1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5
6 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
7 #include <asm/cputime.h>
8 #endif
9 #include "walt.h"
10
11 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
12
13 /*
14 * There are no locks covering percpu hardirq/softirq time.
15 * They are only modified in vtime_account, on corresponding CPU
16 * with interrupts disabled. So, writes are safe.
17 * They are read and saved off onto struct rq in update_rq_clock().
18 * This may result in other CPU reading this CPU's irq time and can
19 * race with irq/vtime_account on this CPU. We would either get old
20 * or new value with a side effect of accounting a slice of irq time to wrong
21 * task when irq is in progress while we read rq->clock. That is a worthy
22 * compromise in place of having locks on each irq in account_system_time.
23 */
24 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
25
26 static int sched_clock_irqtime;
27
enable_sched_clock_irqtime(void)28 void enable_sched_clock_irqtime(void)
29 {
30 sched_clock_irqtime = 1;
31 }
32
disable_sched_clock_irqtime(void)33 void disable_sched_clock_irqtime(void)
34 {
35 sched_clock_irqtime = 0;
36 }
37
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)38 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
39 enum cpu_usage_stat idx)
40 {
41 u64 *cpustat = kcpustat_this_cpu->cpustat;
42
43 u64_stats_update_begin(&irqtime->sync);
44 cpustat[idx] += delta;
45 irqtime->total += delta;
46 irqtime->tick_delta += delta;
47 u64_stats_update_end(&irqtime->sync);
48 }
49
50 /*
51 * Called after incrementing preempt_count on {soft,}irq_enter
52 * and before decrementing preempt_count on {soft,}irq_exit.
53 */
irqtime_account_irq(struct task_struct * curr,unsigned int offset)54 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
55 {
56 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
57 unsigned int pc;
58 s64 delta;
59 int cpu;
60 #ifdef CONFIG_SCHED_WALT
61 u64 wallclock;
62 bool account = true;
63 #endif
64
65 if (!sched_clock_irqtime)
66 return;
67
68 cpu = smp_processor_id();
69 #ifdef CONFIG_SCHED_WALT
70 wallclock = sched_clock_cpu(cpu);
71 #endif
72 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
73 irqtime->irq_start_time += delta;
74 pc = irq_count() - offset;
75
76 /*
77 * We do not account for softirq time from ksoftirqd here.
78 * We want to continue accounting softirq time to ksoftirqd thread
79 * in that case, so as not to confuse scheduler with a special task
80 * that do not consume any time, but still wants to run.
81 */
82 if (pc & HARDIRQ_MASK)
83 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
84 else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
85 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
86 #ifdef CONFIG_SCHED_WALT
87 else
88 account = false;
89
90 if (account)
91 sched_account_irqtime(cpu, curr, delta, wallclock);
92 #endif
93 }
94
irqtime_tick_accounted(u64 maxtime)95 static u64 irqtime_tick_accounted(u64 maxtime)
96 {
97 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
98 u64 delta;
99
100 delta = min(irqtime->tick_delta, maxtime);
101 irqtime->tick_delta -= delta;
102
103 return delta;
104 }
105
106 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
107
108 #define sched_clock_irqtime (0)
109
irqtime_tick_accounted(u64 dummy)110 static u64 irqtime_tick_accounted(u64 dummy)
111 {
112 return 0;
113 }
114
115 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
116
task_group_account_field(struct task_struct * p,int index,u64 tmp)117 static inline void task_group_account_field(struct task_struct *p, int index,
118 u64 tmp)
119 {
120 /*
121 * Since all updates are sure to touch the root cgroup, we
122 * get ourselves ahead and touch it first. If the root cgroup
123 * is the only cgroup, then nothing else should be necessary.
124 *
125 */
126 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
127
128 cgroup_account_cputime_field(p, index, tmp);
129 }
130
131 /*
132 * Account user CPU time to a process.
133 * @p: the process that the CPU time gets accounted to
134 * @cputime: the CPU time spent in user space since the last update
135 */
account_user_time(struct task_struct * p,u64 cputime)136 void account_user_time(struct task_struct *p, u64 cputime)
137 {
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 account_group_user_time(p, cputime);
143
144 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
145
146 /* Add user time to cpustat. */
147 task_group_account_field(p, index, cputime);
148
149 /* Account for user time used */
150 acct_account_cputime(p);
151 }
152
153 /*
154 * Account guest CPU time to a process.
155 * @p: the process that the CPU time gets accounted to
156 * @cputime: the CPU time spent in virtual machine since the last update
157 */
account_guest_time(struct task_struct * p,u64 cputime)158 void account_guest_time(struct task_struct *p, u64 cputime)
159 {
160 u64 *cpustat = kcpustat_this_cpu->cpustat;
161
162 /* Add guest time to process. */
163 p->utime += cputime;
164 account_group_user_time(p, cputime);
165 p->gtime += cputime;
166
167 /* Add guest time to cpustat. */
168 if (task_nice(p) > 0) {
169 task_group_account_field(p, CPUTIME_NICE, cputime);
170 cpustat[CPUTIME_GUEST_NICE] += cputime;
171 } else {
172 task_group_account_field(p, CPUTIME_USER, cputime);
173 cpustat[CPUTIME_GUEST] += cputime;
174 }
175 }
176
177 /*
178 * Account system CPU time to a process and desired cpustat field
179 * @p: the process that the CPU time gets accounted to
180 * @cputime: the CPU time spent in kernel space since the last update
181 * @index: pointer to cpustat field that has to be updated
182 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)183 void account_system_index_time(struct task_struct *p,
184 u64 cputime, enum cpu_usage_stat index)
185 {
186 /* Add system time to process. */
187 p->stime += cputime;
188 account_group_system_time(p, cputime);
189
190 /* Add system time to cpustat. */
191 task_group_account_field(p, index, cputime);
192
193 /* Account for system time used */
194 acct_account_cputime(p);
195 }
196
197 /*
198 * Account system CPU time to a process.
199 * @p: the process that the CPU time gets accounted to
200 * @hardirq_offset: the offset to subtract from hardirq_count()
201 * @cputime: the CPU time spent in kernel space since the last update
202 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)203 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
204 {
205 int index;
206
207 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
208 account_guest_time(p, cputime);
209 return;
210 }
211
212 if (hardirq_count() - hardirq_offset)
213 index = CPUTIME_IRQ;
214 else if (in_serving_softirq())
215 index = CPUTIME_SOFTIRQ;
216 else
217 index = CPUTIME_SYSTEM;
218
219 account_system_index_time(p, cputime, index);
220 }
221
222 /*
223 * Account for involuntary wait time.
224 * @cputime: the CPU time spent in involuntary wait
225 */
account_steal_time(u64 cputime)226 void account_steal_time(u64 cputime)
227 {
228 u64 *cpustat = kcpustat_this_cpu->cpustat;
229
230 cpustat[CPUTIME_STEAL] += cputime;
231 }
232
233 /*
234 * Account for idle time.
235 * @cputime: the CPU time spent in idle wait
236 */
account_idle_time(u64 cputime)237 void account_idle_time(u64 cputime)
238 {
239 u64 *cpustat = kcpustat_this_cpu->cpustat;
240 struct rq *rq = this_rq();
241
242 if (atomic_read(&rq->nr_iowait) > 0)
243 cpustat[CPUTIME_IOWAIT] += cputime;
244 else
245 cpustat[CPUTIME_IDLE] += cputime;
246 }
247
248
249 #ifdef CONFIG_SCHED_CORE
250 /*
251 * Account for forceidle time due to core scheduling.
252 *
253 * REQUIRES: schedstat is enabled.
254 */
__account_forceidle_time(struct task_struct * p,u64 delta)255 void __account_forceidle_time(struct task_struct *p, u64 delta)
256 {
257 __schedstat_add(p->stats.core_forceidle_sum, delta);
258
259 task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
260 }
261 #endif
262
263 /*
264 * When a guest is interrupted for a longer amount of time, missed clock
265 * ticks are not redelivered later. Due to that, this function may on
266 * occasion account more time than the calling functions think elapsed.
267 */
steal_account_process_time(u64 maxtime)268 static __always_inline u64 steal_account_process_time(u64 maxtime)
269 {
270 #ifdef CONFIG_PARAVIRT
271 if (static_key_false(¶virt_steal_enabled)) {
272 u64 steal;
273
274 steal = paravirt_steal_clock(smp_processor_id());
275 steal -= this_rq()->prev_steal_time;
276 steal = min(steal, maxtime);
277 account_steal_time(steal);
278 this_rq()->prev_steal_time += steal;
279
280 return steal;
281 }
282 #endif
283 return 0;
284 }
285
286 /*
287 * Account how much elapsed time was spent in steal, irq, or softirq time.
288 */
account_other_time(u64 max)289 static inline u64 account_other_time(u64 max)
290 {
291 u64 accounted;
292
293 lockdep_assert_irqs_disabled();
294
295 accounted = steal_account_process_time(max);
296
297 if (accounted < max)
298 accounted += irqtime_tick_accounted(max - accounted);
299
300 return accounted;
301 }
302
303 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)304 static inline u64 read_sum_exec_runtime(struct task_struct *t)
305 {
306 return t->se.sum_exec_runtime;
307 }
308 #else
read_sum_exec_runtime(struct task_struct * t)309 static u64 read_sum_exec_runtime(struct task_struct *t)
310 {
311 u64 ns;
312 struct rq_flags rf;
313 struct rq *rq;
314
315 rq = task_rq_lock(t, &rf);
316 ns = t->se.sum_exec_runtime;
317 task_rq_unlock(rq, t, &rf);
318
319 return ns;
320 }
321 #endif
322
323 /*
324 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
325 * tasks (sum on group iteration) belonging to @tsk's group.
326 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)327 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
328 {
329 struct signal_struct *sig = tsk->signal;
330 u64 utime, stime;
331 struct task_struct *t;
332 unsigned int seq, nextseq;
333 unsigned long flags;
334
335 /*
336 * Update current task runtime to account pending time since last
337 * scheduler action or thread_group_cputime() call. This thread group
338 * might have other running tasks on different CPUs, but updating
339 * their runtime can affect syscall performance, so we skip account
340 * those pending times and rely only on values updated on tick or
341 * other scheduler action.
342 */
343 if (same_thread_group(current, tsk))
344 (void) task_sched_runtime(current);
345
346 rcu_read_lock();
347 /* Attempt a lockless read on the first round. */
348 nextseq = 0;
349 do {
350 seq = nextseq;
351 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
352 times->utime = sig->utime;
353 times->stime = sig->stime;
354 times->sum_exec_runtime = sig->sum_sched_runtime;
355
356 for_each_thread(tsk, t) {
357 task_cputime(t, &utime, &stime);
358 times->utime += utime;
359 times->stime += stime;
360 times->sum_exec_runtime += read_sum_exec_runtime(t);
361 }
362 /* If lockless access failed, take the lock. */
363 nextseq = 1;
364 } while (need_seqretry(&sig->stats_lock, seq));
365 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
366 rcu_read_unlock();
367 }
368
369 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
370 /*
371 * Account a tick to a process and cpustat
372 * @p: the process that the CPU time gets accounted to
373 * @user_tick: is the tick from userspace
374 * @rq: the pointer to rq
375 *
376 * Tick demultiplexing follows the order
377 * - pending hardirq update
378 * - pending softirq update
379 * - user_time
380 * - idle_time
381 * - system time
382 * - check for guest_time
383 * - else account as system_time
384 *
385 * Check for hardirq is done both for system and user time as there is
386 * no timer going off while we are on hardirq and hence we may never get an
387 * opportunity to update it solely in system time.
388 * p->stime and friends are only updated on system time and not on irq
389 * softirq as those do not count in task exec_runtime any more.
390 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)391 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
392 int ticks)
393 {
394 u64 other, cputime = TICK_NSEC * ticks;
395
396 /*
397 * When returning from idle, many ticks can get accounted at
398 * once, including some ticks of steal, irq, and softirq time.
399 * Subtract those ticks from the amount of time accounted to
400 * idle, or potentially user or system time. Due to rounding,
401 * other time can exceed ticks occasionally.
402 */
403 other = account_other_time(ULONG_MAX);
404 if (other >= cputime)
405 return;
406
407 cputime -= other;
408
409 if (this_cpu_ksoftirqd() == p) {
410 /*
411 * ksoftirqd time do not get accounted in cpu_softirq_time.
412 * So, we have to handle it separately here.
413 * Also, p->stime needs to be updated for ksoftirqd.
414 */
415 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
416 } else if (user_tick) {
417 account_user_time(p, cputime);
418 } else if (p == this_rq()->idle) {
419 account_idle_time(cputime);
420 } else if (p->flags & PF_VCPU) { /* System time or guest time */
421 account_guest_time(p, cputime);
422 } else {
423 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
424 }
425 }
426
irqtime_account_idle_ticks(int ticks)427 static void irqtime_account_idle_ticks(int ticks)
428 {
429 irqtime_account_process_tick(current, 0, ticks);
430 }
431 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)432 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)433 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
434 int nr_ticks) { }
435 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
436
437 /*
438 * Use precise platform statistics if available:
439 */
440 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
441
442 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)443 void vtime_task_switch(struct task_struct *prev)
444 {
445 if (is_idle_task(prev))
446 vtime_account_idle(prev);
447 else
448 vtime_account_kernel(prev);
449
450 vtime_flush(prev);
451 arch_vtime_task_switch(prev);
452 }
453 # endif
454
vtime_account_irq(struct task_struct * tsk,unsigned int offset)455 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
456 {
457 unsigned int pc = irq_count() - offset;
458
459 if (pc & HARDIRQ_OFFSET) {
460 vtime_account_hardirq(tsk);
461 } else if (pc & SOFTIRQ_OFFSET) {
462 vtime_account_softirq(tsk);
463 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
464 is_idle_task(tsk)) {
465 vtime_account_idle(tsk);
466 } else {
467 vtime_account_kernel(tsk);
468 }
469 }
470
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)471 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
472 u64 *ut, u64 *st)
473 {
474 *ut = curr->utime;
475 *st = curr->stime;
476 }
477
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)478 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
479 {
480 *ut = p->utime;
481 *st = p->stime;
482 }
483 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
484
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)485 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
486 {
487 struct task_cputime cputime;
488
489 thread_group_cputime(p, &cputime);
490
491 *ut = cputime.utime;
492 *st = cputime.stime;
493 }
494
495 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
496
497 /*
498 * Account a single tick of CPU time.
499 * @p: the process that the CPU time gets accounted to
500 * @user_tick: indicates if the tick is a user or a system tick
501 */
account_process_tick(struct task_struct * p,int user_tick)502 void account_process_tick(struct task_struct *p, int user_tick)
503 {
504 u64 cputime, steal;
505
506 if (vtime_accounting_enabled_this_cpu())
507 return;
508
509 if (sched_clock_irqtime) {
510 irqtime_account_process_tick(p, user_tick, 1);
511 return;
512 }
513
514 cputime = TICK_NSEC;
515 steal = steal_account_process_time(ULONG_MAX);
516
517 if (steal >= cputime)
518 return;
519
520 cputime -= steal;
521
522 if (user_tick)
523 account_user_time(p, cputime);
524 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
525 account_system_time(p, HARDIRQ_OFFSET, cputime);
526 else
527 account_idle_time(cputime);
528 }
529
530 /*
531 * Account multiple ticks of idle time.
532 * @ticks: number of stolen ticks
533 */
account_idle_ticks(unsigned long ticks)534 void account_idle_ticks(unsigned long ticks)
535 {
536 u64 cputime, steal;
537
538 if (sched_clock_irqtime) {
539 irqtime_account_idle_ticks(ticks);
540 return;
541 }
542
543 cputime = ticks * TICK_NSEC;
544 steal = steal_account_process_time(ULONG_MAX);
545
546 if (steal >= cputime)
547 return;
548
549 cputime -= steal;
550 account_idle_time(cputime);
551 }
552
553 /*
554 * Adjust tick based cputime random precision against scheduler runtime
555 * accounting.
556 *
557 * Tick based cputime accounting depend on random scheduling timeslices of a
558 * task to be interrupted or not by the timer. Depending on these
559 * circumstances, the number of these interrupts may be over or
560 * under-optimistic, matching the real user and system cputime with a variable
561 * precision.
562 *
563 * Fix this by scaling these tick based values against the total runtime
564 * accounted by the CFS scheduler.
565 *
566 * This code provides the following guarantees:
567 *
568 * stime + utime == rtime
569 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
570 *
571 * Assuming that rtime_i+1 >= rtime_i.
572 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)573 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
574 u64 *ut, u64 *st)
575 {
576 u64 rtime, stime, utime;
577 unsigned long flags;
578
579 /* Serialize concurrent callers such that we can honour our guarantees */
580 raw_spin_lock_irqsave(&prev->lock, flags);
581 rtime = curr->sum_exec_runtime;
582
583 /*
584 * This is possible under two circumstances:
585 * - rtime isn't monotonic after all (a bug);
586 * - we got reordered by the lock.
587 *
588 * In both cases this acts as a filter such that the rest of the code
589 * can assume it is monotonic regardless of anything else.
590 */
591 if (prev->stime + prev->utime >= rtime)
592 goto out;
593
594 stime = curr->stime;
595 utime = curr->utime;
596
597 /*
598 * If either stime or utime are 0, assume all runtime is userspace.
599 * Once a task gets some ticks, the monotonicity code at 'update:'
600 * will ensure things converge to the observed ratio.
601 */
602 if (stime == 0) {
603 utime = rtime;
604 goto update;
605 }
606
607 if (utime == 0) {
608 stime = rtime;
609 goto update;
610 }
611
612 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
613 /*
614 * Because mul_u64_u64_div_u64() can approximate on some
615 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
616 */
617 if (unlikely(stime > rtime))
618 stime = rtime;
619
620 update:
621 /*
622 * Make sure stime doesn't go backwards; this preserves monotonicity
623 * for utime because rtime is monotonic.
624 *
625 * utime_i+1 = rtime_i+1 - stime_i
626 * = rtime_i+1 - (rtime_i - utime_i)
627 * = (rtime_i+1 - rtime_i) + utime_i
628 * >= utime_i
629 */
630 if (stime < prev->stime)
631 stime = prev->stime;
632 utime = rtime - stime;
633
634 /*
635 * Make sure utime doesn't go backwards; this still preserves
636 * monotonicity for stime, analogous argument to above.
637 */
638 if (utime < prev->utime) {
639 utime = prev->utime;
640 stime = rtime - utime;
641 }
642
643 prev->stime = stime;
644 prev->utime = utime;
645 out:
646 *ut = prev->utime;
647 *st = prev->stime;
648 raw_spin_unlock_irqrestore(&prev->lock, flags);
649 }
650
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)651 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
652 {
653 struct task_cputime cputime = {
654 .sum_exec_runtime = p->se.sum_exec_runtime,
655 };
656
657 if (task_cputime(p, &cputime.utime, &cputime.stime))
658 cputime.sum_exec_runtime = task_sched_runtime(p);
659 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
660 }
661 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
662
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)663 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
664 {
665 struct task_cputime cputime;
666
667 thread_group_cputime(p, &cputime);
668 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
669 }
670 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
671
672 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)673 static u64 vtime_delta(struct vtime *vtime)
674 {
675 unsigned long long clock;
676
677 clock = sched_clock();
678 if (clock < vtime->starttime)
679 return 0;
680
681 return clock - vtime->starttime;
682 }
683
get_vtime_delta(struct vtime * vtime)684 static u64 get_vtime_delta(struct vtime *vtime)
685 {
686 u64 delta = vtime_delta(vtime);
687 u64 other;
688
689 /*
690 * Unlike tick based timing, vtime based timing never has lost
691 * ticks, and no need for steal time accounting to make up for
692 * lost ticks. Vtime accounts a rounded version of actual
693 * elapsed time. Limit account_other_time to prevent rounding
694 * errors from causing elapsed vtime to go negative.
695 */
696 other = account_other_time(delta);
697 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
698 vtime->starttime += delta;
699
700 return delta - other;
701 }
702
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)703 static void vtime_account_system(struct task_struct *tsk,
704 struct vtime *vtime)
705 {
706 vtime->stime += get_vtime_delta(vtime);
707 if (vtime->stime >= TICK_NSEC) {
708 account_system_time(tsk, irq_count(), vtime->stime);
709 vtime->stime = 0;
710 }
711 }
712
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)713 static void vtime_account_guest(struct task_struct *tsk,
714 struct vtime *vtime)
715 {
716 vtime->gtime += get_vtime_delta(vtime);
717 if (vtime->gtime >= TICK_NSEC) {
718 account_guest_time(tsk, vtime->gtime);
719 vtime->gtime = 0;
720 }
721 }
722
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)723 static void __vtime_account_kernel(struct task_struct *tsk,
724 struct vtime *vtime)
725 {
726 /* We might have scheduled out from guest path */
727 if (vtime->state == VTIME_GUEST)
728 vtime_account_guest(tsk, vtime);
729 else
730 vtime_account_system(tsk, vtime);
731 }
732
vtime_account_kernel(struct task_struct * tsk)733 void vtime_account_kernel(struct task_struct *tsk)
734 {
735 struct vtime *vtime = &tsk->vtime;
736
737 if (!vtime_delta(vtime))
738 return;
739
740 write_seqcount_begin(&vtime->seqcount);
741 __vtime_account_kernel(tsk, vtime);
742 write_seqcount_end(&vtime->seqcount);
743 }
744
vtime_user_enter(struct task_struct * tsk)745 void vtime_user_enter(struct task_struct *tsk)
746 {
747 struct vtime *vtime = &tsk->vtime;
748
749 write_seqcount_begin(&vtime->seqcount);
750 vtime_account_system(tsk, vtime);
751 vtime->state = VTIME_USER;
752 write_seqcount_end(&vtime->seqcount);
753 }
754
vtime_user_exit(struct task_struct * tsk)755 void vtime_user_exit(struct task_struct *tsk)
756 {
757 struct vtime *vtime = &tsk->vtime;
758
759 write_seqcount_begin(&vtime->seqcount);
760 vtime->utime += get_vtime_delta(vtime);
761 if (vtime->utime >= TICK_NSEC) {
762 account_user_time(tsk, vtime->utime);
763 vtime->utime = 0;
764 }
765 vtime->state = VTIME_SYS;
766 write_seqcount_end(&vtime->seqcount);
767 }
768
vtime_guest_enter(struct task_struct * tsk)769 void vtime_guest_enter(struct task_struct *tsk)
770 {
771 struct vtime *vtime = &tsk->vtime;
772 /*
773 * The flags must be updated under the lock with
774 * the vtime_starttime flush and update.
775 * That enforces a right ordering and update sequence
776 * synchronization against the reader (task_gtime())
777 * that can thus safely catch up with a tickless delta.
778 */
779 write_seqcount_begin(&vtime->seqcount);
780 vtime_account_system(tsk, vtime);
781 tsk->flags |= PF_VCPU;
782 vtime->state = VTIME_GUEST;
783 write_seqcount_end(&vtime->seqcount);
784 }
785 EXPORT_SYMBOL_GPL(vtime_guest_enter);
786
vtime_guest_exit(struct task_struct * tsk)787 void vtime_guest_exit(struct task_struct *tsk)
788 {
789 struct vtime *vtime = &tsk->vtime;
790
791 write_seqcount_begin(&vtime->seqcount);
792 vtime_account_guest(tsk, vtime);
793 tsk->flags &= ~PF_VCPU;
794 vtime->state = VTIME_SYS;
795 write_seqcount_end(&vtime->seqcount);
796 }
797 EXPORT_SYMBOL_GPL(vtime_guest_exit);
798
vtime_account_idle(struct task_struct * tsk)799 void vtime_account_idle(struct task_struct *tsk)
800 {
801 account_idle_time(get_vtime_delta(&tsk->vtime));
802 }
803
vtime_task_switch_generic(struct task_struct * prev)804 void vtime_task_switch_generic(struct task_struct *prev)
805 {
806 struct vtime *vtime = &prev->vtime;
807
808 write_seqcount_begin(&vtime->seqcount);
809 if (vtime->state == VTIME_IDLE)
810 vtime_account_idle(prev);
811 else
812 __vtime_account_kernel(prev, vtime);
813 vtime->state = VTIME_INACTIVE;
814 vtime->cpu = -1;
815 write_seqcount_end(&vtime->seqcount);
816
817 vtime = ¤t->vtime;
818
819 write_seqcount_begin(&vtime->seqcount);
820 if (is_idle_task(current))
821 vtime->state = VTIME_IDLE;
822 else if (current->flags & PF_VCPU)
823 vtime->state = VTIME_GUEST;
824 else
825 vtime->state = VTIME_SYS;
826 vtime->starttime = sched_clock();
827 vtime->cpu = smp_processor_id();
828 write_seqcount_end(&vtime->seqcount);
829 }
830
vtime_init_idle(struct task_struct * t,int cpu)831 void vtime_init_idle(struct task_struct *t, int cpu)
832 {
833 struct vtime *vtime = &t->vtime;
834 unsigned long flags;
835
836 local_irq_save(flags);
837 write_seqcount_begin(&vtime->seqcount);
838 vtime->state = VTIME_IDLE;
839 vtime->starttime = sched_clock();
840 vtime->cpu = cpu;
841 write_seqcount_end(&vtime->seqcount);
842 local_irq_restore(flags);
843 }
844
task_gtime(struct task_struct * t)845 u64 task_gtime(struct task_struct *t)
846 {
847 struct vtime *vtime = &t->vtime;
848 unsigned int seq;
849 u64 gtime;
850
851 if (!vtime_accounting_enabled())
852 return t->gtime;
853
854 do {
855 seq = read_seqcount_begin(&vtime->seqcount);
856
857 gtime = t->gtime;
858 if (vtime->state == VTIME_GUEST)
859 gtime += vtime->gtime + vtime_delta(vtime);
860
861 } while (read_seqcount_retry(&vtime->seqcount, seq));
862
863 return gtime;
864 }
865
866 /*
867 * Fetch cputime raw values from fields of task_struct and
868 * add up the pending nohz execution time since the last
869 * cputime snapshot.
870 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)871 bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
872 {
873 struct vtime *vtime = &t->vtime;
874 unsigned int seq;
875 u64 delta;
876 int ret;
877
878 if (!vtime_accounting_enabled()) {
879 *utime = t->utime;
880 *stime = t->stime;
881 return false;
882 }
883
884 do {
885 ret = false;
886 seq = read_seqcount_begin(&vtime->seqcount);
887
888 *utime = t->utime;
889 *stime = t->stime;
890
891 /* Task is sleeping or idle, nothing to add */
892 if (vtime->state < VTIME_SYS)
893 continue;
894
895 ret = true;
896 delta = vtime_delta(vtime);
897
898 /*
899 * Task runs either in user (including guest) or kernel space,
900 * add pending nohz time to the right place.
901 */
902 if (vtime->state == VTIME_SYS)
903 *stime += vtime->stime + delta;
904 else
905 *utime += vtime->utime + delta;
906 } while (read_seqcount_retry(&vtime->seqcount, seq));
907
908 return ret;
909 }
910
vtime_state_fetch(struct vtime * vtime,int cpu)911 static int vtime_state_fetch(struct vtime *vtime, int cpu)
912 {
913 int state = READ_ONCE(vtime->state);
914
915 /*
916 * We raced against a context switch, fetch the
917 * kcpustat task again.
918 */
919 if (vtime->cpu != cpu && vtime->cpu != -1)
920 return -EAGAIN;
921
922 /*
923 * Two possible things here:
924 * 1) We are seeing the scheduling out task (prev) or any past one.
925 * 2) We are seeing the scheduling in task (next) but it hasn't
926 * passed though vtime_task_switch() yet so the pending
927 * cputime of the prev task may not be flushed yet.
928 *
929 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
930 */
931 if (state == VTIME_INACTIVE)
932 return -EAGAIN;
933
934 return state;
935 }
936
kcpustat_user_vtime(struct vtime * vtime)937 static u64 kcpustat_user_vtime(struct vtime *vtime)
938 {
939 if (vtime->state == VTIME_USER)
940 return vtime->utime + vtime_delta(vtime);
941 else if (vtime->state == VTIME_GUEST)
942 return vtime->gtime + vtime_delta(vtime);
943 return 0;
944 }
945
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)946 static int kcpustat_field_vtime(u64 *cpustat,
947 struct task_struct *tsk,
948 enum cpu_usage_stat usage,
949 int cpu, u64 *val)
950 {
951 struct vtime *vtime = &tsk->vtime;
952 unsigned int seq;
953
954 do {
955 int state;
956
957 seq = read_seqcount_begin(&vtime->seqcount);
958
959 state = vtime_state_fetch(vtime, cpu);
960 if (state < 0)
961 return state;
962
963 *val = cpustat[usage];
964
965 /*
966 * Nice VS unnice cputime accounting may be inaccurate if
967 * the nice value has changed since the last vtime update.
968 * But proper fix would involve interrupting target on nice
969 * updates which is a no go on nohz_full (although the scheduler
970 * may still interrupt the target if rescheduling is needed...)
971 */
972 switch (usage) {
973 case CPUTIME_SYSTEM:
974 if (state == VTIME_SYS)
975 *val += vtime->stime + vtime_delta(vtime);
976 break;
977 case CPUTIME_USER:
978 if (task_nice(tsk) <= 0)
979 *val += kcpustat_user_vtime(vtime);
980 break;
981 case CPUTIME_NICE:
982 if (task_nice(tsk) > 0)
983 *val += kcpustat_user_vtime(vtime);
984 break;
985 case CPUTIME_GUEST:
986 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
987 *val += vtime->gtime + vtime_delta(vtime);
988 break;
989 case CPUTIME_GUEST_NICE:
990 if (state == VTIME_GUEST && task_nice(tsk) > 0)
991 *val += vtime->gtime + vtime_delta(vtime);
992 break;
993 default:
994 break;
995 }
996 } while (read_seqcount_retry(&vtime->seqcount, seq));
997
998 return 0;
999 }
1000
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)1001 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
1002 enum cpu_usage_stat usage, int cpu)
1003 {
1004 u64 *cpustat = kcpustat->cpustat;
1005 u64 val = cpustat[usage];
1006 struct rq *rq;
1007 int err;
1008
1009 if (!vtime_accounting_enabled_cpu(cpu))
1010 return val;
1011
1012 rq = cpu_rq(cpu);
1013
1014 for (;;) {
1015 struct task_struct *curr;
1016
1017 rcu_read_lock();
1018 curr = rcu_dereference(rq->curr);
1019 if (WARN_ON_ONCE(!curr)) {
1020 rcu_read_unlock();
1021 return cpustat[usage];
1022 }
1023
1024 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1025 rcu_read_unlock();
1026
1027 if (!err)
1028 return val;
1029
1030 cpu_relax();
1031 }
1032 }
1033 EXPORT_SYMBOL_GPL(kcpustat_field);
1034
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1035 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1036 const struct kernel_cpustat *src,
1037 struct task_struct *tsk, int cpu)
1038 {
1039 struct vtime *vtime = &tsk->vtime;
1040 unsigned int seq;
1041
1042 do {
1043 u64 *cpustat;
1044 u64 delta;
1045 int state;
1046
1047 seq = read_seqcount_begin(&vtime->seqcount);
1048
1049 state = vtime_state_fetch(vtime, cpu);
1050 if (state < 0)
1051 return state;
1052
1053 *dst = *src;
1054 cpustat = dst->cpustat;
1055
1056 /* Task is sleeping, dead or idle, nothing to add */
1057 if (state < VTIME_SYS)
1058 continue;
1059
1060 delta = vtime_delta(vtime);
1061
1062 /*
1063 * Task runs either in user (including guest) or kernel space,
1064 * add pending nohz time to the right place.
1065 */
1066 if (state == VTIME_SYS) {
1067 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1068 } else if (state == VTIME_USER) {
1069 if (task_nice(tsk) > 0)
1070 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1071 else
1072 cpustat[CPUTIME_USER] += vtime->utime + delta;
1073 } else {
1074 WARN_ON_ONCE(state != VTIME_GUEST);
1075 if (task_nice(tsk) > 0) {
1076 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1077 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1078 } else {
1079 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1080 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1081 }
1082 }
1083 } while (read_seqcount_retry(&vtime->seqcount, seq));
1084
1085 return 0;
1086 }
1087
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1088 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1089 {
1090 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1091 struct rq *rq;
1092 int err;
1093
1094 if (!vtime_accounting_enabled_cpu(cpu)) {
1095 *dst = *src;
1096 return;
1097 }
1098
1099 rq = cpu_rq(cpu);
1100
1101 for (;;) {
1102 struct task_struct *curr;
1103
1104 rcu_read_lock();
1105 curr = rcu_dereference(rq->curr);
1106 if (WARN_ON_ONCE(!curr)) {
1107 rcu_read_unlock();
1108 *dst = *src;
1109 return;
1110 }
1111
1112 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1113 rcu_read_unlock();
1114
1115 if (!err)
1116 return;
1117
1118 cpu_relax();
1119 }
1120 }
1121 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1122
1123 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1124