1 // Copyright 2003-2009 The RE2 Authors. All Rights Reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 // Regular expression interface RE2.
6 //
7 // Originally the PCRE C++ wrapper, but adapted to use
8 // the new automata-based regular expression engines.
9
10 #include "re2/re2.h"
11
12 #include <errno.h>
13 #include <stddef.h>
14 #include <stdint.h>
15 #include <stdlib.h>
16 #include <string.h>
17
18 #include <algorithm>
19 #include <atomic>
20 #include <map>
21 #include <string>
22 #include <utility>
23 #include <vector>
24
25 #include "absl/base/call_once.h"
26 #include "absl/base/macros.h"
27 #include "absl/container/fixed_array.h"
28 #include "absl/log/absl_check.h"
29 #include "absl/log/absl_log.h"
30 #include "absl/strings/ascii.h"
31 #include "absl/strings/str_format.h"
32 #include "absl/strings/string_view.h"
33 #include "re2/prog.h"
34 #include "re2/regexp.h"
35 #include "re2/sparse_array.h"
36 #include "util/strutil.h"
37 #include "util/utf.h"
38
39 #ifdef _MSC_VER
40 #include <intrin.h>
41 #endif
42
43 namespace re2 {
44
45 // Controls the maximum count permitted by GlobalReplace(); -1 is unlimited.
46 static int maximum_global_replace_count = -1;
47
FUZZING_ONLY_set_maximum_global_replace_count(int i)48 void RE2::FUZZING_ONLY_set_maximum_global_replace_count(int i) {
49 maximum_global_replace_count = i;
50 }
51
52 // Maximum number of args we can set
53 static const int kMaxArgs = 16;
54 static const int kVecSize = 1+kMaxArgs;
55
56 const int RE2::Options::kDefaultMaxMem; // initialized in re2.h
57
Options(RE2::CannedOptions opt)58 RE2::Options::Options(RE2::CannedOptions opt)
59 : max_mem_(kDefaultMaxMem),
60 encoding_(opt == RE2::Latin1 ? EncodingLatin1 : EncodingUTF8),
61 posix_syntax_(opt == RE2::POSIX),
62 longest_match_(opt == RE2::POSIX),
63 log_errors_(opt != RE2::Quiet),
64 literal_(false),
65 never_nl_(false),
66 dot_nl_(false),
67 never_capture_(false),
68 case_sensitive_(true),
69 perl_classes_(false),
70 word_boundary_(false),
71 one_line_(false) {
72 }
73
74 // Empty objects for use as const references.
75 // Statically allocating the storage and then
76 // lazily constructing the objects (in a once
77 // in RE2::Init()) avoids global constructors
78 // and the false positives (thanks, Valgrind)
79 // about memory leaks at program termination.
80 struct EmptyStorage {
81 std::string empty_string;
82 std::map<std::string, int> empty_named_groups;
83 std::map<int, std::string> empty_group_names;
84 };
85 alignas(EmptyStorage) static char empty_storage[sizeof(EmptyStorage)];
86
empty_string()87 static inline std::string* empty_string() {
88 return &reinterpret_cast<EmptyStorage*>(empty_storage)->empty_string;
89 }
90
empty_named_groups()91 static inline std::map<std::string, int>* empty_named_groups() {
92 return &reinterpret_cast<EmptyStorage*>(empty_storage)->empty_named_groups;
93 }
94
empty_group_names()95 static inline std::map<int, std::string>* empty_group_names() {
96 return &reinterpret_cast<EmptyStorage*>(empty_storage)->empty_group_names;
97 }
98
99 // Converts from Regexp error code to RE2 error code.
100 // Maybe some day they will diverge. In any event, this
101 // hides the existence of Regexp from RE2 users.
RegexpErrorToRE2(re2::RegexpStatusCode code)102 static RE2::ErrorCode RegexpErrorToRE2(re2::RegexpStatusCode code) {
103 switch (code) {
104 case re2::kRegexpSuccess:
105 return RE2::NoError;
106 case re2::kRegexpInternalError:
107 return RE2::ErrorInternal;
108 case re2::kRegexpBadEscape:
109 return RE2::ErrorBadEscape;
110 case re2::kRegexpBadCharClass:
111 return RE2::ErrorBadCharClass;
112 case re2::kRegexpBadCharRange:
113 return RE2::ErrorBadCharRange;
114 case re2::kRegexpMissingBracket:
115 return RE2::ErrorMissingBracket;
116 case re2::kRegexpMissingParen:
117 return RE2::ErrorMissingParen;
118 case re2::kRegexpUnexpectedParen:
119 return RE2::ErrorUnexpectedParen;
120 case re2::kRegexpTrailingBackslash:
121 return RE2::ErrorTrailingBackslash;
122 case re2::kRegexpRepeatArgument:
123 return RE2::ErrorRepeatArgument;
124 case re2::kRegexpRepeatSize:
125 return RE2::ErrorRepeatSize;
126 case re2::kRegexpRepeatOp:
127 return RE2::ErrorRepeatOp;
128 case re2::kRegexpBadPerlOp:
129 return RE2::ErrorBadPerlOp;
130 case re2::kRegexpBadUTF8:
131 return RE2::ErrorBadUTF8;
132 case re2::kRegexpBadNamedCapture:
133 return RE2::ErrorBadNamedCapture;
134 }
135 return RE2::ErrorInternal;
136 }
137
trunc(absl::string_view pattern)138 static std::string trunc(absl::string_view pattern) {
139 if (pattern.size() < 100)
140 return std::string(pattern);
141 return std::string(pattern.substr(0, 100)) + "...";
142 }
143
144
RE2(const char * pattern)145 RE2::RE2(const char* pattern) {
146 Init(pattern, DefaultOptions);
147 }
148
RE2(const std::string & pattern)149 RE2::RE2(const std::string& pattern) {
150 Init(pattern, DefaultOptions);
151 }
152
RE2(absl::string_view pattern)153 RE2::RE2(absl::string_view pattern) {
154 Init(pattern, DefaultOptions);
155 }
156
RE2(absl::string_view pattern,const Options & options)157 RE2::RE2(absl::string_view pattern, const Options& options) {
158 Init(pattern, options);
159 }
160
ParseFlags() const161 int RE2::Options::ParseFlags() const {
162 int flags = Regexp::ClassNL;
163 switch (encoding()) {
164 default:
165 if (log_errors())
166 ABSL_LOG(ERROR) << "Unknown encoding " << encoding();
167 break;
168 case RE2::Options::EncodingUTF8:
169 break;
170 case RE2::Options::EncodingLatin1:
171 flags |= Regexp::Latin1;
172 break;
173 }
174
175 if (!posix_syntax())
176 flags |= Regexp::LikePerl;
177
178 if (literal())
179 flags |= Regexp::Literal;
180
181 if (never_nl())
182 flags |= Regexp::NeverNL;
183
184 if (dot_nl())
185 flags |= Regexp::DotNL;
186
187 if (never_capture())
188 flags |= Regexp::NeverCapture;
189
190 if (!case_sensitive())
191 flags |= Regexp::FoldCase;
192
193 if (perl_classes())
194 flags |= Regexp::PerlClasses;
195
196 if (word_boundary())
197 flags |= Regexp::PerlB;
198
199 if (one_line())
200 flags |= Regexp::OneLine;
201
202 return flags;
203 }
204
Init(absl::string_view pattern,const Options & options)205 void RE2::Init(absl::string_view pattern, const Options& options) {
206 static absl::once_flag empty_once;
207 absl::call_once(empty_once, []() {
208 (void) new (empty_storage) EmptyStorage;
209 });
210
211 pattern_ = new std::string(pattern);
212 options_.Copy(options);
213 entire_regexp_ = NULL;
214 suffix_regexp_ = NULL;
215 error_ = empty_string();
216 error_arg_ = empty_string();
217
218 num_captures_ = -1;
219 error_code_ = NoError;
220 longest_match_ = options_.longest_match();
221 is_one_pass_ = false;
222 prefix_foldcase_ = false;
223 prefix_.clear();
224 prog_ = NULL;
225
226 rprog_ = NULL;
227 named_groups_ = NULL;
228 group_names_ = NULL;
229
230 RegexpStatus status;
231 entire_regexp_ = Regexp::Parse(
232 *pattern_,
233 static_cast<Regexp::ParseFlags>(options_.ParseFlags()),
234 &status);
235 if (entire_regexp_ == NULL) {
236 if (options_.log_errors()) {
237 ABSL_LOG(ERROR) << "Error parsing '" << trunc(*pattern_) << "': "
238 << status.Text();
239 }
240 error_ = new std::string(status.Text());
241 error_code_ = RegexpErrorToRE2(status.code());
242 error_arg_ = new std::string(status.error_arg());
243 return;
244 }
245
246 bool foldcase;
247 re2::Regexp* suffix;
248 if (entire_regexp_->RequiredPrefix(&prefix_, &foldcase, &suffix)) {
249 prefix_foldcase_ = foldcase;
250 suffix_regexp_ = suffix;
251 }
252 else {
253 suffix_regexp_ = entire_regexp_->Incref();
254 }
255
256 // Two thirds of the memory goes to the forward Prog,
257 // one third to the reverse prog, because the forward
258 // Prog has two DFAs but the reverse prog has one.
259 prog_ = suffix_regexp_->CompileToProg(options_.max_mem()*2/3);
260 if (prog_ == NULL) {
261 if (options_.log_errors())
262 ABSL_LOG(ERROR) << "Error compiling '" << trunc(*pattern_) << "'";
263 error_ = new std::string("pattern too large - compile failed");
264 error_code_ = RE2::ErrorPatternTooLarge;
265 return;
266 }
267
268 // We used to compute this lazily, but it's used during the
269 // typical control flow for a match call, so we now compute
270 // it eagerly, which avoids the overhead of absl::once_flag.
271 num_captures_ = suffix_regexp_->NumCaptures();
272
273 // Could delay this until the first match call that
274 // cares about submatch information, but the one-pass
275 // machine's memory gets cut from the DFA memory budget,
276 // and that is harder to do if the DFA has already
277 // been built.
278 is_one_pass_ = prog_->IsOnePass();
279 }
280
281 // Returns rprog_, computing it if needed.
ReverseProg() const282 re2::Prog* RE2::ReverseProg() const {
283 absl::call_once(rprog_once_, [](const RE2* re) {
284 re->rprog_ =
285 re->suffix_regexp_->CompileToReverseProg(re->options_.max_mem() / 3);
286 if (re->rprog_ == NULL) {
287 if (re->options_.log_errors())
288 ABSL_LOG(ERROR) << "Error reverse compiling '" << trunc(*re->pattern_)
289 << "'";
290 // We no longer touch error_ and error_code_ because failing to compile
291 // the reverse Prog is not a showstopper: falling back to NFA execution
292 // is fine. More importantly, an RE2 object is supposed to be logically
293 // immutable: whatever ok() would have returned after Init() completed,
294 // it should continue to return that no matter what ReverseProg() does.
295 }
296 }, this);
297 return rprog_;
298 }
299
~RE2()300 RE2::~RE2() {
301 if (group_names_ != empty_group_names())
302 delete group_names_;
303 if (named_groups_ != empty_named_groups())
304 delete named_groups_;
305 delete rprog_;
306 delete prog_;
307 if (error_arg_ != empty_string())
308 delete error_arg_;
309 if (error_ != empty_string())
310 delete error_;
311 if (suffix_regexp_)
312 suffix_regexp_->Decref();
313 if (entire_regexp_)
314 entire_regexp_->Decref();
315 delete pattern_;
316 }
317
ProgramSize() const318 int RE2::ProgramSize() const {
319 if (prog_ == NULL)
320 return -1;
321 return prog_->size();
322 }
323
ReverseProgramSize() const324 int RE2::ReverseProgramSize() const {
325 if (prog_ == NULL)
326 return -1;
327 Prog* prog = ReverseProg();
328 if (prog == NULL)
329 return -1;
330 return prog->size();
331 }
332
333 // Finds the most significant non-zero bit in n.
FindMSBSet(uint32_t n)334 static int FindMSBSet(uint32_t n) {
335 ABSL_DCHECK_NE(n, uint32_t{0});
336 #if defined(__GNUC__)
337 return 31 ^ __builtin_clz(n);
338 #elif defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
339 unsigned long c;
340 _BitScanReverse(&c, n);
341 return static_cast<int>(c);
342 #else
343 int c = 0;
344 for (int shift = 1 << 4; shift != 0; shift >>= 1) {
345 uint32_t word = n >> shift;
346 if (word != 0) {
347 n = word;
348 c += shift;
349 }
350 }
351 return c;
352 #endif
353 }
354
Fanout(Prog * prog,std::vector<int> * histogram)355 static int Fanout(Prog* prog, std::vector<int>* histogram) {
356 SparseArray<int> fanout(prog->size());
357 prog->Fanout(&fanout);
358 int data[32] = {};
359 int size = 0;
360 for (SparseArray<int>::iterator i = fanout.begin(); i != fanout.end(); ++i) {
361 if (i->value() == 0)
362 continue;
363 uint32_t value = i->value();
364 int bucket = FindMSBSet(value);
365 bucket += value & (value-1) ? 1 : 0;
366 ++data[bucket];
367 size = std::max(size, bucket+1);
368 }
369 if (histogram != NULL)
370 histogram->assign(data, data+size);
371 return size-1;
372 }
373
ProgramFanout(std::vector<int> * histogram) const374 int RE2::ProgramFanout(std::vector<int>* histogram) const {
375 if (prog_ == NULL)
376 return -1;
377 return Fanout(prog_, histogram);
378 }
379
ReverseProgramFanout(std::vector<int> * histogram) const380 int RE2::ReverseProgramFanout(std::vector<int>* histogram) const {
381 if (prog_ == NULL)
382 return -1;
383 Prog* prog = ReverseProg();
384 if (prog == NULL)
385 return -1;
386 return Fanout(prog, histogram);
387 }
388
389 // Returns named_groups_, computing it if needed.
NamedCapturingGroups() const390 const std::map<std::string, int>& RE2::NamedCapturingGroups() const {
391 absl::call_once(named_groups_once_, [](const RE2* re) {
392 if (re->suffix_regexp_ != NULL)
393 re->named_groups_ = re->suffix_regexp_->NamedCaptures();
394 if (re->named_groups_ == NULL)
395 re->named_groups_ = empty_named_groups();
396 }, this);
397 return *named_groups_;
398 }
399
400 // Returns group_names_, computing it if needed.
CapturingGroupNames() const401 const std::map<int, std::string>& RE2::CapturingGroupNames() const {
402 absl::call_once(group_names_once_, [](const RE2* re) {
403 if (re->suffix_regexp_ != NULL)
404 re->group_names_ = re->suffix_regexp_->CaptureNames();
405 if (re->group_names_ == NULL)
406 re->group_names_ = empty_group_names();
407 }, this);
408 return *group_names_;
409 }
410
411 /***** Convenience interfaces *****/
412
FullMatchN(absl::string_view text,const RE2 & re,const Arg * const args[],int n)413 bool RE2::FullMatchN(absl::string_view text, const RE2& re,
414 const Arg* const args[], int n) {
415 return re.DoMatch(text, ANCHOR_BOTH, NULL, args, n);
416 }
417
PartialMatchN(absl::string_view text,const RE2 & re,const Arg * const args[],int n)418 bool RE2::PartialMatchN(absl::string_view text, const RE2& re,
419 const Arg* const args[], int n) {
420 return re.DoMatch(text, UNANCHORED, NULL, args, n);
421 }
422
ConsumeN(absl::string_view * input,const RE2 & re,const Arg * const args[],int n)423 bool RE2::ConsumeN(absl::string_view* input, const RE2& re,
424 const Arg* const args[], int n) {
425 size_t consumed;
426 if (re.DoMatch(*input, ANCHOR_START, &consumed, args, n)) {
427 input->remove_prefix(consumed);
428 return true;
429 } else {
430 return false;
431 }
432 }
433
FindAndConsumeN(absl::string_view * input,const RE2 & re,const Arg * const args[],int n)434 bool RE2::FindAndConsumeN(absl::string_view* input, const RE2& re,
435 const Arg* const args[], int n) {
436 size_t consumed;
437 if (re.DoMatch(*input, UNANCHORED, &consumed, args, n)) {
438 input->remove_prefix(consumed);
439 return true;
440 } else {
441 return false;
442 }
443 }
444
Replace(std::string * str,const RE2 & re,absl::string_view rewrite)445 bool RE2::Replace(std::string* str,
446 const RE2& re,
447 absl::string_view rewrite) {
448 absl::string_view vec[kVecSize];
449 int nvec = 1 + MaxSubmatch(rewrite);
450 if (nvec > 1 + re.NumberOfCapturingGroups())
451 return false;
452 if (nvec > static_cast<int>(ABSL_ARRAYSIZE(vec)))
453 return false;
454 if (!re.Match(*str, 0, str->size(), UNANCHORED, vec, nvec))
455 return false;
456
457 std::string s;
458 if (!re.Rewrite(&s, rewrite, vec, nvec))
459 return false;
460
461 ABSL_DCHECK_GE(vec[0].data(), str->data());
462 ABSL_DCHECK_LE(vec[0].data() + vec[0].size(), str->data() + str->size());
463 str->replace(vec[0].data() - str->data(), vec[0].size(), s);
464 return true;
465 }
466
GlobalReplace(std::string * str,const RE2 & re,absl::string_view rewrite)467 int RE2::GlobalReplace(std::string* str,
468 const RE2& re,
469 absl::string_view rewrite) {
470 absl::string_view vec[kVecSize];
471 int nvec = 1 + MaxSubmatch(rewrite);
472 if (nvec > 1 + re.NumberOfCapturingGroups())
473 return false;
474 if (nvec > static_cast<int>(ABSL_ARRAYSIZE(vec)))
475 return false;
476
477 const char* p = str->data();
478 const char* ep = p + str->size();
479 const char* lastend = NULL;
480 std::string out;
481 int count = 0;
482 while (p <= ep) {
483 if (maximum_global_replace_count != -1 &&
484 count >= maximum_global_replace_count)
485 break;
486 if (!re.Match(*str, static_cast<size_t>(p - str->data()),
487 str->size(), UNANCHORED, vec, nvec))
488 break;
489 if (p < vec[0].data())
490 out.append(p, vec[0].data() - p);
491 if (vec[0].data() == lastend && vec[0].empty()) {
492 // Disallow empty match at end of last match: skip ahead.
493 //
494 // fullrune() takes int, not ptrdiff_t. However, it just looks
495 // at the leading byte and treats any length >= 4 the same.
496 if (re.options().encoding() == RE2::Options::EncodingUTF8 &&
497 fullrune(p, static_cast<int>(std::min(ptrdiff_t{4}, ep - p)))) {
498 // re is in UTF-8 mode and there is enough left of str
499 // to allow us to advance by up to UTFmax bytes.
500 Rune r;
501 int n = chartorune(&r, p);
502 // Some copies of chartorune have a bug that accepts
503 // encodings of values in (10FFFF, 1FFFFF] as valid.
504 if (r > Runemax) {
505 n = 1;
506 r = Runeerror;
507 }
508 if (!(n == 1 && r == Runeerror)) { // no decoding error
509 out.append(p, n);
510 p += n;
511 continue;
512 }
513 }
514 // Most likely, re is in Latin-1 mode. If it is in UTF-8 mode,
515 // we fell through from above and the GIGO principle applies.
516 if (p < ep)
517 out.append(p, 1);
518 p++;
519 continue;
520 }
521 re.Rewrite(&out, rewrite, vec, nvec);
522 p = vec[0].data() + vec[0].size();
523 lastend = p;
524 count++;
525 }
526
527 if (count == 0)
528 return 0;
529
530 if (p < ep)
531 out.append(p, ep - p);
532 using std::swap;
533 swap(out, *str);
534 return count;
535 }
536
Extract(absl::string_view text,const RE2 & re,absl::string_view rewrite,std::string * out)537 bool RE2::Extract(absl::string_view text,
538 const RE2& re,
539 absl::string_view rewrite,
540 std::string* out) {
541 absl::string_view vec[kVecSize];
542 int nvec = 1 + MaxSubmatch(rewrite);
543 if (nvec > 1 + re.NumberOfCapturingGroups())
544 return false;
545 if (nvec > static_cast<int>(ABSL_ARRAYSIZE(vec)))
546 return false;
547 if (!re.Match(text, 0, text.size(), UNANCHORED, vec, nvec))
548 return false;
549
550 out->clear();
551 return re.Rewrite(out, rewrite, vec, nvec);
552 }
553
QuoteMeta(absl::string_view unquoted)554 std::string RE2::QuoteMeta(absl::string_view unquoted) {
555 std::string result;
556 result.reserve(unquoted.size() << 1);
557
558 // Escape any ascii character not in [A-Za-z_0-9].
559 //
560 // Note that it's legal to escape a character even if it has no
561 // special meaning in a regular expression -- so this function does
562 // that. (This also makes it identical to the perl function of the
563 // same name except for the null-character special case;
564 // see `perldoc -f quotemeta`.)
565 for (size_t ii = 0; ii < unquoted.size(); ++ii) {
566 // Note that using 'isalnum' here raises the benchmark time from
567 // 32ns to 58ns:
568 if ((unquoted[ii] < 'a' || unquoted[ii] > 'z') &&
569 (unquoted[ii] < 'A' || unquoted[ii] > 'Z') &&
570 (unquoted[ii] < '0' || unquoted[ii] > '9') &&
571 unquoted[ii] != '_' &&
572 // If this is the part of a UTF8 or Latin1 character, we need
573 // to copy this byte without escaping. Experimentally this is
574 // what works correctly with the regexp library.
575 !(unquoted[ii] & 128)) {
576 if (unquoted[ii] == '\0') { // Special handling for null chars.
577 // Note that this special handling is not strictly required for RE2,
578 // but this quoting is required for other regexp libraries such as
579 // PCRE.
580 // Can't use "\\0" since the next character might be a digit.
581 result += "\\x00";
582 continue;
583 }
584 result += '\\';
585 }
586 result += unquoted[ii];
587 }
588
589 return result;
590 }
591
PossibleMatchRange(std::string * min,std::string * max,int maxlen) const592 bool RE2::PossibleMatchRange(std::string* min, std::string* max,
593 int maxlen) const {
594 if (prog_ == NULL)
595 return false;
596
597 int n = static_cast<int>(prefix_.size());
598 if (n > maxlen)
599 n = maxlen;
600
601 // Determine initial min max from prefix_ literal.
602 *min = prefix_.substr(0, n);
603 *max = prefix_.substr(0, n);
604 if (prefix_foldcase_) {
605 // prefix is ASCII lowercase; change *min to uppercase.
606 for (int i = 0; i < n; i++) {
607 char& c = (*min)[i];
608 if ('a' <= c && c <= 'z')
609 c += 'A' - 'a';
610 }
611 }
612
613 // Add to prefix min max using PossibleMatchRange on regexp.
614 std::string dmin, dmax;
615 maxlen -= n;
616 if (maxlen > 0 && prog_->PossibleMatchRange(&dmin, &dmax, maxlen)) {
617 min->append(dmin);
618 max->append(dmax);
619 } else if (!max->empty()) {
620 // prog_->PossibleMatchRange has failed us,
621 // but we still have useful information from prefix_.
622 // Round up *max to allow any possible suffix.
623 PrefixSuccessor(max);
624 } else {
625 // Nothing useful.
626 *min = "";
627 *max = "";
628 return false;
629 }
630
631 return true;
632 }
633
634 // Avoid possible locale nonsense in standard strcasecmp.
635 // The string a is known to be all lowercase.
ascii_strcasecmp(const char * a,const char * b,size_t len)636 static int ascii_strcasecmp(const char* a, const char* b, size_t len) {
637 const char* ae = a + len;
638
639 for (; a < ae; a++, b++) {
640 uint8_t x = *a;
641 uint8_t y = *b;
642 if ('A' <= y && y <= 'Z')
643 y += 'a' - 'A';
644 if (x != y)
645 return x - y;
646 }
647 return 0;
648 }
649
650
651 /***** Actual matching and rewriting code *****/
652
Match(absl::string_view text,size_t startpos,size_t endpos,Anchor re_anchor,absl::string_view * submatch,int nsubmatch) const653 bool RE2::Match(absl::string_view text,
654 size_t startpos,
655 size_t endpos,
656 Anchor re_anchor,
657 absl::string_view* submatch,
658 int nsubmatch) const {
659 if (!ok()) {
660 if (options_.log_errors())
661 ABSL_LOG(ERROR) << "Invalid RE2: " << *error_;
662 return false;
663 }
664
665 if (startpos > endpos || endpos > text.size()) {
666 if (options_.log_errors())
667 ABSL_LOG(ERROR) << "RE2: invalid startpos, endpos pair. ["
668 << "startpos: " << startpos << ", "
669 << "endpos: " << endpos << ", "
670 << "text size: " << text.size() << "]";
671 return false;
672 }
673
674 absl::string_view subtext = text;
675 subtext.remove_prefix(startpos);
676 subtext.remove_suffix(text.size() - endpos);
677
678 // Use DFAs to find exact location of match, filter out non-matches.
679
680 // Don't ask for the location if we won't use it.
681 // SearchDFA can do extra optimizations in that case.
682 absl::string_view match;
683 absl::string_view* matchp = &match;
684 if (nsubmatch == 0)
685 matchp = NULL;
686
687 int ncap = 1 + NumberOfCapturingGroups();
688 if (ncap > nsubmatch)
689 ncap = nsubmatch;
690
691 // If the regexp is anchored explicitly, must not be in middle of text.
692 if (prog_->anchor_start() && startpos != 0)
693 return false;
694 if (prog_->anchor_end() && endpos != text.size())
695 return false;
696
697 // If the regexp is anchored explicitly, update re_anchor
698 // so that we can potentially fall into a faster case below.
699 if (prog_->anchor_start() && prog_->anchor_end())
700 re_anchor = ANCHOR_BOTH;
701 else if (prog_->anchor_start() && re_anchor != ANCHOR_BOTH)
702 re_anchor = ANCHOR_START;
703
704 // Check for the required prefix, if any.
705 size_t prefixlen = 0;
706 if (!prefix_.empty()) {
707 if (startpos != 0)
708 return false;
709 prefixlen = prefix_.size();
710 if (prefixlen > subtext.size())
711 return false;
712 if (prefix_foldcase_) {
713 if (ascii_strcasecmp(&prefix_[0], subtext.data(), prefixlen) != 0)
714 return false;
715 } else {
716 if (memcmp(&prefix_[0], subtext.data(), prefixlen) != 0)
717 return false;
718 }
719 subtext.remove_prefix(prefixlen);
720 // If there is a required prefix, the anchor must be at least ANCHOR_START.
721 if (re_anchor != ANCHOR_BOTH)
722 re_anchor = ANCHOR_START;
723 }
724
725 Prog::Anchor anchor = Prog::kUnanchored;
726 Prog::MatchKind kind =
727 longest_match_ ? Prog::kLongestMatch : Prog::kFirstMatch;
728
729 bool can_one_pass = is_one_pass_ && ncap <= Prog::kMaxOnePassCapture;
730 bool can_bit_state = prog_->CanBitState();
731 size_t bit_state_text_max_size = prog_->bit_state_text_max_size();
732
733 #ifdef RE2_HAVE_THREAD_LOCAL
734 hooks::context = this;
735 #endif
736 bool dfa_failed = false;
737 bool skipped_test = false;
738 switch (re_anchor) {
739 default:
740 ABSL_LOG(DFATAL) << "Unexpected re_anchor value: " << re_anchor;
741 return false;
742
743 case UNANCHORED: {
744 if (prog_->anchor_end()) {
745 // This is a very special case: we don't need the forward DFA because
746 // we already know where the match must end! Instead, the reverse DFA
747 // can say whether there is a match and (optionally) where it starts.
748 Prog* prog = ReverseProg();
749 if (prog == NULL) {
750 // Fall back to NFA below.
751 skipped_test = true;
752 break;
753 }
754 if (!prog->SearchDFA(subtext, text, Prog::kAnchored,
755 Prog::kLongestMatch, matchp, &dfa_failed, NULL)) {
756 if (dfa_failed) {
757 if (options_.log_errors())
758 ABSL_LOG(ERROR) << "DFA out of memory: "
759 << "pattern length " << pattern_->size() << ", "
760 << "program size " << prog->size() << ", "
761 << "list count " << prog->list_count() << ", "
762 << "bytemap range " << prog->bytemap_range();
763 // Fall back to NFA below.
764 skipped_test = true;
765 break;
766 }
767 return false;
768 }
769 if (matchp == NULL) // Matched. Don't care where.
770 return true;
771 break;
772 }
773
774 if (!prog_->SearchDFA(subtext, text, anchor, kind,
775 matchp, &dfa_failed, NULL)) {
776 if (dfa_failed) {
777 if (options_.log_errors())
778 ABSL_LOG(ERROR) << "DFA out of memory: "
779 << "pattern length " << pattern_->size() << ", "
780 << "program size " << prog_->size() << ", "
781 << "list count " << prog_->list_count() << ", "
782 << "bytemap range " << prog_->bytemap_range();
783 // Fall back to NFA below.
784 skipped_test = true;
785 break;
786 }
787 return false;
788 }
789 if (matchp == NULL) // Matched. Don't care where.
790 return true;
791 // SearchDFA set match.end() but didn't know where the
792 // match started. Run the regexp backward from match.end()
793 // to find the longest possible match -- that's where it started.
794 Prog* prog = ReverseProg();
795 if (prog == NULL) {
796 // Fall back to NFA below.
797 skipped_test = true;
798 break;
799 }
800 if (!prog->SearchDFA(match, text, Prog::kAnchored,
801 Prog::kLongestMatch, &match, &dfa_failed, NULL)) {
802 if (dfa_failed) {
803 if (options_.log_errors())
804 ABSL_LOG(ERROR) << "DFA out of memory: "
805 << "pattern length " << pattern_->size() << ", "
806 << "program size " << prog->size() << ", "
807 << "list count " << prog->list_count() << ", "
808 << "bytemap range " << prog->bytemap_range();
809 // Fall back to NFA below.
810 skipped_test = true;
811 break;
812 }
813 if (options_.log_errors())
814 ABSL_LOG(ERROR) << "SearchDFA inconsistency";
815 return false;
816 }
817 break;
818 }
819
820 case ANCHOR_BOTH:
821 case ANCHOR_START:
822 if (re_anchor == ANCHOR_BOTH)
823 kind = Prog::kFullMatch;
824 anchor = Prog::kAnchored;
825
826 // If only a small amount of text and need submatch
827 // information anyway and we're going to use OnePass or BitState
828 // to get it, we might as well not even bother with the DFA:
829 // OnePass or BitState will be fast enough.
830 // On tiny texts, OnePass outruns even the DFA, and
831 // it doesn't have the shared state and occasional mutex that
832 // the DFA does.
833 if (can_one_pass && text.size() <= 4096 &&
834 (ncap > 1 || text.size() <= 16)) {
835 skipped_test = true;
836 break;
837 }
838 if (can_bit_state && text.size() <= bit_state_text_max_size &&
839 ncap > 1) {
840 skipped_test = true;
841 break;
842 }
843 if (!prog_->SearchDFA(subtext, text, anchor, kind,
844 &match, &dfa_failed, NULL)) {
845 if (dfa_failed) {
846 if (options_.log_errors())
847 ABSL_LOG(ERROR) << "DFA out of memory: "
848 << "pattern length " << pattern_->size() << ", "
849 << "program size " << prog_->size() << ", "
850 << "list count " << prog_->list_count() << ", "
851 << "bytemap range " << prog_->bytemap_range();
852 // Fall back to NFA below.
853 skipped_test = true;
854 break;
855 }
856 return false;
857 }
858 break;
859 }
860
861 if (!skipped_test && ncap <= 1) {
862 // We know exactly where it matches. That's enough.
863 if (ncap == 1)
864 submatch[0] = match;
865 } else {
866 absl::string_view subtext1;
867 if (skipped_test) {
868 // DFA ran out of memory or was skipped:
869 // need to search in entire original text.
870 subtext1 = subtext;
871 } else {
872 // DFA found the exact match location:
873 // let NFA run an anchored, full match search
874 // to find submatch locations.
875 subtext1 = match;
876 anchor = Prog::kAnchored;
877 kind = Prog::kFullMatch;
878 }
879
880 if (can_one_pass && anchor != Prog::kUnanchored) {
881 if (!prog_->SearchOnePass(subtext1, text, anchor, kind, submatch, ncap)) {
882 if (!skipped_test && options_.log_errors())
883 ABSL_LOG(ERROR) << "SearchOnePass inconsistency";
884 return false;
885 }
886 } else if (can_bit_state && subtext1.size() <= bit_state_text_max_size) {
887 if (!prog_->SearchBitState(subtext1, text, anchor,
888 kind, submatch, ncap)) {
889 if (!skipped_test && options_.log_errors())
890 ABSL_LOG(ERROR) << "SearchBitState inconsistency";
891 return false;
892 }
893 } else {
894 if (!prog_->SearchNFA(subtext1, text, anchor, kind, submatch, ncap)) {
895 if (!skipped_test && options_.log_errors())
896 ABSL_LOG(ERROR) << "SearchNFA inconsistency";
897 return false;
898 }
899 }
900 }
901
902 // Adjust overall match for required prefix that we stripped off.
903 if (prefixlen > 0 && nsubmatch > 0)
904 submatch[0] = absl::string_view(submatch[0].data() - prefixlen,
905 submatch[0].size() + prefixlen);
906
907 // Zero submatches that don't exist in the regexp.
908 for (int i = ncap; i < nsubmatch; i++)
909 submatch[i] = absl::string_view();
910 return true;
911 }
912
913 // Internal matcher - like Match() but takes Args not string_views.
DoMatch(absl::string_view text,Anchor re_anchor,size_t * consumed,const Arg * const * args,int n) const914 bool RE2::DoMatch(absl::string_view text,
915 Anchor re_anchor,
916 size_t* consumed,
917 const Arg* const* args,
918 int n) const {
919 if (!ok()) {
920 if (options_.log_errors())
921 ABSL_LOG(ERROR) << "Invalid RE2: " << *error_;
922 return false;
923 }
924
925 if (NumberOfCapturingGroups() < n) {
926 // RE has fewer capturing groups than number of Arg pointers passed in.
927 return false;
928 }
929
930 // Count number of capture groups needed.
931 int nvec;
932 if (n == 0 && consumed == NULL)
933 nvec = 0;
934 else
935 nvec = n+1;
936
937 absl::FixedArray<absl::string_view, kVecSize> vec_storage(nvec);
938 absl::string_view* vec = vec_storage.data();
939
940 if (!Match(text, 0, text.size(), re_anchor, vec, nvec)) {
941 return false;
942 }
943
944 if (consumed != NULL)
945 *consumed = static_cast<size_t>(EndPtr(vec[0]) - BeginPtr(text));
946
947 if (n == 0 || args == NULL) {
948 // We are not interested in results
949 return true;
950 }
951
952 // If we got here, we must have matched the whole pattern.
953 for (int i = 0; i < n; i++) {
954 absl::string_view s = vec[i+1];
955 if (!args[i]->Parse(s.data(), s.size())) {
956 // TODO: Should we indicate what the error was?
957 return false;
958 }
959 }
960
961 return true;
962 }
963
964 // Checks that the rewrite string is well-formed with respect to this
965 // regular expression.
CheckRewriteString(absl::string_view rewrite,std::string * error) const966 bool RE2::CheckRewriteString(absl::string_view rewrite,
967 std::string* error) const {
968 int max_token = -1;
969 for (const char *s = rewrite.data(), *end = s + rewrite.size();
970 s < end; s++) {
971 int c = *s;
972 if (c != '\\') {
973 continue;
974 }
975 if (++s == end) {
976 *error = "Rewrite schema error: '\\' not allowed at end.";
977 return false;
978 }
979 c = *s;
980 if (c == '\\') {
981 continue;
982 }
983 if (!absl::ascii_isdigit(c)) {
984 *error = "Rewrite schema error: "
985 "'\\' must be followed by a digit or '\\'.";
986 return false;
987 }
988 int n = (c - '0');
989 if (max_token < n) {
990 max_token = n;
991 }
992 }
993
994 if (max_token > NumberOfCapturingGroups()) {
995 *error = absl::StrFormat(
996 "Rewrite schema requests %d matches, but the regexp only has %d "
997 "parenthesized subexpressions.",
998 max_token, NumberOfCapturingGroups());
999 return false;
1000 }
1001 return true;
1002 }
1003
1004 // Returns the maximum submatch needed for the rewrite to be done by Replace().
1005 // E.g. if rewrite == "foo \\2,\\1", returns 2.
MaxSubmatch(absl::string_view rewrite)1006 int RE2::MaxSubmatch(absl::string_view rewrite) {
1007 int max = 0;
1008 for (const char *s = rewrite.data(), *end = s + rewrite.size();
1009 s < end; s++) {
1010 if (*s == '\\') {
1011 s++;
1012 int c = (s < end) ? *s : -1;
1013 if (absl::ascii_isdigit(c)) {
1014 int n = (c - '0');
1015 if (n > max)
1016 max = n;
1017 }
1018 }
1019 }
1020 return max;
1021 }
1022
1023 // Append the "rewrite" string, with backslash substitutions from "vec",
1024 // to string "out".
Rewrite(std::string * out,absl::string_view rewrite,const absl::string_view * vec,int veclen) const1025 bool RE2::Rewrite(std::string* out,
1026 absl::string_view rewrite,
1027 const absl::string_view* vec,
1028 int veclen) const {
1029 for (const char *s = rewrite.data(), *end = s + rewrite.size();
1030 s < end; s++) {
1031 if (*s != '\\') {
1032 out->push_back(*s);
1033 continue;
1034 }
1035 s++;
1036 int c = (s < end) ? *s : -1;
1037 if (absl::ascii_isdigit(c)) {
1038 int n = (c - '0');
1039 if (n >= veclen) {
1040 if (options_.log_errors()) {
1041 ABSL_LOG(ERROR) << "invalid substitution \\" << n
1042 << " from " << veclen << " groups";
1043 }
1044 return false;
1045 }
1046 absl::string_view snip = vec[n];
1047 if (!snip.empty())
1048 out->append(snip.data(), snip.size());
1049 } else if (c == '\\') {
1050 out->push_back('\\');
1051 } else {
1052 if (options_.log_errors())
1053 ABSL_LOG(ERROR) << "invalid rewrite pattern: " << rewrite;
1054 return false;
1055 }
1056 }
1057 return true;
1058 }
1059
1060 /***** Parsers for various types *****/
1061
1062 namespace re2_internal {
1063
1064 template <>
Parse(const char * str,size_t n,void * dest)1065 bool Parse(const char* str, size_t n, void* dest) {
1066 // We fail if somebody asked us to store into a non-NULL void* pointer
1067 return (dest == NULL);
1068 }
1069
1070 template <>
Parse(const char * str,size_t n,std::string * dest)1071 bool Parse(const char* str, size_t n, std::string* dest) {
1072 if (dest == NULL) return true;
1073 dest->assign(str, n);
1074 return true;
1075 }
1076
1077 template <>
Parse(const char * str,size_t n,absl::string_view * dest)1078 bool Parse(const char* str, size_t n, absl::string_view* dest) {
1079 if (dest == NULL) return true;
1080 *dest = absl::string_view(str, n);
1081 return true;
1082 }
1083
1084 template <>
Parse(const char * str,size_t n,char * dest)1085 bool Parse(const char* str, size_t n, char* dest) {
1086 if (n != 1) return false;
1087 if (dest == NULL) return true;
1088 *dest = str[0];
1089 return true;
1090 }
1091
1092 template <>
Parse(const char * str,size_t n,signed char * dest)1093 bool Parse(const char* str, size_t n, signed char* dest) {
1094 if (n != 1) return false;
1095 if (dest == NULL) return true;
1096 *dest = str[0];
1097 return true;
1098 }
1099
1100 template <>
Parse(const char * str,size_t n,unsigned char * dest)1101 bool Parse(const char* str, size_t n, unsigned char* dest) {
1102 if (n != 1) return false;
1103 if (dest == NULL) return true;
1104 *dest = str[0];
1105 return true;
1106 }
1107
1108 // Largest number spec that we are willing to parse
1109 static const int kMaxNumberLength = 32;
1110
1111 // REQUIRES "buf" must have length at least nbuf.
1112 // Copies "str" into "buf" and null-terminates.
1113 // Overwrites *np with the new length.
TerminateNumber(char * buf,size_t nbuf,const char * str,size_t * np,bool accept_spaces)1114 static const char* TerminateNumber(char* buf, size_t nbuf, const char* str,
1115 size_t* np, bool accept_spaces) {
1116 size_t n = *np;
1117 if (n == 0) return "";
1118 if (n > 0 && absl::ascii_isspace(*str)) {
1119 // We are less forgiving than the strtoxxx() routines and do not
1120 // allow leading spaces. We do allow leading spaces for floats.
1121 if (!accept_spaces) {
1122 return "";
1123 }
1124 while (n > 0 && absl::ascii_isspace(*str)) {
1125 n--;
1126 str++;
1127 }
1128 }
1129
1130 // Although buf has a fixed maximum size, we can still handle
1131 // arbitrarily large integers correctly by omitting leading zeros.
1132 // (Numbers that are still too long will be out of range.)
1133 // Before deciding whether str is too long,
1134 // remove leading zeros with s/000+/00/.
1135 // Leaving the leading two zeros in place means that
1136 // we don't change 0000x123 (invalid) into 0x123 (valid).
1137 // Skip over leading - before replacing.
1138 bool neg = false;
1139 if (n >= 1 && str[0] == '-') {
1140 neg = true;
1141 n--;
1142 str++;
1143 }
1144
1145 if (n >= 3 && str[0] == '0' && str[1] == '0') {
1146 while (n >= 3 && str[2] == '0') {
1147 n--;
1148 str++;
1149 }
1150 }
1151
1152 if (neg) { // make room in buf for -
1153 n++;
1154 str--;
1155 }
1156
1157 if (n > nbuf-1) return "";
1158
1159 memmove(buf, str, n);
1160 if (neg) {
1161 buf[0] = '-';
1162 }
1163 buf[n] = '\0';
1164 *np = n;
1165 return buf;
1166 }
1167
1168 template <>
Parse(const char * str,size_t n,float * dest)1169 bool Parse(const char* str, size_t n, float* dest) {
1170 if (n == 0) return false;
1171 static const int kMaxLength = 200;
1172 char buf[kMaxLength+1];
1173 str = TerminateNumber(buf, sizeof buf, str, &n, true);
1174 char* end;
1175 errno = 0;
1176 float r = strtof(str, &end);
1177 if (end != str + n) return false; // Leftover junk
1178 if (errno) return false;
1179 if (dest == NULL) return true;
1180 *dest = r;
1181 return true;
1182 }
1183
1184 template <>
Parse(const char * str,size_t n,double * dest)1185 bool Parse(const char* str, size_t n, double* dest) {
1186 if (n == 0) return false;
1187 static const int kMaxLength = 200;
1188 char buf[kMaxLength+1];
1189 str = TerminateNumber(buf, sizeof buf, str, &n, true);
1190 char* end;
1191 errno = 0;
1192 double r = strtod(str, &end);
1193 if (end != str + n) return false; // Leftover junk
1194 if (errno) return false;
1195 if (dest == NULL) return true;
1196 *dest = r;
1197 return true;
1198 }
1199
1200 template <>
Parse(const char * str,size_t n,long * dest,int radix)1201 bool Parse(const char* str, size_t n, long* dest, int radix) {
1202 if (n == 0) return false;
1203 char buf[kMaxNumberLength+1];
1204 str = TerminateNumber(buf, sizeof buf, str, &n, false);
1205 char* end;
1206 errno = 0;
1207 long r = strtol(str, &end, radix);
1208 if (end != str + n) return false; // Leftover junk
1209 if (errno) return false;
1210 if (dest == NULL) return true;
1211 *dest = r;
1212 return true;
1213 }
1214
1215 template <>
Parse(const char * str,size_t n,unsigned long * dest,int radix)1216 bool Parse(const char* str, size_t n, unsigned long* dest, int radix) {
1217 if (n == 0) return false;
1218 char buf[kMaxNumberLength+1];
1219 str = TerminateNumber(buf, sizeof buf, str, &n, false);
1220 if (str[0] == '-') {
1221 // strtoul() will silently accept negative numbers and parse
1222 // them. This module is more strict and treats them as errors.
1223 return false;
1224 }
1225
1226 char* end;
1227 errno = 0;
1228 unsigned long r = strtoul(str, &end, radix);
1229 if (end != str + n) return false; // Leftover junk
1230 if (errno) return false;
1231 if (dest == NULL) return true;
1232 *dest = r;
1233 return true;
1234 }
1235
1236 template <>
Parse(const char * str,size_t n,short * dest,int radix)1237 bool Parse(const char* str, size_t n, short* dest, int radix) {
1238 long r;
1239 if (!Parse(str, n, &r, radix)) return false; // Could not parse
1240 if ((short)r != r) return false; // Out of range
1241 if (dest == NULL) return true;
1242 *dest = (short)r;
1243 return true;
1244 }
1245
1246 template <>
Parse(const char * str,size_t n,unsigned short * dest,int radix)1247 bool Parse(const char* str, size_t n, unsigned short* dest, int radix) {
1248 unsigned long r;
1249 if (!Parse(str, n, &r, radix)) return false; // Could not parse
1250 if ((unsigned short)r != r) return false; // Out of range
1251 if (dest == NULL) return true;
1252 *dest = (unsigned short)r;
1253 return true;
1254 }
1255
1256 template <>
Parse(const char * str,size_t n,int * dest,int radix)1257 bool Parse(const char* str, size_t n, int* dest, int radix) {
1258 long r;
1259 if (!Parse(str, n, &r, radix)) return false; // Could not parse
1260 if ((int)r != r) return false; // Out of range
1261 if (dest == NULL) return true;
1262 *dest = (int)r;
1263 return true;
1264 }
1265
1266 template <>
Parse(const char * str,size_t n,unsigned int * dest,int radix)1267 bool Parse(const char* str, size_t n, unsigned int* dest, int radix) {
1268 unsigned long r;
1269 if (!Parse(str, n, &r, radix)) return false; // Could not parse
1270 if ((unsigned int)r != r) return false; // Out of range
1271 if (dest == NULL) return true;
1272 *dest = (unsigned int)r;
1273 return true;
1274 }
1275
1276 template <>
Parse(const char * str,size_t n,long long * dest,int radix)1277 bool Parse(const char* str, size_t n, long long* dest, int radix) {
1278 if (n == 0) return false;
1279 char buf[kMaxNumberLength+1];
1280 str = TerminateNumber(buf, sizeof buf, str, &n, false);
1281 char* end;
1282 errno = 0;
1283 long long r = strtoll(str, &end, radix);
1284 if (end != str + n) return false; // Leftover junk
1285 if (errno) return false;
1286 if (dest == NULL) return true;
1287 *dest = r;
1288 return true;
1289 }
1290
1291 template <>
Parse(const char * str,size_t n,unsigned long long * dest,int radix)1292 bool Parse(const char* str, size_t n, unsigned long long* dest, int radix) {
1293 if (n == 0) return false;
1294 char buf[kMaxNumberLength+1];
1295 str = TerminateNumber(buf, sizeof buf, str, &n, false);
1296 if (str[0] == '-') {
1297 // strtoull() will silently accept negative numbers and parse
1298 // them. This module is more strict and treats them as errors.
1299 return false;
1300 }
1301 char* end;
1302 errno = 0;
1303 unsigned long long r = strtoull(str, &end, radix);
1304 if (end != str + n) return false; // Leftover junk
1305 if (errno) return false;
1306 if (dest == NULL) return true;
1307 *dest = r;
1308 return true;
1309 }
1310
1311 } // namespace re2_internal
1312
1313 namespace hooks {
1314
1315 #ifdef RE2_HAVE_THREAD_LOCAL
1316 thread_local const RE2* context = NULL;
1317 #endif
1318
1319 template <typename T>
1320 union Hook {
Store(T * cb)1321 void Store(T* cb) { cb_.store(cb, std::memory_order_release); }
Load() const1322 T* Load() const { return cb_.load(std::memory_order_acquire); }
1323
1324 #if !defined(__clang__) && defined(_MSC_VER)
1325 // Citing https://github.com/protocolbuffers/protobuf/pull/4777 as precedent,
1326 // this is a gross hack to make std::atomic<T*> constant-initialized on MSVC.
1327 static_assert(ATOMIC_POINTER_LOCK_FREE == 2,
1328 "std::atomic<T*> must be always lock-free");
1329 T* cb_for_constinit_;
1330 #endif
1331
1332 std::atomic<T*> cb_;
1333 };
1334
1335 template <typename T>
DoNothing(const T &)1336 static void DoNothing(const T&) {}
1337
1338 #define DEFINE_HOOK(type, name) \
1339 static Hook<type##Callback> name##_hook = {{&DoNothing<type>}}; \
1340 void Set##type##Hook(type##Callback* cb) { name##_hook.Store(cb); } \
1341 type##Callback* Get##type##Hook() { return name##_hook.Load(); }
1342
1343 DEFINE_HOOK(DFAStateCacheReset, dfa_state_cache_reset)
1344 DEFINE_HOOK(DFASearchFailure, dfa_search_failure)
1345
1346 #undef DEFINE_HOOK
1347
1348 } // namespace hooks
1349
1350 } // namespace re2
1351