were reported when we
283 /// started type-checking a fn and checks to see if any new errors
284 /// have been reported since then. Not great, but it works.
285 ///
286 /// However, when errors originated in other passes -- notably
287 /// resolve -- this heuristic breaks down. Therefore, we have this
288 /// auxiliary flag that one can set whenever one creates a
289 /// type-error that is due to an error in a prior pass.
290 ///
291 /// Don't read this flag directly, call `is_tainted_by_errors()`
292 /// and `set_tainted_by_errors()`.
293 tainted_by_errors: Cell<Option<ErrorGuaranteed>>,
294
295 /// Track how many errors were reported when this infcx is created.
296 /// If the number of errors increases, that's also a sign (like
297 /// `tainted_by_errors`) to avoid reporting certain kinds of errors.
298 // FIXME(matthewjasper) Merge into `tainted_by_errors`
299 err_count_on_creation: usize,
300
301 /// What is the innermost universe we have created? Starts out as
302 /// `UniverseIndex::root()` but grows from there as we enter
303 /// universal quantifiers.
304 ///
305 /// N.B., at present, we exclude the universal quantifiers on the
306 /// item we are type-checking, and just consider those names as
307 /// part of the root universe. So this would only get incremented
308 /// when we enter into a higher-ranked (`for<..>`) type or trait
309 /// bound.
310 universe: Cell<ty::UniverseIndex>,
311
312 /// During coherence we have to assume that other crates may add
313 /// additional impls which we currently don't know about.
314 ///
315 /// To deal with this evaluation, we should be conservative
316 /// and consider the possibility of impls from outside this crate.
317 /// This comes up primarily when resolving ambiguity. Imagine
318 /// there is some trait reference `$0: Bar` where `$0` is an
319 /// inference variable. If `intercrate` is true, then we can never
320 /// say for sure that this reference is not implemented, even if
321 /// there are *no impls at all for `Bar`*, because `$0` could be
322 /// bound to some type that in a downstream crate that implements
323 /// `Bar`.
324 ///
325 /// Outside of coherence, we set this to false because we are only
326 /// interested in types that the user could actually have written.
327 /// In other words, we consider `$0: Bar` to be unimplemented if
328 /// there is no type that the user could *actually name* that
329 /// would satisfy it. This avoids crippling inference, basically.
330 pub intercrate: bool,
331
332 next_trait_solver: bool,
333 }
334
335 /// See the `error_reporting` module for more details.
336 #[derive(Clone, Copy, Debug, PartialEq, Eq, TypeFoldable, TypeVisitable)]
337 pub enum ValuePairs<'tcx> {
338 Regions(ExpectedFound<ty::Region<'tcx>>),
339 Terms(ExpectedFound<ty::Term<'tcx>>),
340 Aliases(ExpectedFound<ty::AliasTy<'tcx>>),
341 TraitRefs(ExpectedFound<ty::TraitRef<'tcx>>),
342 PolyTraitRefs(ExpectedFound<ty::PolyTraitRef<'tcx>>),
343 Sigs(ExpectedFound<ty::FnSig<'tcx>>),
344 }
345
346 impl<'tcx> ValuePairs<'tcx> {
ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)>347 pub fn ty(&self) -> Option<(Ty<'tcx>, Ty<'tcx>)> {
348 if let ValuePairs::Terms(ExpectedFound { expected, found }) = self
349 && let Some(expected) = expected.ty()
350 && let Some(found) = found.ty()
351 {
352 Some((expected, found))
353 } else {
354 None
355 }
356 }
357 }
358
359 /// The trace designates the path through inference that we took to
360 /// encounter an error or subtyping constraint.
361 ///
362 /// See the `error_reporting` module for more details.
363 #[derive(Clone, Debug)]
364 pub struct TypeTrace<'tcx> {
365 pub cause: ObligationCause<'tcx>,
366 pub values: ValuePairs<'tcx>,
367 }
368
369 /// The origin of a `r1 <= r2` constraint.
370 ///
371 /// See `error_reporting` module for more details
372 #[derive(Clone, Debug)]
373 pub enum SubregionOrigin<'tcx> {
374 /// Arose from a subtyping relation
375 Subtype(Box<TypeTrace<'tcx>>),
376
377 /// When casting `&'a T` to an `&'b Trait` object,
378 /// relating `'a` to `'b`.
379 RelateObjectBound(Span),
380
381 /// Some type parameter was instantiated with the given type,
382 /// and that type must outlive some region.
383 RelateParamBound(Span, Ty<'tcx>, Option<Span>),
384
385 /// The given region parameter was instantiated with a region
386 /// that must outlive some other region.
387 RelateRegionParamBound(Span),
388
389 /// Creating a pointer `b` to contents of another reference.
390 Reborrow(Span),
391
392 /// (&'a &'b T) where a >= b
393 ReferenceOutlivesReferent(Ty<'tcx>, Span),
394
395 /// Comparing the signature and requirements of an impl method against
396 /// the containing trait.
397 CompareImplItemObligation {
398 span: Span,
399 impl_item_def_id: LocalDefId,
400 trait_item_def_id: DefId,
401 },
402
403 /// Checking that the bounds of a trait's associated type hold for a given impl.
404 CheckAssociatedTypeBounds {
405 parent: Box<SubregionOrigin<'tcx>>,
406 impl_item_def_id: LocalDefId,
407 trait_item_def_id: DefId,
408 },
409
410 AscribeUserTypeProvePredicate(Span),
411 }
412
413 // `SubregionOrigin` is used a lot. Make sure it doesn't unintentionally get bigger.
414 #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
415 static_assert_size!(SubregionOrigin<'_>, 32);
416
417 impl<'tcx> SubregionOrigin<'tcx> {
to_constraint_category(&self) -> ConstraintCategory<'tcx>418 pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> {
419 match self {
420 Self::Subtype(type_trace) => type_trace.cause.to_constraint_category(),
421 Self::AscribeUserTypeProvePredicate(span) => ConstraintCategory::Predicate(*span),
422 _ => ConstraintCategory::BoringNoLocation,
423 }
424 }
425 }
426
427 /// Times when we replace late-bound regions with variables:
428 #[derive(Clone, Copy, Debug)]
429 pub enum LateBoundRegionConversionTime {
430 /// when a fn is called
431 FnCall,
432
433 /// when two higher-ranked types are compared
434 HigherRankedType,
435
436 /// when projecting an associated type
437 AssocTypeProjection(DefId),
438 }
439
440 /// Reasons to create a region inference variable.
441 ///
442 /// See `error_reporting` module for more details.
443 #[derive(Copy, Clone, Debug)]
444 pub enum RegionVariableOrigin {
445 /// Region variables created for ill-categorized reasons.
446 ///
447 /// They mostly indicate places in need of refactoring.
448 MiscVariable(Span),
449
450 /// Regions created by a `&P` or `[...]` pattern.
451 PatternRegion(Span),
452
453 /// Regions created by `&` operator.
454 ///
455 AddrOfRegion(Span),
456 /// Regions created as part of an autoref of a method receiver.
457 Autoref(Span),
458
459 /// Regions created as part of an automatic coercion.
460 Coercion(Span),
461
462 /// Region variables created as the values for early-bound regions.
463 EarlyBoundRegion(Span, Symbol),
464
465 /// Region variables created for bound regions
466 /// in a function or method that is called.
467 LateBoundRegion(Span, ty::BoundRegionKind, LateBoundRegionConversionTime),
468
469 UpvarRegion(ty::UpvarId, Span),
470
471 /// This origin is used for the inference variables that we create
472 /// during NLL region processing.
473 Nll(NllRegionVariableOrigin),
474 }
475
476 #[derive(Copy, Clone, Debug)]
477 pub enum NllRegionVariableOrigin {
478 /// During NLL region processing, we create variables for free
479 /// regions that we encounter in the function signature and
480 /// elsewhere. This origin indices we've got one of those.
481 FreeRegion,
482
483 /// "Universal" instantiation of a higher-ranked region (e.g.,
484 /// from a `for<'a> T` binder). Meant to represent "any region".
485 Placeholder(ty::PlaceholderRegion),
486
487 Existential {
488 /// If this is true, then this variable was created to represent a lifetime
489 /// bound in a `for` binder. For example, it might have been created to
490 /// represent the lifetime `'a` in a type like `for<'a> fn(&'a u32)`.
491 /// Such variables are created when we are trying to figure out if there
492 /// is any valid instantiation of `'a` that could fit into some scenario.
493 ///
494 /// This is used to inform error reporting: in the case that we are trying to
495 /// determine whether there is any valid instantiation of a `'a` variable that meets
496 /// some constraint C, we want to blame the "source" of that `for` type,
497 /// rather than blaming the source of the constraint C.
498 from_forall: bool,
499 },
500 }
501
502 // FIXME(eddyb) investigate overlap between this and `TyOrConstInferVar`.
503 #[derive(Copy, Clone, Debug)]
504 pub enum FixupError<'tcx> {
505 UnresolvedIntTy(IntVid),
506 UnresolvedFloatTy(FloatVid),
507 UnresolvedTy(TyVid),
508 UnresolvedConst(ConstVid<'tcx>),
509 }
510
511 /// See the `region_obligations` field for more information.
512 #[derive(Clone, Debug)]
513 pub struct RegionObligation<'tcx> {
514 pub sub_region: ty::Region<'tcx>,
515 pub sup_type: Ty<'tcx>,
516 pub origin: SubregionOrigin<'tcx>,
517 }
518
519 impl<'tcx> fmt::Display for FixupError<'tcx> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result520 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
521 use self::FixupError::*;
522
523 match *self {
524 UnresolvedIntTy(_) => write!(
525 f,
526 "cannot determine the type of this integer; \
527 add a suffix to specify the type explicitly"
528 ),
529 UnresolvedFloatTy(_) => write!(
530 f,
531 "cannot determine the type of this number; \
532 add a suffix to specify the type explicitly"
533 ),
534 UnresolvedTy(_) => write!(f, "unconstrained type"),
535 UnresolvedConst(_) => write!(f, "unconstrained const value"),
536 }
537 }
538 }
539
540 /// Used to configure inference contexts before their creation.
541 pub struct InferCtxtBuilder<'tcx> {
542 tcx: TyCtxt<'tcx>,
543 defining_use_anchor: DefiningAnchor,
544 considering_regions: bool,
545 skip_leak_check: bool,
546 /// Whether we are in coherence mode.
547 intercrate: bool,
548 /// Whether we should use the new trait solver in the local inference context,
549 /// which affects things like which solver is used in `predicate_may_hold`.
550 next_trait_solver: bool,
551 }
552
553 pub trait TyCtxtInferExt<'tcx> {
infer_ctxt(self) -> InferCtxtBuilder<'tcx>554 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx>;
555 }
556
557 impl<'tcx> TyCtxtInferExt<'tcx> for TyCtxt<'tcx> {
infer_ctxt(self) -> InferCtxtBuilder<'tcx>558 fn infer_ctxt(self) -> InferCtxtBuilder<'tcx> {
559 InferCtxtBuilder {
560 tcx: self,
561 defining_use_anchor: DefiningAnchor::Error,
562 considering_regions: true,
563 skip_leak_check: false,
564 intercrate: false,
565 next_trait_solver: self.next_trait_solver_globally(),
566 }
567 }
568 }
569
570 impl<'tcx> InferCtxtBuilder<'tcx> {
571 /// Whenever the `InferCtxt` should be able to handle defining uses of opaque types,
572 /// you need to call this function. Otherwise the opaque type will be treated opaquely.
573 ///
574 /// It is only meant to be called in two places, for typeck
575 /// (via `Inherited::build`) and for the inference context used
576 /// in mir borrowck.
with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor) -> Self577 pub fn with_opaque_type_inference(mut self, defining_use_anchor: DefiningAnchor) -> Self {
578 self.defining_use_anchor = defining_use_anchor;
579 self
580 }
581
with_next_trait_solver(mut self, next_trait_solver: bool) -> Self582 pub fn with_next_trait_solver(mut self, next_trait_solver: bool) -> Self {
583 self.next_trait_solver = next_trait_solver;
584 self
585 }
586
intercrate(mut self, intercrate: bool) -> Self587 pub fn intercrate(mut self, intercrate: bool) -> Self {
588 self.intercrate = intercrate;
589 self
590 }
591
ignoring_regions(mut self) -> Self592 pub fn ignoring_regions(mut self) -> Self {
593 self.considering_regions = false;
594 self
595 }
596
skip_leak_check(mut self, skip_leak_check: bool) -> Self597 pub fn skip_leak_check(mut self, skip_leak_check: bool) -> Self {
598 self.skip_leak_check = skip_leak_check;
599 self
600 }
601
602 /// Given a canonical value `C` as a starting point, create an
603 /// inference context that contains each of the bound values
604 /// within instantiated as a fresh variable. The `f` closure is
605 /// invoked with the new infcx, along with the instantiated value
606 /// `V` and a substitution `S`. This substitution `S` maps from
607 /// the bound values in `C` to their instantiated values in `V`
608 /// (in other words, `S(C) = V`).
build_with_canonical<T>( &mut self, span: Span, canonical: &Canonical<'tcx, T>, ) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>) where T: TypeFoldable<TyCtxt<'tcx>>,609 pub fn build_with_canonical<T>(
610 &mut self,
611 span: Span,
612 canonical: &Canonical<'tcx, T>,
613 ) -> (InferCtxt<'tcx>, T, CanonicalVarValues<'tcx>)
614 where
615 T: TypeFoldable<TyCtxt<'tcx>>,
616 {
617 let infcx = self.build();
618 let (value, subst) = infcx.instantiate_canonical_with_fresh_inference_vars(span, canonical);
619 (infcx, value, subst)
620 }
621
build(&mut self) -> InferCtxt<'tcx>622 pub fn build(&mut self) -> InferCtxt<'tcx> {
623 let InferCtxtBuilder {
624 tcx,
625 defining_use_anchor,
626 considering_regions,
627 skip_leak_check,
628 intercrate,
629 next_trait_solver,
630 } = *self;
631 InferCtxt {
632 tcx,
633 defining_use_anchor,
634 considering_regions,
635 skip_leak_check,
636 inner: RefCell::new(InferCtxtInner::new()),
637 lexical_region_resolutions: RefCell::new(None),
638 selection_cache: Default::default(),
639 evaluation_cache: Default::default(),
640 reported_trait_errors: Default::default(),
641 reported_closure_mismatch: Default::default(),
642 tainted_by_errors: Cell::new(None),
643 err_count_on_creation: tcx.sess.err_count(),
644 universe: Cell::new(ty::UniverseIndex::ROOT),
645 intercrate,
646 next_trait_solver,
647 }
648 }
649 }
650
651 impl<'tcx, T> InferOk<'tcx, T> {
unit(self) -> InferOk<'tcx, ()>652 pub fn unit(self) -> InferOk<'tcx, ()> {
653 InferOk { value: (), obligations: self.obligations }
654 }
655
656 /// Extracts `value`, registering any obligations into `fulfill_cx`.
into_value_registering_obligations( self, infcx: &InferCtxt<'tcx>, fulfill_cx: &mut dyn TraitEngine<'tcx>, ) -> T657 pub fn into_value_registering_obligations(
658 self,
659 infcx: &InferCtxt<'tcx>,
660 fulfill_cx: &mut dyn TraitEngine<'tcx>,
661 ) -> T {
662 let InferOk { value, obligations } = self;
663 fulfill_cx.register_predicate_obligations(infcx, obligations);
664 value
665 }
666 }
667
668 impl<'tcx> InferOk<'tcx, ()> {
into_obligations(self) -> PredicateObligations<'tcx>669 pub fn into_obligations(self) -> PredicateObligations<'tcx> {
670 self.obligations
671 }
672 }
673
674 #[must_use = "once you start a snapshot, you should always consume it"]
675 pub struct CombinedSnapshot<'tcx> {
676 undo_snapshot: Snapshot<'tcx>,
677 region_constraints_snapshot: RegionSnapshot,
678 universe: ty::UniverseIndex,
679 }
680
681 impl<'tcx> InferCtxt<'tcx> {
next_trait_solver(&self) -> bool682 pub fn next_trait_solver(&self) -> bool {
683 self.next_trait_solver
684 }
685
686 /// Creates a `TypeErrCtxt` for emitting various inference errors.
687 /// During typeck, use `FnCtxt::err_ctxt` instead.
err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx>688 pub fn err_ctxt(&self) -> TypeErrCtxt<'_, 'tcx> {
689 TypeErrCtxt {
690 infcx: self,
691 typeck_results: None,
692 fallback_has_occurred: false,
693 normalize_fn_sig: Box::new(|fn_sig| fn_sig),
694 autoderef_steps: Box::new(|ty| {
695 debug_assert!(false, "shouldn't be using autoderef_steps outside of typeck");
696 vec![(ty, vec![])]
697 }),
698 }
699 }
700
freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T701 pub fn freshen<T: TypeFoldable<TyCtxt<'tcx>>>(&self, t: T) -> T {
702 t.fold_with(&mut self.freshener())
703 }
704
705 /// Returns the origin of the type variable identified by `vid`, or `None`
706 /// if this is not a type variable.
707 ///
708 /// No attempt is made to resolve `ty`.
type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin>709 pub fn type_var_origin(&self, ty: Ty<'tcx>) -> Option<TypeVariableOrigin> {
710 match *ty.kind() {
711 ty::Infer(ty::TyVar(vid)) => {
712 Some(*self.inner.borrow_mut().type_variables().var_origin(vid))
713 }
714 _ => None,
715 }
716 }
717
freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx>718 pub fn freshener<'b>(&'b self) -> TypeFreshener<'b, 'tcx> {
719 freshen::TypeFreshener::new(self)
720 }
721
unsolved_variables(&self) -> Vec<Ty<'tcx>>722 pub fn unsolved_variables(&self) -> Vec<Ty<'tcx>> {
723 let mut inner = self.inner.borrow_mut();
724 let mut vars: Vec<Ty<'_>> = inner
725 .type_variables()
726 .unsolved_variables()
727 .into_iter()
728 .map(|t| Ty::new_var(self.tcx, t))
729 .collect();
730 vars.extend(
731 (0..inner.int_unification_table().len())
732 .map(|i| ty::IntVid { index: i as u32 })
733 .filter(|&vid| inner.int_unification_table().probe_value(vid).is_none())
734 .map(|v| Ty::new_int_var(self.tcx, v)),
735 );
736 vars.extend(
737 (0..inner.float_unification_table().len())
738 .map(|i| ty::FloatVid { index: i as u32 })
739 .filter(|&vid| inner.float_unification_table().probe_value(vid).is_none())
740 .map(|v| Ty::new_float_var(self.tcx, v)),
741 );
742 vars
743 }
744
combine_fields<'a>( &'a self, trace: TypeTrace<'tcx>, param_env: ty::ParamEnv<'tcx>, define_opaque_types: DefineOpaqueTypes, ) -> CombineFields<'a, 'tcx>745 fn combine_fields<'a>(
746 &'a self,
747 trace: TypeTrace<'tcx>,
748 param_env: ty::ParamEnv<'tcx>,
749 define_opaque_types: DefineOpaqueTypes,
750 ) -> CombineFields<'a, 'tcx> {
751 CombineFields {
752 infcx: self,
753 trace,
754 cause: None,
755 param_env,
756 obligations: PredicateObligations::new(),
757 define_opaque_types,
758 }
759 }
760
in_snapshot(&self) -> bool761 pub fn in_snapshot(&self) -> bool {
762 UndoLogs::<UndoLog<'tcx>>::in_snapshot(&self.inner.borrow_mut().undo_log)
763 }
764
num_open_snapshots(&self) -> usize765 pub fn num_open_snapshots(&self) -> usize {
766 UndoLogs::<UndoLog<'tcx>>::num_open_snapshots(&self.inner.borrow_mut().undo_log)
767 }
768
start_snapshot(&self) -> CombinedSnapshot<'tcx>769 fn start_snapshot(&self) -> CombinedSnapshot<'tcx> {
770 debug!("start_snapshot()");
771
772 let mut inner = self.inner.borrow_mut();
773
774 CombinedSnapshot {
775 undo_snapshot: inner.undo_log.start_snapshot(),
776 region_constraints_snapshot: inner.unwrap_region_constraints().start_snapshot(),
777 universe: self.universe(),
778 }
779 }
780
781 #[instrument(skip(self, snapshot), level = "debug")]
rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'tcx>)782 fn rollback_to(&self, cause: &str, snapshot: CombinedSnapshot<'tcx>) {
783 let CombinedSnapshot { undo_snapshot, region_constraints_snapshot, universe } = snapshot;
784
785 self.universe.set(universe);
786
787 let mut inner = self.inner.borrow_mut();
788 inner.rollback_to(undo_snapshot);
789 inner.unwrap_region_constraints().rollback_to(region_constraints_snapshot);
790 }
791
792 #[instrument(skip(self, snapshot), level = "debug")]
commit_from(&self, snapshot: CombinedSnapshot<'tcx>)793 fn commit_from(&self, snapshot: CombinedSnapshot<'tcx>) {
794 let CombinedSnapshot { undo_snapshot, region_constraints_snapshot: _, universe: _ } =
795 snapshot;
796
797 self.inner.borrow_mut().commit(undo_snapshot);
798 }
799
800 /// Execute `f` and commit the bindings if closure `f` returns `Ok(_)`.
801 #[instrument(skip(self, f), level = "debug")]
commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E> where F: FnOnce(&CombinedSnapshot<'tcx>) -> Result<T, E>,802 pub fn commit_if_ok<T, E, F>(&self, f: F) -> Result<T, E>
803 where
804 F: FnOnce(&CombinedSnapshot<'tcx>) -> Result<T, E>,
805 {
806 let snapshot = self.start_snapshot();
807 let r = f(&snapshot);
808 debug!("commit_if_ok() -- r.is_ok() = {}", r.is_ok());
809 match r {
810 Ok(_) => {
811 self.commit_from(snapshot);
812 }
813 Err(_) => {
814 self.rollback_to("commit_if_ok -- error", snapshot);
815 }
816 }
817 r
818 }
819
820 /// Execute `f` then unroll any bindings it creates.
821 #[instrument(skip(self, f), level = "debug")]
probe<R, F>(&self, f: F) -> R where F: FnOnce(&CombinedSnapshot<'tcx>) -> R,822 pub fn probe<R, F>(&self, f: F) -> R
823 where
824 F: FnOnce(&CombinedSnapshot<'tcx>) -> R,
825 {
826 let snapshot = self.start_snapshot();
827 let r = f(&snapshot);
828 self.rollback_to("probe", snapshot);
829 r
830 }
831
832 /// Scan the constraints produced since `snapshot` and check whether
833 /// we added any region constraints.
region_constraints_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool834 pub fn region_constraints_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
835 self.inner
836 .borrow_mut()
837 .unwrap_region_constraints()
838 .region_constraints_added_in_snapshot(&snapshot.undo_snapshot)
839 }
840
opaque_types_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool841 pub fn opaque_types_added_in_snapshot(&self, snapshot: &CombinedSnapshot<'tcx>) -> bool {
842 self.inner.borrow().undo_log.opaque_types_in_snapshot(&snapshot.undo_snapshot)
843 }
844
can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool where T: at::ToTrace<'tcx>,845 pub fn can_sub<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool
846 where
847 T: at::ToTrace<'tcx>,
848 {
849 let origin = &ObligationCause::dummy();
850 self.probe(|_| self.at(origin, param_env).sub(DefineOpaqueTypes::No, a, b).is_ok())
851 }
852
can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool where T: at::ToTrace<'tcx>,853 pub fn can_eq<T>(&self, param_env: ty::ParamEnv<'tcx>, a: T, b: T) -> bool
854 where
855 T: at::ToTrace<'tcx>,
856 {
857 let origin = &ObligationCause::dummy();
858 self.probe(|_| self.at(origin, param_env).eq(DefineOpaqueTypes::No, a, b).is_ok())
859 }
860
861 #[instrument(skip(self), level = "debug")]
sub_regions( &self, origin: SubregionOrigin<'tcx>, a: ty::Region<'tcx>, b: ty::Region<'tcx>, )862 pub fn sub_regions(
863 &self,
864 origin: SubregionOrigin<'tcx>,
865 a: ty::Region<'tcx>,
866 b: ty::Region<'tcx>,
867 ) {
868 self.inner.borrow_mut().unwrap_region_constraints().make_subregion(origin, a, b);
869 }
870
871 /// Require that the region `r` be equal to one of the regions in
872 /// the set `regions`.
873 #[instrument(skip(self), level = "debug")]
member_constraint( &self, key: ty::OpaqueTypeKey<'tcx>, definition_span: Span, hidden_ty: Ty<'tcx>, region: ty::Region<'tcx>, in_regions: &Lrc<Vec<ty::Region<'tcx>>>, )874 pub fn member_constraint(
875 &self,
876 key: ty::OpaqueTypeKey<'tcx>,
877 definition_span: Span,
878 hidden_ty: Ty<'tcx>,
879 region: ty::Region<'tcx>,
880 in_regions: &Lrc<Vec<ty::Region<'tcx>>>,
881 ) {
882 self.inner.borrow_mut().unwrap_region_constraints().member_constraint(
883 key,
884 definition_span,
885 hidden_ty,
886 region,
887 in_regions,
888 );
889 }
890
891 /// Processes a `Coerce` predicate from the fulfillment context.
892 /// This is NOT the preferred way to handle coercion, which is to
893 /// invoke `FnCtxt::coerce` or a similar method (see `coercion.rs`).
894 ///
895 /// This method here is actually a fallback that winds up being
896 /// invoked when `FnCtxt::coerce` encounters unresolved type variables
897 /// and records a coercion predicate. Presently, this method is equivalent
898 /// to `subtype_predicate` -- that is, "coercing" `a` to `b` winds up
899 /// actually requiring `a <: b`. This is of course a valid coercion,
900 /// but it's not as flexible as `FnCtxt::coerce` would be.
901 ///
902 /// (We may refactor this in the future, but there are a number of
903 /// practical obstacles. Among other things, `FnCtxt::coerce` presently
904 /// records adjustments that are required on the HIR in order to perform
905 /// the coercion, and we don't currently have a way to manage that.)
coerce_predicate( &self, cause: &ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, predicate: ty::PolyCoercePredicate<'tcx>, ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)>906 pub fn coerce_predicate(
907 &self,
908 cause: &ObligationCause<'tcx>,
909 param_env: ty::ParamEnv<'tcx>,
910 predicate: ty::PolyCoercePredicate<'tcx>,
911 ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
912 let subtype_predicate = predicate.map_bound(|p| ty::SubtypePredicate {
913 a_is_expected: false, // when coercing from `a` to `b`, `b` is expected
914 a: p.a,
915 b: p.b,
916 });
917 self.subtype_predicate(cause, param_env, subtype_predicate)
918 }
919
subtype_predicate( &self, cause: &ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, predicate: ty::PolySubtypePredicate<'tcx>, ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)>920 pub fn subtype_predicate(
921 &self,
922 cause: &ObligationCause<'tcx>,
923 param_env: ty::ParamEnv<'tcx>,
924 predicate: ty::PolySubtypePredicate<'tcx>,
925 ) -> Result<InferResult<'tcx, ()>, (TyVid, TyVid)> {
926 // Check for two unresolved inference variables, in which case we can
927 // make no progress. This is partly a micro-optimization, but it's
928 // also an opportunity to "sub-unify" the variables. This isn't
929 // *necessary* to prevent cycles, because they would eventually be sub-unified
930 // anyhow during generalization, but it helps with diagnostics (we can detect
931 // earlier that they are sub-unified).
932 //
933 // Note that we can just skip the binders here because
934 // type variables can't (at present, at
935 // least) capture any of the things bound by this binder.
936 //
937 // Note that this sub here is not just for diagnostics - it has semantic
938 // effects as well.
939 let r_a = self.shallow_resolve(predicate.skip_binder().a);
940 let r_b = self.shallow_resolve(predicate.skip_binder().b);
941 match (r_a.kind(), r_b.kind()) {
942 (&ty::Infer(ty::TyVar(a_vid)), &ty::Infer(ty::TyVar(b_vid))) => {
943 self.inner.borrow_mut().type_variables().sub(a_vid, b_vid);
944 return Err((a_vid, b_vid));
945 }
946 _ => {}
947 }
948
949 Ok(self.commit_if_ok(|_snapshot| {
950 let ty::SubtypePredicate { a_is_expected, a, b } =
951 self.instantiate_binder_with_placeholders(predicate);
952
953 let ok =
954 self.at(cause, param_env).sub_exp(DefineOpaqueTypes::No, a_is_expected, a, b)?;
955
956 Ok(ok.unit())
957 }))
958 }
959
region_outlives_predicate( &self, cause: &traits::ObligationCause<'tcx>, predicate: ty::PolyRegionOutlivesPredicate<'tcx>, )960 pub fn region_outlives_predicate(
961 &self,
962 cause: &traits::ObligationCause<'tcx>,
963 predicate: ty::PolyRegionOutlivesPredicate<'tcx>,
964 ) {
965 let ty::OutlivesPredicate(r_a, r_b) = self.instantiate_binder_with_placeholders(predicate);
966 let origin =
967 SubregionOrigin::from_obligation_cause(cause, || RelateRegionParamBound(cause.span));
968 self.sub_regions(origin, r_b, r_a); // `b : a` ==> `a <= b`
969 }
970
971 /// Number of type variables created so far.
num_ty_vars(&self) -> usize972 pub fn num_ty_vars(&self) -> usize {
973 self.inner.borrow_mut().type_variables().num_vars()
974 }
975
next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid976 pub fn next_ty_var_id(&self, origin: TypeVariableOrigin) -> TyVid {
977 self.inner.borrow_mut().type_variables().new_var(self.universe(), origin)
978 }
979
next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx>980 pub fn next_ty_var(&self, origin: TypeVariableOrigin) -> Ty<'tcx> {
981 Ty::new_var(self.tcx, self.next_ty_var_id(origin))
982 }
983
next_ty_var_id_in_universe( &self, origin: TypeVariableOrigin, universe: ty::UniverseIndex, ) -> TyVid984 pub fn next_ty_var_id_in_universe(
985 &self,
986 origin: TypeVariableOrigin,
987 universe: ty::UniverseIndex,
988 ) -> TyVid {
989 self.inner.borrow_mut().type_variables().new_var(universe, origin)
990 }
991
next_ty_var_in_universe( &self, origin: TypeVariableOrigin, universe: ty::UniverseIndex, ) -> Ty<'tcx>992 pub fn next_ty_var_in_universe(
993 &self,
994 origin: TypeVariableOrigin,
995 universe: ty::UniverseIndex,
996 ) -> Ty<'tcx> {
997 let vid = self.next_ty_var_id_in_universe(origin, universe);
998 Ty::new_var(self.tcx, vid)
999 }
1000
next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx>1001 pub fn next_const_var(&self, ty: Ty<'tcx>, origin: ConstVariableOrigin) -> ty::Const<'tcx> {
1002 ty::Const::new_var(self.tcx, self.next_const_var_id(origin), ty)
1003 }
1004
next_const_var_in_universe( &self, ty: Ty<'tcx>, origin: ConstVariableOrigin, universe: ty::UniverseIndex, ) -> ty::Const<'tcx>1005 pub fn next_const_var_in_universe(
1006 &self,
1007 ty: Ty<'tcx>,
1008 origin: ConstVariableOrigin,
1009 universe: ty::UniverseIndex,
1010 ) -> ty::Const<'tcx> {
1011 let vid = self
1012 .inner
1013 .borrow_mut()
1014 .const_unification_table()
1015 .new_key(ConstVarValue { origin, val: ConstVariableValue::Unknown { universe } });
1016 ty::Const::new_var(self.tcx, vid, ty)
1017 }
1018
next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx>1019 pub fn next_const_var_id(&self, origin: ConstVariableOrigin) -> ConstVid<'tcx> {
1020 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
1021 origin,
1022 val: ConstVariableValue::Unknown { universe: self.universe() },
1023 })
1024 }
1025
next_int_var_id(&self) -> IntVid1026 fn next_int_var_id(&self) -> IntVid {
1027 self.inner.borrow_mut().int_unification_table().new_key(None)
1028 }
1029
next_int_var(&self) -> Ty<'tcx>1030 pub fn next_int_var(&self) -> Ty<'tcx> {
1031 Ty::new_int_var(self.tcx, self.next_int_var_id())
1032 }
1033
next_float_var_id(&self) -> FloatVid1034 fn next_float_var_id(&self) -> FloatVid {
1035 self.inner.borrow_mut().float_unification_table().new_key(None)
1036 }
1037
next_float_var(&self) -> Ty<'tcx>1038 pub fn next_float_var(&self) -> Ty<'tcx> {
1039 Ty::new_float_var(self.tcx, self.next_float_var_id())
1040 }
1041
1042 /// Creates a fresh region variable with the next available index.
1043 /// The variable will be created in the maximum universe created
1044 /// thus far, allowing it to name any region created thus far.
next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx>1045 pub fn next_region_var(&self, origin: RegionVariableOrigin) -> ty::Region<'tcx> {
1046 self.next_region_var_in_universe(origin, self.universe())
1047 }
1048
1049 /// Creates a fresh region variable with the next available index
1050 /// in the given universe; typically, you can use
1051 /// `next_region_var` and just use the maximal universe.
next_region_var_in_universe( &self, origin: RegionVariableOrigin, universe: ty::UniverseIndex, ) -> ty::Region<'tcx>1052 pub fn next_region_var_in_universe(
1053 &self,
1054 origin: RegionVariableOrigin,
1055 universe: ty::UniverseIndex,
1056 ) -> ty::Region<'tcx> {
1057 let region_var =
1058 self.inner.borrow_mut().unwrap_region_constraints().new_region_var(universe, origin);
1059 ty::Region::new_var(self.tcx, region_var)
1060 }
1061
1062 /// Return the universe that the region `r` was created in. For
1063 /// most regions (e.g., `'static`, named regions from the user,
1064 /// etc) this is the root universe U0. For inference variables or
1065 /// placeholders, however, it will return the universe which they
1066 /// are associated.
universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex1067 pub fn universe_of_region(&self, r: ty::Region<'tcx>) -> ty::UniverseIndex {
1068 self.inner.borrow_mut().unwrap_region_constraints().universe(r)
1069 }
1070
1071 /// Number of region variables created so far.
num_region_vars(&self) -> usize1072 pub fn num_region_vars(&self) -> usize {
1073 self.inner.borrow_mut().unwrap_region_constraints().num_region_vars()
1074 }
1075
1076 /// Just a convenient wrapper of `next_region_var` for using during NLL.
1077 #[instrument(skip(self), level = "debug")]
next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx>1078 pub fn next_nll_region_var(&self, origin: NllRegionVariableOrigin) -> ty::Region<'tcx> {
1079 self.next_region_var(RegionVariableOrigin::Nll(origin))
1080 }
1081
1082 /// Just a convenient wrapper of `next_region_var` for using during NLL.
1083 #[instrument(skip(self), level = "debug")]
next_nll_region_var_in_universe( &self, origin: NllRegionVariableOrigin, universe: ty::UniverseIndex, ) -> ty::Region<'tcx>1084 pub fn next_nll_region_var_in_universe(
1085 &self,
1086 origin: NllRegionVariableOrigin,
1087 universe: ty::UniverseIndex,
1088 ) -> ty::Region<'tcx> {
1089 self.next_region_var_in_universe(RegionVariableOrigin::Nll(origin), universe)
1090 }
1091
var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx>1092 pub fn var_for_def(&self, span: Span, param: &ty::GenericParamDef) -> GenericArg<'tcx> {
1093 match param.kind {
1094 GenericParamDefKind::Lifetime => {
1095 // Create a region inference variable for the given
1096 // region parameter definition.
1097 self.next_region_var(EarlyBoundRegion(span, param.name)).into()
1098 }
1099 GenericParamDefKind::Type { .. } => {
1100 // Create a type inference variable for the given
1101 // type parameter definition. The substitutions are
1102 // for actual parameters that may be referred to by
1103 // the default of this type parameter, if it exists.
1104 // e.g., `struct Foo<A, B, C = (A, B)>(...);` when
1105 // used in a path such as `Foo::<T, U>::new()` will
1106 // use an inference variable for `C` with `[T, U]`
1107 // as the substitutions for the default, `(T, U)`.
1108 let ty_var_id = self.inner.borrow_mut().type_variables().new_var(
1109 self.universe(),
1110 TypeVariableOrigin {
1111 kind: TypeVariableOriginKind::TypeParameterDefinition(
1112 param.name,
1113 param.def_id,
1114 ),
1115 span,
1116 },
1117 );
1118
1119 Ty::new_var(self.tcx, ty_var_id).into()
1120 }
1121 GenericParamDefKind::Const { .. } => {
1122 let origin = ConstVariableOrigin {
1123 kind: ConstVariableOriginKind::ConstParameterDefinition(
1124 param.name,
1125 param.def_id,
1126 ),
1127 span,
1128 };
1129 let const_var_id =
1130 self.inner.borrow_mut().const_unification_table().new_key(ConstVarValue {
1131 origin,
1132 val: ConstVariableValue::Unknown { universe: self.universe() },
1133 });
1134 ty::Const::new_var(
1135 self.tcx,
1136 const_var_id,
1137 self.tcx
1138 .type_of(param.def_id)
1139 .no_bound_vars()
1140 .expect("const parameter types cannot be generic"),
1141 )
1142 .into()
1143 }
1144 }
1145 }
1146
1147 /// Given a set of generics defined on a type or impl, returns a substitution mapping each
1148 /// type/region parameter to a fresh inference variable.
fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx>1149 pub fn fresh_substs_for_item(&self, span: Span, def_id: DefId) -> SubstsRef<'tcx> {
1150 InternalSubsts::for_item(self.tcx, def_id, |param, _| self.var_for_def(span, param))
1151 }
1152
1153 /// Returns `true` if errors have been reported since this infcx was
1154 /// created. This is sometimes used as a heuristic to skip
1155 /// reporting errors that often occur as a result of earlier
1156 /// errors, but where it's hard to be 100% sure (e.g., unresolved
1157 /// inference variables, regionck errors).
1158 #[must_use = "this method does not have any side effects"]
tainted_by_errors(&self) -> Option<ErrorGuaranteed>1159 pub fn tainted_by_errors(&self) -> Option<ErrorGuaranteed> {
1160 debug!(
1161 "is_tainted_by_errors(err_count={}, err_count_on_creation={}, \
1162 tainted_by_errors={})",
1163 self.tcx.sess.err_count(),
1164 self.err_count_on_creation,
1165 self.tainted_by_errors.get().is_some()
1166 );
1167
1168 if let Some(e) = self.tainted_by_errors.get() {
1169 return Some(e);
1170 }
1171
1172 if self.tcx.sess.err_count() > self.err_count_on_creation {
1173 // errors reported since this infcx was made
1174 let e = self.tcx.sess.has_errors().unwrap();
1175 self.set_tainted_by_errors(e);
1176 return Some(e);
1177 }
1178
1179 None
1180 }
1181
1182 /// Set the "tainted by errors" flag to true. We call this when we
1183 /// observe an error from a prior pass.
set_tainted_by_errors(&self, e: ErrorGuaranteed)1184 pub fn set_tainted_by_errors(&self, e: ErrorGuaranteed) {
1185 debug!("set_tainted_by_errors(ErrorGuaranteed)");
1186 self.tainted_by_errors.set(Some(e));
1187 }
1188
region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin1189 pub fn region_var_origin(&self, vid: ty::RegionVid) -> RegionVariableOrigin {
1190 let mut inner = self.inner.borrow_mut();
1191 let inner = &mut *inner;
1192 inner
1193 .region_constraint_storage
1194 .as_mut()
1195 .expect("regions already resolved")
1196 .with_log(&mut inner.undo_log)
1197 .var_origin(vid)
1198 }
1199
1200 /// Clone the list of variable regions. This is used only during NLL processing
1201 /// to put the set of region variables into the NLL region context.
get_region_var_origins(&self) -> VarInfos1202 pub fn get_region_var_origins(&self) -> VarInfos {
1203 let mut inner = self.inner.borrow_mut();
1204 let (var_infos, data) = inner
1205 .region_constraint_storage
1206 // We clone instead of taking because borrowck still wants to use
1207 // the inference context after calling this for diagnostics
1208 // and the new trait solver.
1209 .clone()
1210 .expect("regions already resolved")
1211 .with_log(&mut inner.undo_log)
1212 .into_infos_and_data();
1213 assert!(data.is_empty());
1214 var_infos
1215 }
1216
1217 #[instrument(level = "debug", skip(self), ret)]
take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx>1218 pub fn take_opaque_types(&self) -> opaque_types::OpaqueTypeMap<'tcx> {
1219 debug_assert_ne!(self.defining_use_anchor, DefiningAnchor::Error);
1220 std::mem::take(&mut self.inner.borrow_mut().opaque_type_storage.opaque_types)
1221 }
1222
ty_to_string(&self, t: Ty<'tcx>) -> String1223 pub fn ty_to_string(&self, t: Ty<'tcx>) -> String {
1224 self.resolve_vars_if_possible(t).to_string()
1225 }
1226
1227 /// If `TyVar(vid)` resolves to a type, return that type. Else, return the
1228 /// universe index of `TyVar(vid)`.
probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex>1229 pub fn probe_ty_var(&self, vid: TyVid) -> Result<Ty<'tcx>, ty::UniverseIndex> {
1230 use self::type_variable::TypeVariableValue;
1231
1232 match self.inner.borrow_mut().type_variables().probe(vid) {
1233 TypeVariableValue::Known { value } => Ok(value),
1234 TypeVariableValue::Unknown { universe } => Err(universe),
1235 }
1236 }
1237
1238 /// Resolve any type variables found in `value` -- but only one
1239 /// level. So, if the variable `?X` is bound to some type
1240 /// `Foo<?Y>`, then this would return `Foo<?Y>` (but `?Y` may
1241 /// itself be bound to a type).
1242 ///
1243 /// Useful when you only need to inspect the outermost level of
1244 /// the type and don't care about nested types (or perhaps you
1245 /// will be resolving them as well, e.g. in a loop).
shallow_resolve<T>(&self, value: T) -> T where T: TypeFoldable<TyCtxt<'tcx>>,1246 pub fn shallow_resolve<T>(&self, value: T) -> T
1247 where
1248 T: TypeFoldable<TyCtxt<'tcx>>,
1249 {
1250 value.fold_with(&mut ShallowResolver { infcx: self })
1251 }
1252
root_var(&self, var: ty::TyVid) -> ty::TyVid1253 pub fn root_var(&self, var: ty::TyVid) -> ty::TyVid {
1254 self.inner.borrow_mut().type_variables().root_var(var)
1255 }
1256
root_const_var(&self, var: ty::ConstVid<'tcx>) -> ty::ConstVid<'tcx>1257 pub fn root_const_var(&self, var: ty::ConstVid<'tcx>) -> ty::ConstVid<'tcx> {
1258 self.inner.borrow_mut().const_unification_table().find(var)
1259 }
1260
1261 /// Resolves an int var to a rigid int type, if it was constrained to one,
1262 /// or else the root int var in the unification table.
opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx>1263 pub fn opportunistic_resolve_int_var(&self, vid: ty::IntVid) -> Ty<'tcx> {
1264 let mut inner = self.inner.borrow_mut();
1265 if let Some(value) = inner.int_unification_table().probe_value(vid) {
1266 value.to_type(self.tcx)
1267 } else {
1268 Ty::new_int_var(self.tcx, inner.int_unification_table().find(vid))
1269 }
1270 }
1271
1272 /// Resolves a float var to a rigid int type, if it was constrained to one,
1273 /// or else the root float var in the unification table.
opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx>1274 pub fn opportunistic_resolve_float_var(&self, vid: ty::FloatVid) -> Ty<'tcx> {
1275 let mut inner = self.inner.borrow_mut();
1276 if let Some(value) = inner.float_unification_table().probe_value(vid) {
1277 value.to_type(self.tcx)
1278 } else {
1279 Ty::new_float_var(self.tcx, inner.float_unification_table().find(vid))
1280 }
1281 }
1282
1283 /// Where possible, replaces type/const variables in
1284 /// `value` with their final value. Note that region variables
1285 /// are unaffected. If a type/const variable has not been unified, it
1286 /// is left as is. This is an idempotent operation that does
1287 /// not affect inference state in any way and so you can do it
1288 /// at will.
resolve_vars_if_possible<T>(&self, value: T) -> T where T: TypeFoldable<TyCtxt<'tcx>>,1289 pub fn resolve_vars_if_possible<T>(&self, value: T) -> T
1290 where
1291 T: TypeFoldable<TyCtxt<'tcx>>,
1292 {
1293 if !value.has_non_region_infer() {
1294 return value;
1295 }
1296 let mut r = resolve::OpportunisticVarResolver::new(self);
1297 value.fold_with(&mut r)
1298 }
1299
resolve_numeric_literals_with_default<T>(&self, value: T) -> T where T: TypeFoldable<TyCtxt<'tcx>>,1300 pub fn resolve_numeric_literals_with_default<T>(&self, value: T) -> T
1301 where
1302 T: TypeFoldable<TyCtxt<'tcx>>,
1303 {
1304 if !value.has_infer() {
1305 return value; // Avoid duplicated subst-folding.
1306 }
1307 let mut r = InferenceLiteralEraser { tcx: self.tcx };
1308 value.fold_with(&mut r)
1309 }
1310
1311 /// Returns the first unresolved type or const variable contained in `T`.
first_unresolved_const_or_ty_var<T>( &self, value: &T, ) -> Option<(ty::Term<'tcx>, Option<Span>)> where T: TypeVisitable<TyCtxt<'tcx>>,1312 pub fn first_unresolved_const_or_ty_var<T>(
1313 &self,
1314 value: &T,
1315 ) -> Option<(ty::Term<'tcx>, Option<Span>)>
1316 where
1317 T: TypeVisitable<TyCtxt<'tcx>>,
1318 {
1319 value.visit_with(&mut resolve::UnresolvedTypeOrConstFinder::new(self)).break_value()
1320 }
1321
probe_const_var( &self, vid: ty::ConstVid<'tcx>, ) -> Result<ty::Const<'tcx>, ty::UniverseIndex>1322 pub fn probe_const_var(
1323 &self,
1324 vid: ty::ConstVid<'tcx>,
1325 ) -> Result<ty::Const<'tcx>, ty::UniverseIndex> {
1326 match self.inner.borrow_mut().const_unification_table().probe_value(vid).val {
1327 ConstVariableValue::Known { value } => Ok(value),
1328 ConstVariableValue::Unknown { universe } => Err(universe),
1329 }
1330 }
1331
1332 /// Attempts to resolve all type/region/const variables in
1333 /// `value`. Region inference must have been run already (e.g.,
1334 /// by calling `resolve_regions_and_report_errors`). If some
1335 /// variable was never unified, an `Err` results.
1336 ///
1337 /// This method is idempotent, but it not typically not invoked
1338 /// except during the writeback phase.
fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<'tcx, T>1339 pub fn fully_resolve<T: TypeFoldable<TyCtxt<'tcx>>>(&self, value: T) -> FixupResult<'tcx, T> {
1340 let value = resolve::fully_resolve(self, value);
1341 assert!(
1342 value.as_ref().map_or(true, |value| !value.has_infer()),
1343 "`{value:?}` is not fully resolved"
1344 );
1345 value
1346 }
1347
1348 // Instantiates the bound variables in a given binder with fresh inference
1349 // variables in the current universe.
1350 //
1351 // Use this method if you'd like to find some substitution of the binder's
1352 // variables (e.g. during a method call). If there isn't a [`LateBoundRegionConversionTime`]
1353 // that corresponds to your use case, consider whether or not you should
1354 // use [`InferCtxt::instantiate_binder_with_placeholders`] instead.
instantiate_binder_with_fresh_vars<T>( &self, span: Span, lbrct: LateBoundRegionConversionTime, value: ty::Binder<'tcx, T>, ) -> T where T: TypeFoldable<TyCtxt<'tcx>> + Copy,1355 pub fn instantiate_binder_with_fresh_vars<T>(
1356 &self,
1357 span: Span,
1358 lbrct: LateBoundRegionConversionTime,
1359 value: ty::Binder<'tcx, T>,
1360 ) -> T
1361 where
1362 T: TypeFoldable<TyCtxt<'tcx>> + Copy,
1363 {
1364 if let Some(inner) = value.no_bound_vars() {
1365 return inner;
1366 }
1367
1368 struct ToFreshVars<'a, 'tcx> {
1369 infcx: &'a InferCtxt<'tcx>,
1370 span: Span,
1371 lbrct: LateBoundRegionConversionTime,
1372 map: FxHashMap<ty::BoundVar, ty::GenericArg<'tcx>>,
1373 }
1374
1375 impl<'tcx> BoundVarReplacerDelegate<'tcx> for ToFreshVars<'_, 'tcx> {
1376 fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> {
1377 self.map
1378 .entry(br.var)
1379 .or_insert_with(|| {
1380 self.infcx
1381 .next_region_var(LateBoundRegion(self.span, br.kind, self.lbrct))
1382 .into()
1383 })
1384 .expect_region()
1385 }
1386 fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> {
1387 self.map
1388 .entry(bt.var)
1389 .or_insert_with(|| {
1390 self.infcx
1391 .next_ty_var(TypeVariableOrigin {
1392 kind: TypeVariableOriginKind::MiscVariable,
1393 span: self.span,
1394 })
1395 .into()
1396 })
1397 .expect_ty()
1398 }
1399 fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> {
1400 self.map
1401 .entry(bv)
1402 .or_insert_with(|| {
1403 self.infcx
1404 .next_const_var(
1405 ty,
1406 ConstVariableOrigin {
1407 kind: ConstVariableOriginKind::MiscVariable,
1408 span: self.span,
1409 },
1410 )
1411 .into()
1412 })
1413 .expect_const()
1414 }
1415 }
1416 let delegate = ToFreshVars { infcx: self, span, lbrct, map: Default::default() };
1417 self.tcx.replace_bound_vars_uncached(value, delegate)
1418 }
1419
1420 /// See the [`region_constraints::RegionConstraintCollector::verify_generic_bound`] method.
verify_generic_bound( &self, origin: SubregionOrigin<'tcx>, kind: GenericKind<'tcx>, a: ty::Region<'tcx>, bound: VerifyBound<'tcx>, )1421 pub fn verify_generic_bound(
1422 &self,
1423 origin: SubregionOrigin<'tcx>,
1424 kind: GenericKind<'tcx>,
1425 a: ty::Region<'tcx>,
1426 bound: VerifyBound<'tcx>,
1427 ) {
1428 debug!("verify_generic_bound({:?}, {:?} <: {:?})", kind, a, bound);
1429
1430 self.inner
1431 .borrow_mut()
1432 .unwrap_region_constraints()
1433 .verify_generic_bound(origin, kind, a, bound);
1434 }
1435
1436 /// Obtains the latest type of the given closure; this may be a
1437 /// closure in the current function, in which case its
1438 /// `ClosureKind` may not yet be known.
closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind>1439 pub fn closure_kind(&self, closure_substs: SubstsRef<'tcx>) -> Option<ty::ClosureKind> {
1440 let closure_kind_ty = closure_substs.as_closure().kind_ty();
1441 let closure_kind_ty = self.shallow_resolve(closure_kind_ty);
1442 closure_kind_ty.to_opt_closure_kind()
1443 }
1444
1445 /// Clears the selection, evaluation, and projection caches. This is useful when
1446 /// repeatedly attempting to select an `Obligation` while changing only
1447 /// its `ParamEnv`, since `FulfillmentContext` doesn't use probing.
clear_caches(&self)1448 pub fn clear_caches(&self) {
1449 self.selection_cache.clear();
1450 self.evaluation_cache.clear();
1451 self.inner.borrow_mut().projection_cache().clear();
1452 }
1453
universe(&self) -> ty::UniverseIndex1454 pub fn universe(&self) -> ty::UniverseIndex {
1455 self.universe.get()
1456 }
1457
1458 /// Creates and return a fresh universe that extends all previous
1459 /// universes. Updates `self.universe` to that new universe.
create_next_universe(&self) -> ty::UniverseIndex1460 pub fn create_next_universe(&self) -> ty::UniverseIndex {
1461 let u = self.universe.get().next_universe();
1462 debug!("create_next_universe {u:?}");
1463 self.universe.set(u);
1464 u
1465 }
1466
try_const_eval_resolve( &self, param_env: ty::ParamEnv<'tcx>, unevaluated: ty::UnevaluatedConst<'tcx>, ty: Ty<'tcx>, span: Option<Span>, ) -> Result<ty::Const<'tcx>, ErrorHandled>1467 pub fn try_const_eval_resolve(
1468 &self,
1469 param_env: ty::ParamEnv<'tcx>,
1470 unevaluated: ty::UnevaluatedConst<'tcx>,
1471 ty: Ty<'tcx>,
1472 span: Option<Span>,
1473 ) -> Result<ty::Const<'tcx>, ErrorHandled> {
1474 match self.const_eval_resolve(param_env, unevaluated, span) {
1475 Ok(Some(val)) => Ok(ty::Const::new_value(self.tcx, val, ty)),
1476 Ok(None) => {
1477 let tcx = self.tcx;
1478 let def_id = unevaluated.def;
1479 span_bug!(
1480 tcx.def_span(def_id),
1481 "unable to construct a constant value for the unevaluated constant {:?}",
1482 unevaluated
1483 );
1484 }
1485 Err(err) => Err(err),
1486 }
1487 }
1488
1489 /// Resolves and evaluates a constant.
1490 ///
1491 /// The constant can be located on a trait like `<A as B>::C`, in which case the given
1492 /// substitutions and environment are used to resolve the constant. Alternatively if the
1493 /// constant has generic parameters in scope the substitutions are used to evaluate the value of
1494 /// the constant. For example in `fn foo<T>() { let _ = [0; bar::<T>()]; }` the repeat count
1495 /// constant `bar::<T>()` requires a substitution for `T`, if the substitution for `T` is still
1496 /// too generic for the constant to be evaluated then `Err(ErrorHandled::TooGeneric)` is
1497 /// returned.
1498 ///
1499 /// This handles inferences variables within both `param_env` and `substs` by
1500 /// performing the operation on their respective canonical forms.
1501 #[instrument(skip(self), level = "debug")]
const_eval_resolve( &self, mut param_env: ty::ParamEnv<'tcx>, unevaluated: ty::UnevaluatedConst<'tcx>, span: Option<Span>, ) -> EvalToValTreeResult<'tcx>1502 pub fn const_eval_resolve(
1503 &self,
1504 mut param_env: ty::ParamEnv<'tcx>,
1505 unevaluated: ty::UnevaluatedConst<'tcx>,
1506 span: Option<Span>,
1507 ) -> EvalToValTreeResult<'tcx> {
1508 let mut substs = self.resolve_vars_if_possible(unevaluated.substs);
1509 debug!(?substs);
1510
1511 // Postpone the evaluation of constants whose substs depend on inference
1512 // variables
1513 let tcx = self.tcx;
1514 if substs.has_non_region_infer() {
1515 if let Some(ct) = tcx.thir_abstract_const(unevaluated.def)? {
1516 let ct = tcx.expand_abstract_consts(ct.subst(tcx, substs));
1517 if let Err(e) = ct.error_reported() {
1518 return Err(ErrorHandled::Reported(e.into()));
1519 } else if ct.has_non_region_infer() || ct.has_non_region_param() {
1520 return Err(ErrorHandled::TooGeneric);
1521 } else {
1522 substs = replace_param_and_infer_substs_with_placeholder(tcx, substs);
1523 }
1524 } else {
1525 substs = InternalSubsts::identity_for_item(tcx, unevaluated.def);
1526 param_env = tcx.param_env(unevaluated.def);
1527 }
1528 }
1529
1530 let param_env_erased = tcx.erase_regions(param_env);
1531 let substs_erased = tcx.erase_regions(substs);
1532 debug!(?param_env_erased);
1533 debug!(?substs_erased);
1534
1535 let unevaluated = ty::UnevaluatedConst { def: unevaluated.def, substs: substs_erased };
1536
1537 // The return value is the evaluated value which doesn't contain any reference to inference
1538 // variables, thus we don't need to substitute back the original values.
1539 tcx.const_eval_resolve_for_typeck(param_env_erased, unevaluated, span)
1540 }
1541
1542 /// The returned function is used in a fast path. If it returns `true` the variable is
1543 /// unchanged, `false` indicates that the status is unknown.
1544 #[inline]
is_ty_infer_var_definitely_unchanged<'a>( &'a self, ) -> (impl Fn(TyOrConstInferVar<'tcx>) -> bool + 'a)1545 pub fn is_ty_infer_var_definitely_unchanged<'a>(
1546 &'a self,
1547 ) -> (impl Fn(TyOrConstInferVar<'tcx>) -> bool + 'a) {
1548 // This hoists the borrow/release out of the loop body.
1549 let inner = self.inner.try_borrow();
1550
1551 return move |infer_var: TyOrConstInferVar<'tcx>| match (infer_var, &inner) {
1552 (TyOrConstInferVar::Ty(ty_var), Ok(inner)) => {
1553 use self::type_variable::TypeVariableValue;
1554
1555 matches!(
1556 inner.try_type_variables_probe_ref(ty_var),
1557 Some(TypeVariableValue::Unknown { .. })
1558 )
1559 }
1560 _ => false,
1561 };
1562 }
1563
1564 /// `ty_or_const_infer_var_changed` is equivalent to one of these two:
1565 /// * `shallow_resolve(ty) != ty` (where `ty.kind = ty::Infer(_)`)
1566 /// * `shallow_resolve(ct) != ct` (where `ct.kind = ty::ConstKind::Infer(_)`)
1567 ///
1568 /// However, `ty_or_const_infer_var_changed` is more efficient. It's always
1569 /// inlined, despite being large, because it has only two call sites that
1570 /// are extremely hot (both in `traits::fulfill`'s checking of `stalled_on`
1571 /// inference variables), and it handles both `Ty` and `ty::Const` without
1572 /// having to resort to storing full `GenericArg`s in `stalled_on`.
1573 #[inline(always)]
ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool1574 pub fn ty_or_const_infer_var_changed(&self, infer_var: TyOrConstInferVar<'tcx>) -> bool {
1575 match infer_var {
1576 TyOrConstInferVar::Ty(v) => {
1577 use self::type_variable::TypeVariableValue;
1578
1579 // If `inlined_probe` returns a `Known` value, it never equals
1580 // `ty::Infer(ty::TyVar(v))`.
1581 match self.inner.borrow_mut().type_variables().inlined_probe(v) {
1582 TypeVariableValue::Unknown { .. } => false,
1583 TypeVariableValue::Known { .. } => true,
1584 }
1585 }
1586
1587 TyOrConstInferVar::TyInt(v) => {
1588 // If `inlined_probe_value` returns a value it's always a
1589 // `ty::Int(_)` or `ty::UInt(_)`, which never matches a
1590 // `ty::Infer(_)`.
1591 self.inner.borrow_mut().int_unification_table().inlined_probe_value(v).is_some()
1592 }
1593
1594 TyOrConstInferVar::TyFloat(v) => {
1595 // If `probe_value` returns a value it's always a
1596 // `ty::Float(_)`, which never matches a `ty::Infer(_)`.
1597 //
1598 // Not `inlined_probe_value(v)` because this call site is colder.
1599 self.inner.borrow_mut().float_unification_table().probe_value(v).is_some()
1600 }
1601
1602 TyOrConstInferVar::Const(v) => {
1603 // If `probe_value` returns a `Known` value, it never equals
1604 // `ty::ConstKind::Infer(ty::InferConst::Var(v))`.
1605 //
1606 // Not `inlined_probe_value(v)` because this call site is colder.
1607 match self.inner.borrow_mut().const_unification_table().probe_value(v).val {
1608 ConstVariableValue::Unknown { .. } => false,
1609 ConstVariableValue::Known { .. } => true,
1610 }
1611 }
1612 }
1613 }
1614 }
1615
1616 impl<'tcx> TypeErrCtxt<'_, 'tcx> {
1617 // [Note-Type-error-reporting]
1618 // An invariant is that anytime the expected or actual type is Error (the special
1619 // error type, meaning that an error occurred when typechecking this expression),
1620 // this is a derived error. The error cascaded from another error (that was already
1621 // reported), so it's not useful to display it to the user.
1622 // The following methods implement this logic.
1623 // They check if either the actual or expected type is Error, and don't print the error
1624 // in this case. The typechecker should only ever report type errors involving mismatched
1625 // types using one of these methods, and should not call span_err directly for such
1626 // errors.
type_error_struct_with_diag<M>( &self, sp: Span, mk_diag: M, actual_ty: Ty<'tcx>, ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> where M: FnOnce(String) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,1627 pub fn type_error_struct_with_diag<M>(
1628 &self,
1629 sp: Span,
1630 mk_diag: M,
1631 actual_ty: Ty<'tcx>,
1632 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>
1633 where
1634 M: FnOnce(String) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>,
1635 {
1636 let actual_ty = self.resolve_vars_if_possible(actual_ty);
1637 debug!("type_error_struct_with_diag({:?}, {:?})", sp, actual_ty);
1638
1639 let mut err = mk_diag(self.ty_to_string(actual_ty));
1640
1641 // Don't report an error if actual type is `Error`.
1642 if actual_ty.references_error() {
1643 err.downgrade_to_delayed_bug();
1644 }
1645
1646 err
1647 }
1648
report_mismatched_types( &self, cause: &ObligationCause<'tcx>, expected: Ty<'tcx>, actual: Ty<'tcx>, err: TypeError<'tcx>, ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>1649 pub fn report_mismatched_types(
1650 &self,
1651 cause: &ObligationCause<'tcx>,
1652 expected: Ty<'tcx>,
1653 actual: Ty<'tcx>,
1654 err: TypeError<'tcx>,
1655 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
1656 self.report_and_explain_type_error(TypeTrace::types(cause, true, expected, actual), err)
1657 }
1658
report_mismatched_consts( &self, cause: &ObligationCause<'tcx>, expected: ty::Const<'tcx>, actual: ty::Const<'tcx>, err: TypeError<'tcx>, ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed>1659 pub fn report_mismatched_consts(
1660 &self,
1661 cause: &ObligationCause<'tcx>,
1662 expected: ty::Const<'tcx>,
1663 actual: ty::Const<'tcx>,
1664 err: TypeError<'tcx>,
1665 ) -> DiagnosticBuilder<'tcx, ErrorGuaranteed> {
1666 self.report_and_explain_type_error(TypeTrace::consts(cause, true, expected, actual), err)
1667 }
1668 }
1669
1670 /// Helper for [InferCtxt::ty_or_const_infer_var_changed] (see comment on that), currently
1671 /// used only for `traits::fulfill`'s list of `stalled_on` inference variables.
1672 #[derive(Copy, Clone, Debug)]
1673 pub enum TyOrConstInferVar<'tcx> {
1674 /// Equivalent to `ty::Infer(ty::TyVar(_))`.
1675 Ty(TyVid),
1676 /// Equivalent to `ty::Infer(ty::IntVar(_))`.
1677 TyInt(IntVid),
1678 /// Equivalent to `ty::Infer(ty::FloatVar(_))`.
1679 TyFloat(FloatVid),
1680
1681 /// Equivalent to `ty::ConstKind::Infer(ty::InferConst::Var(_))`.
1682 Const(ConstVid<'tcx>),
1683 }
1684
1685 impl<'tcx> TyOrConstInferVar<'tcx> {
1686 /// Tries to extract an inference variable from a type or a constant, returns `None`
1687 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`) and
1688 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self>1689 pub fn maybe_from_generic_arg(arg: GenericArg<'tcx>) -> Option<Self> {
1690 match arg.unpack() {
1691 GenericArgKind::Type(ty) => Self::maybe_from_ty(ty),
1692 GenericArgKind::Const(ct) => Self::maybe_from_const(ct),
1693 GenericArgKind::Lifetime(_) => None,
1694 }
1695 }
1696
1697 /// Tries to extract an inference variable from a type, returns `None`
1698 /// for types other than `ty::Infer(_)` (or `InferTy::Fresh*`).
maybe_from_ty(ty: Ty<'tcx>) -> Option<Self>1699 fn maybe_from_ty(ty: Ty<'tcx>) -> Option<Self> {
1700 match *ty.kind() {
1701 ty::Infer(ty::TyVar(v)) => Some(TyOrConstInferVar::Ty(v)),
1702 ty::Infer(ty::IntVar(v)) => Some(TyOrConstInferVar::TyInt(v)),
1703 ty::Infer(ty::FloatVar(v)) => Some(TyOrConstInferVar::TyFloat(v)),
1704 _ => None,
1705 }
1706 }
1707
1708 /// Tries to extract an inference variable from a constant, returns `None`
1709 /// for constants other than `ty::ConstKind::Infer(_)` (or `InferConst::Fresh`).
maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self>1710 fn maybe_from_const(ct: ty::Const<'tcx>) -> Option<Self> {
1711 match ct.kind() {
1712 ty::ConstKind::Infer(InferConst::Var(v)) => Some(TyOrConstInferVar::Const(v)),
1713 _ => None,
1714 }
1715 }
1716 }
1717
1718 /// Replace `{integer}` with `i32` and `{float}` with `f64`.
1719 /// Used only for diagnostics.
1720 struct InferenceLiteralEraser<'tcx> {
1721 tcx: TyCtxt<'tcx>,
1722 }
1723
1724 impl<'tcx> TypeFolder<TyCtxt<'tcx>> for InferenceLiteralEraser<'tcx> {
interner(&self) -> TyCtxt<'tcx>1725 fn interner(&self) -> TyCtxt<'tcx> {
1726 self.tcx
1727 }
1728
fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx>1729 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1730 match ty.kind() {
1731 ty::Infer(ty::IntVar(_) | ty::FreshIntTy(_)) => self.tcx.types.i32,
1732 ty::Infer(ty::FloatVar(_) | ty::FreshFloatTy(_)) => self.tcx.types.f64,
1733 _ => ty.super_fold_with(self),
1734 }
1735 }
1736 }
1737
1738 struct ShallowResolver<'a, 'tcx> {
1739 infcx: &'a InferCtxt<'tcx>,
1740 }
1741
1742 impl<'a, 'tcx> TypeFolder<TyCtxt<'tcx>> for ShallowResolver<'a, 'tcx> {
interner(&self) -> TyCtxt<'tcx>1743 fn interner(&self) -> TyCtxt<'tcx> {
1744 self.infcx.tcx
1745 }
1746
1747 /// If `ty` is a type variable of some kind, resolve it one level
1748 /// (but do not resolve types found in the result). If `typ` is
1749 /// not a type variable, just return it unmodified.
1750 #[inline]
fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx>1751 fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
1752 if let ty::Infer(v) = ty.kind() { self.fold_infer_ty(*v).unwrap_or(ty) } else { ty }
1753 }
1754
fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx>1755 fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> {
1756 if let ty::ConstKind::Infer(InferConst::Var(vid)) = ct.kind() {
1757 self.infcx
1758 .inner
1759 .borrow_mut()
1760 .const_unification_table()
1761 .probe_value(vid)
1762 .val
1763 .known()
1764 .unwrap_or(ct)
1765 } else {
1766 ct
1767 }
1768 }
1769 }
1770
1771 impl<'a, 'tcx> ShallowResolver<'a, 'tcx> {
1772 // This is separate from `fold_ty` to keep that method small and inlinable.
1773 #[inline(never)]
fold_infer_ty(&mut self, v: InferTy) -> Option<Ty<'tcx>>1774 fn fold_infer_ty(&mut self, v: InferTy) -> Option<Ty<'tcx>> {
1775 match v {
1776 ty::TyVar(v) => {
1777 // Not entirely obvious: if `typ` is a type variable,
1778 // it can be resolved to an int/float variable, which
1779 // can then be recursively resolved, hence the
1780 // recursion. Note though that we prevent type
1781 // variables from unifying to other type variables
1782 // directly (though they may be embedded
1783 // structurally), and we prevent cycles in any case,
1784 // so this recursion should always be of very limited
1785 // depth.
1786 //
1787 // Note: if these two lines are combined into one we get
1788 // dynamic borrow errors on `self.inner`.
1789 let known = self.infcx.inner.borrow_mut().type_variables().probe(v).known();
1790 known.map(|t| self.fold_ty(t))
1791 }
1792
1793 ty::IntVar(v) => self
1794 .infcx
1795 .inner
1796 .borrow_mut()
1797 .int_unification_table()
1798 .probe_value(v)
1799 .map(|v| v.to_type(self.infcx.tcx)),
1800
1801 ty::FloatVar(v) => self
1802 .infcx
1803 .inner
1804 .borrow_mut()
1805 .float_unification_table()
1806 .probe_value(v)
1807 .map(|v| v.to_type(self.infcx.tcx)),
1808
1809 ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_) => None,
1810 }
1811 }
1812 }
1813
1814 impl<'tcx> TypeTrace<'tcx> {
span(&self) -> Span1815 pub fn span(&self) -> Span {
1816 self.cause.span
1817 }
1818
types( cause: &ObligationCause<'tcx>, a_is_expected: bool, a: Ty<'tcx>, b: Ty<'tcx>, ) -> TypeTrace<'tcx>1819 pub fn types(
1820 cause: &ObligationCause<'tcx>,
1821 a_is_expected: bool,
1822 a: Ty<'tcx>,
1823 b: Ty<'tcx>,
1824 ) -> TypeTrace<'tcx> {
1825 TypeTrace {
1826 cause: cause.clone(),
1827 values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
1828 }
1829 }
1830
poly_trait_refs( cause: &ObligationCause<'tcx>, a_is_expected: bool, a: ty::PolyTraitRef<'tcx>, b: ty::PolyTraitRef<'tcx>, ) -> TypeTrace<'tcx>1831 pub fn poly_trait_refs(
1832 cause: &ObligationCause<'tcx>,
1833 a_is_expected: bool,
1834 a: ty::PolyTraitRef<'tcx>,
1835 b: ty::PolyTraitRef<'tcx>,
1836 ) -> TypeTrace<'tcx> {
1837 TypeTrace {
1838 cause: cause.clone(),
1839 values: PolyTraitRefs(ExpectedFound::new(a_is_expected, a, b)),
1840 }
1841 }
1842
consts( cause: &ObligationCause<'tcx>, a_is_expected: bool, a: ty::Const<'tcx>, b: ty::Const<'tcx>, ) -> TypeTrace<'tcx>1843 pub fn consts(
1844 cause: &ObligationCause<'tcx>,
1845 a_is_expected: bool,
1846 a: ty::Const<'tcx>,
1847 b: ty::Const<'tcx>,
1848 ) -> TypeTrace<'tcx> {
1849 TypeTrace {
1850 cause: cause.clone(),
1851 values: Terms(ExpectedFound::new(a_is_expected, a.into(), b.into())),
1852 }
1853 }
1854 }
1855
1856 impl<'tcx> SubregionOrigin<'tcx> {
span(&self) -> Span1857 pub fn span(&self) -> Span {
1858 match *self {
1859 Subtype(ref a) => a.span(),
1860 RelateObjectBound(a) => a,
1861 RelateParamBound(a, ..) => a,
1862 RelateRegionParamBound(a) => a,
1863 Reborrow(a) => a,
1864 ReferenceOutlivesReferent(_, a) => a,
1865 CompareImplItemObligation { span, .. } => span,
1866 AscribeUserTypeProvePredicate(span) => span,
1867 CheckAssociatedTypeBounds { ref parent, .. } => parent.span(),
1868 }
1869 }
1870
from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self where F: FnOnce() -> Self,1871 pub fn from_obligation_cause<F>(cause: &traits::ObligationCause<'tcx>, default: F) -> Self
1872 where
1873 F: FnOnce() -> Self,
1874 {
1875 match *cause.code() {
1876 traits::ObligationCauseCode::ReferenceOutlivesReferent(ref_type) => {
1877 SubregionOrigin::ReferenceOutlivesReferent(ref_type, cause.span)
1878 }
1879
1880 traits::ObligationCauseCode::CompareImplItemObligation {
1881 impl_item_def_id,
1882 trait_item_def_id,
1883 kind: _,
1884 } => SubregionOrigin::CompareImplItemObligation {
1885 span: cause.span,
1886 impl_item_def_id,
1887 trait_item_def_id,
1888 },
1889
1890 traits::ObligationCauseCode::CheckAssociatedTypeBounds {
1891 impl_item_def_id,
1892 trait_item_def_id,
1893 } => SubregionOrigin::CheckAssociatedTypeBounds {
1894 impl_item_def_id,
1895 trait_item_def_id,
1896 parent: Box::new(default()),
1897 },
1898
1899 traits::ObligationCauseCode::AscribeUserTypeProvePredicate(span) => {
1900 SubregionOrigin::AscribeUserTypeProvePredicate(span)
1901 }
1902
1903 _ => default(),
1904 }
1905 }
1906 }
1907
1908 impl RegionVariableOrigin {
span(&self) -> Span1909 pub fn span(&self) -> Span {
1910 match *self {
1911 MiscVariable(a)
1912 | PatternRegion(a)
1913 | AddrOfRegion(a)
1914 | Autoref(a)
1915 | Coercion(a)
1916 | EarlyBoundRegion(a, ..)
1917 | LateBoundRegion(a, ..)
1918 | UpvarRegion(_, a) => a,
1919 Nll(..) => bug!("NLL variable used with `span`"),
1920 }
1921 }
1922 }
1923
1924 /// Replaces substs that reference param or infer variables with suitable
1925 /// placeholders. This function is meant to remove these param and infer
1926 /// substs when they're not actually needed to evaluate a constant.
replace_param_and_infer_substs_with_placeholder<'tcx>( tcx: TyCtxt<'tcx>, substs: SubstsRef<'tcx>, ) -> SubstsRef<'tcx>1927 fn replace_param_and_infer_substs_with_placeholder<'tcx>(
1928 tcx: TyCtxt<'tcx>,
1929 substs: SubstsRef<'tcx>,
1930 ) -> SubstsRef<'tcx> {
1931 struct ReplaceParamAndInferWithPlaceholder<'tcx> {
1932 tcx: TyCtxt<'tcx>,
1933 idx: u32,
1934 }
1935
1936 impl<'tcx> TypeFolder<TyCtxt<'tcx>> for ReplaceParamAndInferWithPlaceholder<'tcx> {
1937 fn interner(&self) -> TyCtxt<'tcx> {
1938 self.tcx
1939 }
1940
1941 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
1942 if let ty::Infer(_) = t.kind() {
1943 let idx = {
1944 let idx = self.idx;
1945 self.idx += 1;
1946 idx
1947 };
1948 Ty::new_placeholder(
1949 self.tcx,
1950 ty::PlaceholderType {
1951 universe: ty::UniverseIndex::ROOT,
1952 bound: ty::BoundTy {
1953 var: ty::BoundVar::from_u32(idx),
1954 kind: ty::BoundTyKind::Anon,
1955 },
1956 },
1957 )
1958 } else {
1959 t.super_fold_with(self)
1960 }
1961 }
1962
1963 fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> {
1964 if let ty::ConstKind::Infer(_) = c.kind() {
1965 let ty = c.ty();
1966 // If the type references param or infer then ICE ICE ICE
1967 if ty.has_non_region_param() || ty.has_non_region_infer() {
1968 bug!("const `{c}`'s type should not reference params or types");
1969 }
1970 ty::Const::new_placeholder(
1971 self.tcx,
1972 ty::PlaceholderConst {
1973 universe: ty::UniverseIndex::ROOT,
1974 bound: ty::BoundVar::from_u32({
1975 let idx = self.idx;
1976 self.idx += 1;
1977 idx
1978 }),
1979 },
1980 ty,
1981 )
1982 } else {
1983 c.super_fold_with(self)
1984 }
1985 }
1986 }
1987
1988 substs.fold_with(&mut ReplaceParamAndInferWithPlaceholder { tcx, idx: 0 })
1989 }
1990