• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
set_max_mapnr(unsigned long limit)48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
set_max_mapnr(unsigned long limit)53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
totalram_pages(void)57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
totalram_pages_inc(void)62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
totalram_pages_dec(void)67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
totalram_pages_add(long count)72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #ifndef PHYSMEM_END
99 # define PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
100 #endif
101 
102 #include <asm/page.h>
103 #include <asm/processor.h>
104 
105 #ifndef __pa_symbol
106 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
107 #endif
108 
109 #ifndef page_to_virt
110 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
111 #endif
112 
113 #ifndef lm_alias
114 #define lm_alias(x)	__va(__pa_symbol(x))
115 #endif
116 
117 /*
118  * To prevent common memory management code establishing
119  * a zero page mapping on a read fault.
120  * This macro should be defined within <asm/pgtable.h>.
121  * s390 does this to prevent multiplexing of hardware bits
122  * related to the physical page in case of virtualization.
123  */
124 #ifndef mm_forbids_zeropage
125 #define mm_forbids_zeropage(X)	(0)
126 #endif
127 
128 /*
129  * On some architectures it is expensive to call memset() for small sizes.
130  * If an architecture decides to implement their own version of
131  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
132  * define their own version of this macro in <asm/pgtable.h>
133  */
134 #if BITS_PER_LONG == 64
135 /* This function must be updated when the size of struct page grows above 96
136  * or reduces below 56. The idea that compiler optimizes out switch()
137  * statement, and only leaves move/store instructions. Also the compiler can
138  * combine write statements if they are both assignments and can be reordered,
139  * this can result in several of the writes here being dropped.
140  */
141 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)142 static inline void __mm_zero_struct_page(struct page *page)
143 {
144 	unsigned long *_pp = (void *)page;
145 
146 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
147 	BUILD_BUG_ON(sizeof(struct page) & 7);
148 	BUILD_BUG_ON(sizeof(struct page) < 56);
149 	BUILD_BUG_ON(sizeof(struct page) > 96);
150 
151 	switch (sizeof(struct page)) {
152 	case 96:
153 		_pp[11] = 0;
154 		fallthrough;
155 	case 88:
156 		_pp[10] = 0;
157 		fallthrough;
158 	case 80:
159 		_pp[9] = 0;
160 		fallthrough;
161 	case 72:
162 		_pp[8] = 0;
163 		fallthrough;
164 	case 64:
165 		_pp[7] = 0;
166 		fallthrough;
167 	case 56:
168 		_pp[6] = 0;
169 		_pp[5] = 0;
170 		_pp[4] = 0;
171 		_pp[3] = 0;
172 		_pp[2] = 0;
173 		_pp[1] = 0;
174 		_pp[0] = 0;
175 	}
176 }
177 #else
178 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
179 #endif
180 
181 /*
182  * Default maximum number of active map areas, this limits the number of vmas
183  * per mm struct. Users can overwrite this number by sysctl but there is a
184  * problem.
185  *
186  * When a program's coredump is generated as ELF format, a section is created
187  * per a vma. In ELF, the number of sections is represented in unsigned short.
188  * This means the number of sections should be smaller than 65535 at coredump.
189  * Because the kernel adds some informative sections to a image of program at
190  * generating coredump, we need some margin. The number of extra sections is
191  * 1-3 now and depends on arch. We use "5" as safe margin, here.
192  *
193  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
194  * not a hard limit any more. Although some userspace tools can be surprised by
195  * that.
196  */
197 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
198 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
199 
200 extern int sysctl_max_map_count;
201 
202 extern unsigned long sysctl_user_reserve_kbytes;
203 extern unsigned long sysctl_admin_reserve_kbytes;
204 
205 extern int sysctl_overcommit_memory;
206 extern int sysctl_overcommit_ratio;
207 extern unsigned long sysctl_overcommit_kbytes;
208 
209 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 
216 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
217 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
218 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
219 #else
220 #define nth_page(page,n) ((page) + (n))
221 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
222 #endif
223 
224 /* to align the pointer to the (next) page boundary */
225 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
226 
227 /* to align the pointer to the (prev) page boundary */
228 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
229 
230 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
231 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
232 
233 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
lru_to_folio(struct list_head * head)234 static inline struct folio *lru_to_folio(struct list_head *head)
235 {
236 	return list_entry((head)->prev, struct folio, lru);
237 }
238 
239 void setup_initial_init_mm(void *start_code, void *end_code,
240 			   void *end_data, void *brk);
241 
242 /*
243  * Linux kernel virtual memory manager primitives.
244  * The idea being to have a "virtual" mm in the same way
245  * we have a virtual fs - giving a cleaner interface to the
246  * mm details, and allowing different kinds of memory mappings
247  * (from shared memory to executable loading to arbitrary
248  * mmap() functions).
249  */
250 
251 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
252 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
253 void vm_area_free(struct vm_area_struct *);
254 /* Use only if VMA has no other users */
255 void __vm_area_free(struct vm_area_struct *vma);
256 
257 #ifndef CONFIG_MMU
258 extern struct rb_root nommu_region_tree;
259 extern struct rw_semaphore nommu_region_sem;
260 
261 extern unsigned int kobjsize(const void *objp);
262 #endif
263 
264 /*
265  * vm_flags in vm_area_struct, see mm_types.h.
266  * When changing, update also include/trace/events/mmflags.h
267  */
268 #define VM_NONE		0x00000000
269 
270 #define VM_READ		0x00000001	/* currently active flags */
271 #define VM_WRITE	0x00000002
272 #define VM_EXEC		0x00000004
273 #define VM_SHARED	0x00000008
274 
275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
276 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
277 #define VM_MAYWRITE	0x00000020
278 #define VM_MAYEXEC	0x00000040
279 #define VM_MAYSHARE	0x00000080
280 
281 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
282 #ifdef CONFIG_MMU
283 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
284 #else /* CONFIG_MMU */
285 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
286 #define VM_UFFD_MISSING	0
287 #endif /* CONFIG_MMU */
288 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
289 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
290 
291 #define VM_LOCKED	0x00002000
292 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
293 
294 					/* Used by sys_madvise() */
295 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
296 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
297 
298 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
299 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
300 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
301 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
302 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
303 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
304 #define VM_SYNC		0x00800000	/* Synchronous page faults */
305 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
306 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
307 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
308 
309 #ifdef CONFIG_MEM_SOFT_DIRTY
310 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
311 #else
312 # define VM_SOFTDIRTY	0
313 #endif
314 
315 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
316 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
317 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
318 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
319 
320 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
321 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
326 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_7	39	/* bit only usable on 64-bit architectures */
329 #ifdef CONFIG_MEM_PURGEABLE
330 #define VM_HIGH_ARCH_BIT_8	40	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_9	41	/* bit only usable on 64-bit architectures */
332 #endif /* CONFIG_MEM_PURGEABLE */
333 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
338 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
339 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
340 #define VM_HIGH_ARCH_7	BIT(VM_HIGH_ARCH_BIT_7)
341 #ifdef CONFIG_MEM_PURGEABLE
342 #define VM_HIGH_ARCH_8	BIT(VM_HIGH_ARCH_BIT_8)
343 #define VM_HIGH_ARCH_9	BIT(VM_HIGH_ARCH_BIT_9)
344 #endif /* CONFIG_MEM_PURGEABLE */
345 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
346 
347 #ifdef CONFIG_MEM_PURGEABLE
348 #define VM_PURGEABLE	VM_HIGH_ARCH_8
349 #define VM_USEREXPTE	VM_HIGH_ARCH_9
350 #else /* CONFIG_MEM_PURGEABLE */
351 #define VM_PURGEABLE  0
352 #define VM_USEREXPTE  0
353 #endif /* CONFIG_MEM_PURGEABLE */
354 
355 #ifdef CONFIG_SECURITY_XPM
356 #define VM_XPM	VM_HIGH_ARCH_7
357 #else /* CONFIG_SECURITY_XPM */
358 #define VM_XPM	VM_NONE
359 #endif /* CONFIG_SECURITY_XPM */
360 
361 #ifdef CONFIG_ARCH_HAS_PKEYS
362 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
363 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
364 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
365 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
366 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
367 #ifdef CONFIG_PPC
368 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
369 #else
370 # define VM_PKEY_BIT4  0
371 #endif
372 #endif /* CONFIG_ARCH_HAS_PKEYS */
373 
374 #ifdef CONFIG_X86_USER_SHADOW_STACK
375 /*
376  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
377  * support core mm.
378  *
379  * These VMAs will get a single end guard page. This helps userspace protect
380  * itself from attacks. A single page is enough for current shadow stack archs
381  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
382  * for more details on the guard size.
383  */
384 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
385 #else
386 # define VM_SHADOW_STACK	VM_NONE
387 #endif
388 
389 #if defined(CONFIG_X86)
390 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
391 #elif defined(CONFIG_PPC)
392 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
393 #elif defined(CONFIG_PARISC)
394 # define VM_GROWSUP	VM_ARCH_1
395 #elif defined(CONFIG_IA64)
396 # define VM_GROWSUP	VM_ARCH_1
397 #elif defined(CONFIG_SPARC64)
398 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
399 # define VM_ARCH_CLEAR	VM_SPARC_ADI
400 #elif defined(CONFIG_ARM64)
401 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
402 # define VM_ARCH_CLEAR	VM_ARM64_BTI
403 #elif !defined(CONFIG_MMU)
404 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
405 #endif
406 
407 #if defined(CONFIG_ARM64_MTE)
408 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
409 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
410 #else
411 # define VM_MTE		VM_NONE
412 # define VM_MTE_ALLOWED	VM_NONE
413 #endif
414 
415 #ifndef VM_GROWSUP
416 # define VM_GROWSUP	VM_NONE
417 #endif
418 
419 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
420 # define VM_UFFD_MINOR_BIT	38
421 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
422 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
423 # define VM_UFFD_MINOR		VM_NONE
424 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
425 
426 /* Bits set in the VMA until the stack is in its final location */
427 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
428 
429 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
430 
431 /* Common data flag combinations */
432 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
433 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
434 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
435 				 VM_MAYWRITE | VM_MAYEXEC)
436 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
437 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
438 
439 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
440 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
441 #endif
442 
443 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
444 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
445 #endif
446 
447 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
448 
449 #ifdef CONFIG_STACK_GROWSUP
450 #define VM_STACK	VM_GROWSUP
451 #define VM_STACK_EARLY	VM_GROWSDOWN
452 #else
453 #define VM_STACK	VM_GROWSDOWN
454 #define VM_STACK_EARLY	0
455 #endif
456 
457 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
458 
459 /* VMA basic access permission flags */
460 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
461 
462 
463 /*
464  * Special vmas that are non-mergable, non-mlock()able.
465  */
466 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
467 
468 /* This mask prevents VMA from being scanned with khugepaged */
469 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
470 
471 /* This mask defines which mm->def_flags a process can inherit its parent */
472 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
473 
474 /* This mask represents all the VMA flag bits used by mlock */
475 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
476 
477 /* Arch-specific flags to clear when updating VM flags on protection change */
478 #ifndef VM_ARCH_CLEAR
479 # define VM_ARCH_CLEAR	VM_NONE
480 #endif
481 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
482 
483 /*
484  * mapping from the currently active vm_flags protection bits (the
485  * low four bits) to a page protection mask..
486  */
487 
488 /*
489  * The default fault flags that should be used by most of the
490  * arch-specific page fault handlers.
491  */
492 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
493 			     FAULT_FLAG_KILLABLE | \
494 			     FAULT_FLAG_INTERRUPTIBLE)
495 
496 /**
497  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
498  * @flags: Fault flags.
499  *
500  * This is mostly used for places where we want to try to avoid taking
501  * the mmap_lock for too long a time when waiting for another condition
502  * to change, in which case we can try to be polite to release the
503  * mmap_lock in the first round to avoid potential starvation of other
504  * processes that would also want the mmap_lock.
505  *
506  * Return: true if the page fault allows retry and this is the first
507  * attempt of the fault handling; false otherwise.
508  */
fault_flag_allow_retry_first(enum fault_flag flags)509 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
510 {
511 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
512 	    (!(flags & FAULT_FLAG_TRIED));
513 }
514 
515 #define FAULT_FLAG_TRACE \
516 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
517 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
518 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
519 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
520 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
521 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
522 	{ FAULT_FLAG_USER,		"USER" }, \
523 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
524 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
525 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
526 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
527 
528 /*
529  * vm_fault is filled by the pagefault handler and passed to the vma's
530  * ->fault function. The vma's ->fault is responsible for returning a bitmask
531  * of VM_FAULT_xxx flags that give details about how the fault was handled.
532  *
533  * MM layer fills up gfp_mask for page allocations but fault handler might
534  * alter it if its implementation requires a different allocation context.
535  *
536  * pgoff should be used in favour of virtual_address, if possible.
537  */
538 struct vm_fault {
539 	const struct {
540 		struct vm_area_struct *vma;	/* Target VMA */
541 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
542 		pgoff_t pgoff;			/* Logical page offset based on vma */
543 		unsigned long address;		/* Faulting virtual address - masked */
544 		unsigned long real_address;	/* Faulting virtual address - unmasked */
545 	};
546 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
547 					 * XXX: should really be 'const' */
548 	pmd_t *pmd;			/* Pointer to pmd entry matching
549 					 * the 'address' */
550 	pud_t *pud;			/* Pointer to pud entry matching
551 					 * the 'address'
552 					 */
553 	union {
554 		pte_t orig_pte;		/* Value of PTE at the time of fault */
555 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
556 					 * used by PMD fault only.
557 					 */
558 	};
559 
560 	struct page *cow_page;		/* Page handler may use for COW fault */
561 	struct page *page;		/* ->fault handlers should return a
562 					 * page here, unless VM_FAULT_NOPAGE
563 					 * is set (which is also implied by
564 					 * VM_FAULT_ERROR).
565 					 */
566 	/* These three entries are valid only while holding ptl lock */
567 	pte_t *pte;			/* Pointer to pte entry matching
568 					 * the 'address'. NULL if the page
569 					 * table hasn't been allocated.
570 					 */
571 	spinlock_t *ptl;		/* Page table lock.
572 					 * Protects pte page table if 'pte'
573 					 * is not NULL, otherwise pmd.
574 					 */
575 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
576 					 * vm_ops->map_pages() sets up a page
577 					 * table from atomic context.
578 					 * do_fault_around() pre-allocates
579 					 * page table to avoid allocation from
580 					 * atomic context.
581 					 */
582 };
583 
584 /*
585  * These are the virtual MM functions - opening of an area, closing and
586  * unmapping it (needed to keep files on disk up-to-date etc), pointer
587  * to the functions called when a no-page or a wp-page exception occurs.
588  */
589 struct vm_operations_struct {
590 	void (*open)(struct vm_area_struct * area);
591 	/**
592 	 * @close: Called when the VMA is being removed from the MM.
593 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
594 	 */
595 	void (*close)(struct vm_area_struct * area);
596 	/* Called any time before splitting to check if it's allowed */
597 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
598 	int (*mremap)(struct vm_area_struct *area);
599 	/*
600 	 * Called by mprotect() to make driver-specific permission
601 	 * checks before mprotect() is finalised.   The VMA must not
602 	 * be modified.  Returns 0 if mprotect() can proceed.
603 	 */
604 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
605 			unsigned long end, unsigned long newflags);
606 	vm_fault_t (*fault)(struct vm_fault *vmf);
607 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
608 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
609 			pgoff_t start_pgoff, pgoff_t end_pgoff);
610 	unsigned long (*pagesize)(struct vm_area_struct * area);
611 
612 	/* notification that a previously read-only page is about to become
613 	 * writable, if an error is returned it will cause a SIGBUS */
614 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
615 
616 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
617 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
618 
619 	/* called by access_process_vm when get_user_pages() fails, typically
620 	 * for use by special VMAs. See also generic_access_phys() for a generic
621 	 * implementation useful for any iomem mapping.
622 	 */
623 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
624 		      void *buf, int len, int write);
625 
626 	/* Called by the /proc/PID/maps code to ask the vma whether it
627 	 * has a special name.  Returning non-NULL will also cause this
628 	 * vma to be dumped unconditionally. */
629 	const char *(*name)(struct vm_area_struct *vma);
630 
631 #ifdef CONFIG_NUMA
632 	/*
633 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
634 	 * to hold the policy upon return.  Caller should pass NULL @new to
635 	 * remove a policy and fall back to surrounding context--i.e. do not
636 	 * install a MPOL_DEFAULT policy, nor the task or system default
637 	 * mempolicy.
638 	 */
639 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
640 
641 	/*
642 	 * get_policy() op must add reference [mpol_get()] to any policy at
643 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
644 	 * in mm/mempolicy.c will do this automatically.
645 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
646 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
647 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
648 	 * must return NULL--i.e., do not "fallback" to task or system default
649 	 * policy.
650 	 */
651 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
652 					unsigned long addr);
653 #endif
654 	/*
655 	 * Called by vm_normal_page() for special PTEs to find the
656 	 * page for @addr.  This is useful if the default behavior
657 	 * (using pte_page()) would not find the correct page.
658 	 */
659 	struct page *(*find_special_page)(struct vm_area_struct *vma,
660 					  unsigned long addr);
661 };
662 
663 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)664 static inline void vma_numab_state_init(struct vm_area_struct *vma)
665 {
666 	vma->numab_state = NULL;
667 }
vma_numab_state_free(struct vm_area_struct * vma)668 static inline void vma_numab_state_free(struct vm_area_struct *vma)
669 {
670 	kfree(vma->numab_state);
671 }
672 #else
vma_numab_state_init(struct vm_area_struct * vma)673 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)674 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
675 #endif /* CONFIG_NUMA_BALANCING */
676 
677 #ifdef CONFIG_PER_VMA_LOCK
678 /*
679  * Try to read-lock a vma. The function is allowed to occasionally yield false
680  * locked result to avoid performance overhead, in which case we fall back to
681  * using mmap_lock. The function should never yield false unlocked result.
682  */
vma_start_read(struct vm_area_struct * vma)683 static inline bool vma_start_read(struct vm_area_struct *vma)
684 {
685 	/*
686 	 * Check before locking. A race might cause false locked result.
687 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
688 	 * ACQUIRE semantics, because this is just a lockless check whose result
689 	 * we don't rely on for anything - the mm_lock_seq read against which we
690 	 * need ordering is below.
691 	 */
692 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
693 		return false;
694 
695 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
696 		return false;
697 
698 	/*
699 	 * Overflow might produce false locked result.
700 	 * False unlocked result is impossible because we modify and check
701 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
702 	 * modification invalidates all existing locks.
703 	 *
704 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
705 	 * racing with vma_end_write_all(), we only start reading from the VMA
706 	 * after it has been unlocked.
707 	 * This pairs with RELEASE semantics in vma_end_write_all().
708 	 */
709 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
710 		up_read(&vma->vm_lock->lock);
711 		return false;
712 	}
713 	return true;
714 }
715 
vma_end_read(struct vm_area_struct * vma)716 static inline void vma_end_read(struct vm_area_struct *vma)
717 {
718 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
719 	up_read(&vma->vm_lock->lock);
720 	rcu_read_unlock();
721 }
722 
723 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,int * mm_lock_seq)724 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
725 {
726 	mmap_assert_write_locked(vma->vm_mm);
727 
728 	/*
729 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
730 	 * mm->mm_lock_seq can't be concurrently modified.
731 	 */
732 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
733 	return (vma->vm_lock_seq == *mm_lock_seq);
734 }
735 
736 /*
737  * Begin writing to a VMA.
738  * Exclude concurrent readers under the per-VMA lock until the currently
739  * write-locked mmap_lock is dropped or downgraded.
740  */
vma_start_write(struct vm_area_struct * vma)741 static inline void vma_start_write(struct vm_area_struct *vma)
742 {
743 	int mm_lock_seq;
744 
745 	if (__is_vma_write_locked(vma, &mm_lock_seq))
746 		return;
747 
748 	down_write(&vma->vm_lock->lock);
749 	/*
750 	 * We should use WRITE_ONCE() here because we can have concurrent reads
751 	 * from the early lockless pessimistic check in vma_start_read().
752 	 * We don't really care about the correctness of that early check, but
753 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
754 	 */
755 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
756 	up_write(&vma->vm_lock->lock);
757 }
758 
vma_assert_write_locked(struct vm_area_struct * vma)759 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
760 {
761 	int mm_lock_seq;
762 
763 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
764 }
765 
vma_assert_locked(struct vm_area_struct * vma)766 static inline void vma_assert_locked(struct vm_area_struct *vma)
767 {
768 	if (!rwsem_is_locked(&vma->vm_lock->lock))
769 		vma_assert_write_locked(vma);
770 }
771 
vma_mark_detached(struct vm_area_struct * vma,bool detached)772 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
773 {
774 	/* When detaching vma should be write-locked */
775 	if (detached)
776 		vma_assert_write_locked(vma);
777 	vma->detached = detached;
778 }
779 
release_fault_lock(struct vm_fault * vmf)780 static inline void release_fault_lock(struct vm_fault *vmf)
781 {
782 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
783 		vma_end_read(vmf->vma);
784 	else
785 		mmap_read_unlock(vmf->vma->vm_mm);
786 }
787 
assert_fault_locked(struct vm_fault * vmf)788 static inline void assert_fault_locked(struct vm_fault *vmf)
789 {
790 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
791 		vma_assert_locked(vmf->vma);
792 	else
793 		mmap_assert_locked(vmf->vma->vm_mm);
794 }
795 
796 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
797 					  unsigned long address);
798 
799 #else /* CONFIG_PER_VMA_LOCK */
800 
vma_start_read(struct vm_area_struct * vma)801 static inline bool vma_start_read(struct vm_area_struct *vma)
802 		{ return false; }
vma_end_read(struct vm_area_struct * vma)803 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)804 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)805 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
806 		{ mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)807 static inline void vma_mark_detached(struct vm_area_struct *vma,
808 				     bool detached) {}
809 
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)810 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
811 		unsigned long address)
812 {
813 	return NULL;
814 }
815 
release_fault_lock(struct vm_fault * vmf)816 static inline void release_fault_lock(struct vm_fault *vmf)
817 {
818 	mmap_read_unlock(vmf->vma->vm_mm);
819 }
820 
assert_fault_locked(struct vm_fault * vmf)821 static inline void assert_fault_locked(struct vm_fault *vmf)
822 {
823 	mmap_assert_locked(vmf->vma->vm_mm);
824 }
825 
826 #endif /* CONFIG_PER_VMA_LOCK */
827 
828 extern const struct vm_operations_struct vma_dummy_vm_ops;
829 
830 /*
831  * WARNING: vma_init does not initialize vma->vm_lock.
832  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
833  */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
835 {
836 	memset(vma, 0, sizeof(*vma));
837 	vma->vm_mm = mm;
838 	vma->vm_ops = &vma_dummy_vm_ops;
839 	INIT_LIST_HEAD(&vma->anon_vma_chain);
840 	vma_mark_detached(vma, false);
841 	vma_numab_state_init(vma);
842 }
843 
844 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)845 static inline void vm_flags_init(struct vm_area_struct *vma,
846 				 vm_flags_t flags)
847 {
848 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
849 }
850 
851 /*
852  * Use when VMA is part of the VMA tree and modifications need coordination
853  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
854  * it should be locked explicitly beforehand.
855  */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)856 static inline void vm_flags_reset(struct vm_area_struct *vma,
857 				  vm_flags_t flags)
858 {
859 	vma_assert_write_locked(vma);
860 	vm_flags_init(vma, flags);
861 }
862 
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)863 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
864 				       vm_flags_t flags)
865 {
866 	vma_assert_write_locked(vma);
867 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
868 }
869 
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)870 static inline void vm_flags_set(struct vm_area_struct *vma,
871 				vm_flags_t flags)
872 {
873 	vma_start_write(vma);
874 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
875 }
876 
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)877 static inline void vm_flags_clear(struct vm_area_struct *vma,
878 				  vm_flags_t flags)
879 {
880 	vma_start_write(vma);
881 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
882 }
883 
884 /*
885  * Use only if VMA is not part of the VMA tree or has no other users and
886  * therefore needs no locking.
887  */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)888 static inline void __vm_flags_mod(struct vm_area_struct *vma,
889 				  vm_flags_t set, vm_flags_t clear)
890 {
891 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
892 }
893 
894 /*
895  * Use only when the order of set/clear operations is unimportant, otherwise
896  * use vm_flags_{set|clear} explicitly.
897  */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)898 static inline void vm_flags_mod(struct vm_area_struct *vma,
899 				vm_flags_t set, vm_flags_t clear)
900 {
901 	vma_start_write(vma);
902 	__vm_flags_mod(vma, set, clear);
903 }
904 
vma_set_anonymous(struct vm_area_struct * vma)905 static inline void vma_set_anonymous(struct vm_area_struct *vma)
906 {
907 	vma->vm_ops = NULL;
908 }
909 
vma_is_anonymous(struct vm_area_struct * vma)910 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
911 {
912 	return !vma->vm_ops;
913 }
914 
915 /*
916  * Indicate if the VMA is a heap for the given task; for
917  * /proc/PID/maps that is the heap of the main task.
918  */
vma_is_initial_heap(const struct vm_area_struct * vma)919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
920 {
921        return vma->vm_start <= vma->vm_mm->brk &&
922 		vma->vm_end >= vma->vm_mm->start_brk;
923 }
924 
925 /*
926  * Indicate if the VMA is a stack for the given task; for
927  * /proc/PID/maps that is the stack of the main task.
928  */
vma_is_initial_stack(const struct vm_area_struct * vma)929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
930 {
931 	/*
932 	 * We make no effort to guess what a given thread considers to be
933 	 * its "stack".  It's not even well-defined for programs written
934 	 * languages like Go.
935 	 */
936        return vma->vm_start <= vma->vm_mm->start_stack &&
937 	       vma->vm_end >= vma->vm_mm->start_stack;
938 }
939 
vma_is_temporary_stack(struct vm_area_struct * vma)940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
941 {
942 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
943 
944 	if (!maybe_stack)
945 		return false;
946 
947 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
948 						VM_STACK_INCOMPLETE_SETUP)
949 		return true;
950 
951 	return false;
952 }
953 
vma_is_foreign(struct vm_area_struct * vma)954 static inline bool vma_is_foreign(struct vm_area_struct *vma)
955 {
956 	if (!current->mm)
957 		return true;
958 
959 	if (current->mm != vma->vm_mm)
960 		return true;
961 
962 	return false;
963 }
964 
vma_is_accessible(struct vm_area_struct * vma)965 static inline bool vma_is_accessible(struct vm_area_struct *vma)
966 {
967 	return vma->vm_flags & VM_ACCESS_FLAGS;
968 }
969 
970 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)971 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
972 {
973 	return mas_find(&vmi->mas, max - 1);
974 }
975 
vma_next(struct vma_iterator * vmi)976 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
977 {
978 	/*
979 	 * Uses mas_find() to get the first VMA when the iterator starts.
980 	 * Calling mas_next() could skip the first entry.
981 	 */
982 	return mas_find(&vmi->mas, ULONG_MAX);
983 }
984 
985 static inline
vma_iter_next_range(struct vma_iterator * vmi)986 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
987 {
988 	return mas_next_range(&vmi->mas, ULONG_MAX);
989 }
990 
991 
vma_prev(struct vma_iterator * vmi)992 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
993 {
994 	return mas_prev(&vmi->mas, 0);
995 }
996 
997 static inline
vma_iter_prev_range(struct vma_iterator * vmi)998 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
999 {
1000 	return mas_prev_range(&vmi->mas, 0);
1001 }
1002 
vma_iter_addr(struct vma_iterator * vmi)1003 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1004 {
1005 	return vmi->mas.index;
1006 }
1007 
vma_iter_end(struct vma_iterator * vmi)1008 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1009 {
1010 	return vmi->mas.last + 1;
1011 }
vma_iter_bulk_alloc(struct vma_iterator * vmi,unsigned long count)1012 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1013 				      unsigned long count)
1014 {
1015 	return mas_expected_entries(&vmi->mas, count);
1016 }
1017 
1018 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1019 static inline void vma_iter_free(struct vma_iterator *vmi)
1020 {
1021 	mas_destroy(&vmi->mas);
1022 }
1023 
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1024 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1025 				      struct vm_area_struct *vma)
1026 {
1027 	vmi->mas.index = vma->vm_start;
1028 	vmi->mas.last = vma->vm_end - 1;
1029 	mas_store(&vmi->mas, vma);
1030 	if (unlikely(mas_is_err(&vmi->mas)))
1031 		return -ENOMEM;
1032 
1033 	return 0;
1034 }
1035 
vma_iter_invalidate(struct vma_iterator * vmi)1036 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1037 {
1038 	mas_pause(&vmi->mas);
1039 }
1040 
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1041 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1042 {
1043 	mas_set(&vmi->mas, addr);
1044 }
1045 
1046 #define for_each_vma(__vmi, __vma)					\
1047 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1048 
1049 /* The MM code likes to work with exclusive end addresses */
1050 #define for_each_vma_range(__vmi, __vma, __end)				\
1051 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1052 
1053 #ifdef CONFIG_SHMEM
1054 /*
1055  * The vma_is_shmem is not inline because it is used only by slow
1056  * paths in userfault.
1057  */
1058 bool vma_is_shmem(struct vm_area_struct *vma);
1059 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1060 #else
vma_is_shmem(struct vm_area_struct * vma)1061 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1062 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1063 #endif
1064 
1065 int vma_is_stack_for_current(struct vm_area_struct *vma);
1066 
1067 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1068 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1069 
1070 struct mmu_gather;
1071 struct inode;
1072 
1073 /*
1074  * compound_order() can be called without holding a reference, which means
1075  * that niceties like page_folio() don't work.  These callers should be
1076  * prepared to handle wild return values.  For example, PG_head may be
1077  * set before the order is initialised, or this may be a tail page.
1078  * See compaction.c for some good examples.
1079  */
compound_order(struct page * page)1080 static inline unsigned int compound_order(struct page *page)
1081 {
1082 	struct folio *folio = (struct folio *)page;
1083 
1084 	if (!test_bit(PG_head, &folio->flags))
1085 		return 0;
1086 	return folio->_flags_1 & 0xff;
1087 }
1088 
1089 /**
1090  * folio_order - The allocation order of a folio.
1091  * @folio: The folio.
1092  *
1093  * A folio is composed of 2^order pages.  See get_order() for the definition
1094  * of order.
1095  *
1096  * Return: The order of the folio.
1097  */
folio_order(struct folio * folio)1098 static inline unsigned int folio_order(struct folio *folio)
1099 {
1100 	if (!folio_test_large(folio))
1101 		return 0;
1102 	return folio->_flags_1 & 0xff;
1103 }
1104 
1105 #include <linux/huge_mm.h>
1106 
1107 /*
1108  * Methods to modify the page usage count.
1109  *
1110  * What counts for a page usage:
1111  * - cache mapping   (page->mapping)
1112  * - private data    (page->private)
1113  * - page mapped in a task's page tables, each mapping
1114  *   is counted separately
1115  *
1116  * Also, many kernel routines increase the page count before a critical
1117  * routine so they can be sure the page doesn't go away from under them.
1118  */
1119 
1120 /*
1121  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1122  */
put_page_testzero(struct page * page)1123 static inline int put_page_testzero(struct page *page)
1124 {
1125 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1126 	return page_ref_dec_and_test(page);
1127 }
1128 
folio_put_testzero(struct folio * folio)1129 static inline int folio_put_testzero(struct folio *folio)
1130 {
1131 	return put_page_testzero(&folio->page);
1132 }
1133 
1134 /*
1135  * Try to grab a ref unless the page has a refcount of zero, return false if
1136  * that is the case.
1137  * This can be called when MMU is off so it must not access
1138  * any of the virtual mappings.
1139  */
get_page_unless_zero(struct page * page)1140 static inline bool get_page_unless_zero(struct page *page)
1141 {
1142 	return page_ref_add_unless(page, 1, 0);
1143 }
1144 
folio_get_nontail_page(struct page * page)1145 static inline struct folio *folio_get_nontail_page(struct page *page)
1146 {
1147 	if (unlikely(!get_page_unless_zero(page)))
1148 		return NULL;
1149 	return (struct folio *)page;
1150 }
1151 
1152 extern int page_is_ram(unsigned long pfn);
1153 
1154 enum {
1155 	REGION_INTERSECTS,
1156 	REGION_DISJOINT,
1157 	REGION_MIXED,
1158 };
1159 
1160 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1161 		      unsigned long desc);
1162 
1163 /* Support for virtually mapped pages */
1164 struct page *vmalloc_to_page(const void *addr);
1165 unsigned long vmalloc_to_pfn(const void *addr);
1166 
1167 /*
1168  * Determine if an address is within the vmalloc range
1169  *
1170  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1171  * is no special casing required.
1172  */
1173 #ifdef CONFIG_MMU
1174 extern bool is_vmalloc_addr(const void *x);
1175 extern int is_vmalloc_or_module_addr(const void *x);
1176 #else
is_vmalloc_addr(const void * x)1177 static inline bool is_vmalloc_addr(const void *x)
1178 {
1179 	return false;
1180 }
is_vmalloc_or_module_addr(const void * x)1181 static inline int is_vmalloc_or_module_addr(const void *x)
1182 {
1183 	return 0;
1184 }
1185 #endif
1186 
1187 /*
1188  * How many times the entire folio is mapped as a single unit (eg by a
1189  * PMD or PUD entry).  This is probably not what you want, except for
1190  * debugging purposes - it does not include PTE-mapped sub-pages; look
1191  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1192  */
folio_entire_mapcount(struct folio * folio)1193 static inline int folio_entire_mapcount(struct folio *folio)
1194 {
1195 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1196 	return atomic_read(&folio->_entire_mapcount) + 1;
1197 }
1198 
1199 /*
1200  * The atomic page->_mapcount, starts from -1: so that transitions
1201  * both from it and to it can be tracked, using atomic_inc_and_test
1202  * and atomic_add_negative(-1).
1203  */
page_mapcount_reset(struct page * page)1204 static inline void page_mapcount_reset(struct page *page)
1205 {
1206 	atomic_set(&(page)->_mapcount, -1);
1207 }
1208 
1209 /**
1210  * page_mapcount() - Number of times this precise page is mapped.
1211  * @page: The page.
1212  *
1213  * The number of times this page is mapped.  If this page is part of
1214  * a large folio, it includes the number of times this page is mapped
1215  * as part of that folio.
1216  *
1217  * Will report 0 for pages which cannot be mapped into userspace, eg
1218  * slab, page tables and similar.
1219  */
page_mapcount(struct page * page)1220 static inline int page_mapcount(struct page *page)
1221 {
1222 	int mapcount = atomic_read(&page->_mapcount) + 1;
1223 
1224 	/* Handle page_has_type() pages */
1225 	if (mapcount < 0)
1226 		mapcount = 0;
1227 	if (unlikely(PageCompound(page)))
1228 		mapcount += folio_entire_mapcount(page_folio(page));
1229 
1230 	return mapcount;
1231 }
1232 
1233 int folio_total_mapcount(struct folio *folio);
1234 
1235 /**
1236  * folio_mapcount() - Calculate the number of mappings of this folio.
1237  * @folio: The folio.
1238  *
1239  * A large folio tracks both how many times the entire folio is mapped,
1240  * and how many times each individual page in the folio is mapped.
1241  * This function calculates the total number of times the folio is
1242  * mapped.
1243  *
1244  * Return: The number of times this folio is mapped.
1245  */
folio_mapcount(struct folio * folio)1246 static inline int folio_mapcount(struct folio *folio)
1247 {
1248 	if (likely(!folio_test_large(folio)))
1249 		return atomic_read(&folio->_mapcount) + 1;
1250 	return folio_total_mapcount(folio);
1251 }
1252 
total_mapcount(struct page * page)1253 static inline int total_mapcount(struct page *page)
1254 {
1255 	if (likely(!PageCompound(page)))
1256 		return atomic_read(&page->_mapcount) + 1;
1257 	return folio_total_mapcount(page_folio(page));
1258 }
1259 
folio_large_is_mapped(struct folio * folio)1260 static inline bool folio_large_is_mapped(struct folio *folio)
1261 {
1262 	/*
1263 	 * Reading _entire_mapcount below could be omitted if hugetlb
1264 	 * participated in incrementing nr_pages_mapped when compound mapped.
1265 	 */
1266 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1267 		atomic_read(&folio->_entire_mapcount) >= 0;
1268 }
1269 
1270 /**
1271  * folio_mapped - Is this folio mapped into userspace?
1272  * @folio: The folio.
1273  *
1274  * Return: True if any page in this folio is referenced by user page tables.
1275  */
folio_mapped(struct folio * folio)1276 static inline bool folio_mapped(struct folio *folio)
1277 {
1278 	if (likely(!folio_test_large(folio)))
1279 		return atomic_read(&folio->_mapcount) >= 0;
1280 	return folio_large_is_mapped(folio);
1281 }
1282 
1283 /*
1284  * Return true if this page is mapped into pagetables.
1285  * For compound page it returns true if any sub-page of compound page is mapped,
1286  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1287  */
page_mapped(struct page * page)1288 static inline bool page_mapped(struct page *page)
1289 {
1290 	if (likely(!PageCompound(page)))
1291 		return atomic_read(&page->_mapcount) >= 0;
1292 	return folio_large_is_mapped(page_folio(page));
1293 }
1294 
virt_to_head_page(const void * x)1295 static inline struct page *virt_to_head_page(const void *x)
1296 {
1297 	struct page *page = virt_to_page(x);
1298 
1299 	return compound_head(page);
1300 }
1301 
virt_to_folio(const void * x)1302 static inline struct folio *virt_to_folio(const void *x)
1303 {
1304 	struct page *page = virt_to_page(x);
1305 
1306 	return page_folio(page);
1307 }
1308 
1309 void __folio_put(struct folio *folio);
1310 
1311 void put_pages_list(struct list_head *pages);
1312 
1313 void split_page(struct page *page, unsigned int order);
1314 void folio_copy(struct folio *dst, struct folio *src);
1315 
1316 unsigned long nr_free_buffer_pages(void);
1317 
1318 void destroy_large_folio(struct folio *folio);
1319 
1320 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1321 static inline unsigned long page_size(struct page *page)
1322 {
1323 	return PAGE_SIZE << compound_order(page);
1324 }
1325 
1326 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1327 static inline unsigned int page_shift(struct page *page)
1328 {
1329 	return PAGE_SHIFT + compound_order(page);
1330 }
1331 
1332 /**
1333  * thp_order - Order of a transparent huge page.
1334  * @page: Head page of a transparent huge page.
1335  */
thp_order(struct page * page)1336 static inline unsigned int thp_order(struct page *page)
1337 {
1338 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1339 	return compound_order(page);
1340 }
1341 
1342 /**
1343  * thp_size - Size of a transparent huge page.
1344  * @page: Head page of a transparent huge page.
1345  *
1346  * Return: Number of bytes in this page.
1347  */
thp_size(struct page * page)1348 static inline unsigned long thp_size(struct page *page)
1349 {
1350 	return PAGE_SIZE << thp_order(page);
1351 }
1352 
1353 #ifdef CONFIG_MMU
1354 /*
1355  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1356  * servicing faults for write access.  In the normal case, do always want
1357  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1358  * that do not have writing enabled, when used by access_process_vm.
1359  */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1360 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1361 {
1362 	if (likely(vma->vm_flags & VM_WRITE))
1363 		pte = pte_mkwrite(pte, vma);
1364 	return pte;
1365 }
1366 
1367 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1368 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1369 		struct page *page, unsigned int nr, unsigned long addr);
1370 
1371 vm_fault_t finish_fault(struct vm_fault *vmf);
1372 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1373 #endif
1374 
1375 /*
1376  * Multiple processes may "see" the same page. E.g. for untouched
1377  * mappings of /dev/null, all processes see the same page full of
1378  * zeroes, and text pages of executables and shared libraries have
1379  * only one copy in memory, at most, normally.
1380  *
1381  * For the non-reserved pages, page_count(page) denotes a reference count.
1382  *   page_count() == 0 means the page is free. page->lru is then used for
1383  *   freelist management in the buddy allocator.
1384  *   page_count() > 0  means the page has been allocated.
1385  *
1386  * Pages are allocated by the slab allocator in order to provide memory
1387  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1388  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1389  * unless a particular usage is carefully commented. (the responsibility of
1390  * freeing the kmalloc memory is the caller's, of course).
1391  *
1392  * A page may be used by anyone else who does a __get_free_page().
1393  * In this case, page_count still tracks the references, and should only
1394  * be used through the normal accessor functions. The top bits of page->flags
1395  * and page->virtual store page management information, but all other fields
1396  * are unused and could be used privately, carefully. The management of this
1397  * page is the responsibility of the one who allocated it, and those who have
1398  * subsequently been given references to it.
1399  *
1400  * The other pages (we may call them "pagecache pages") are completely
1401  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1402  * The following discussion applies only to them.
1403  *
1404  * A pagecache page contains an opaque `private' member, which belongs to the
1405  * page's address_space. Usually, this is the address of a circular list of
1406  * the page's disk buffers. PG_private must be set to tell the VM to call
1407  * into the filesystem to release these pages.
1408  *
1409  * A page may belong to an inode's memory mapping. In this case, page->mapping
1410  * is the pointer to the inode, and page->index is the file offset of the page,
1411  * in units of PAGE_SIZE.
1412  *
1413  * If pagecache pages are not associated with an inode, they are said to be
1414  * anonymous pages. These may become associated with the swapcache, and in that
1415  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1416  *
1417  * In either case (swapcache or inode backed), the pagecache itself holds one
1418  * reference to the page. Setting PG_private should also increment the
1419  * refcount. The each user mapping also has a reference to the page.
1420  *
1421  * The pagecache pages are stored in a per-mapping radix tree, which is
1422  * rooted at mapping->i_pages, and indexed by offset.
1423  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1424  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1425  *
1426  * All pagecache pages may be subject to I/O:
1427  * - inode pages may need to be read from disk,
1428  * - inode pages which have been modified and are MAP_SHARED may need
1429  *   to be written back to the inode on disk,
1430  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1431  *   modified may need to be swapped out to swap space and (later) to be read
1432  *   back into memory.
1433  */
1434 
1435 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1436 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1437 
1438 bool __put_devmap_managed_page_refs(struct page *page, int refs);
put_devmap_managed_page_refs(struct page * page,int refs)1439 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1440 {
1441 	if (!static_branch_unlikely(&devmap_managed_key))
1442 		return false;
1443 	if (!is_zone_device_page(page))
1444 		return false;
1445 	return __put_devmap_managed_page_refs(page, refs);
1446 }
1447 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_page_refs(struct page * page,int refs)1448 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1449 {
1450 	return false;
1451 }
1452 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1453 
put_devmap_managed_page(struct page * page)1454 static inline bool put_devmap_managed_page(struct page *page)
1455 {
1456 	return put_devmap_managed_page_refs(page, 1);
1457 }
1458 
1459 /* 127: arbitrary random number, small enough to assemble well */
1460 #define folio_ref_zero_or_close_to_overflow(folio) \
1461 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1462 
1463 /**
1464  * folio_get - Increment the reference count on a folio.
1465  * @folio: The folio.
1466  *
1467  * Context: May be called in any context, as long as you know that
1468  * you have a refcount on the folio.  If you do not already have one,
1469  * folio_try_get() may be the right interface for you to use.
1470  */
folio_get(struct folio * folio)1471 static inline void folio_get(struct folio *folio)
1472 {
1473 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1474 	folio_ref_inc(folio);
1475 }
1476 
get_page(struct page * page)1477 static inline void get_page(struct page *page)
1478 {
1479 	folio_get(page_folio(page));
1480 }
1481 
try_get_page(struct page * page)1482 static inline __must_check bool try_get_page(struct page *page)
1483 {
1484 	page = compound_head(page);
1485 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1486 		return false;
1487 	page_ref_inc(page);
1488 	return true;
1489 }
1490 
1491 /**
1492  * folio_put - Decrement the reference count on a folio.
1493  * @folio: The folio.
1494  *
1495  * If the folio's reference count reaches zero, the memory will be
1496  * released back to the page allocator and may be used by another
1497  * allocation immediately.  Do not access the memory or the struct folio
1498  * after calling folio_put() unless you can be sure that it wasn't the
1499  * last reference.
1500  *
1501  * Context: May be called in process or interrupt context, but not in NMI
1502  * context.  May be called while holding a spinlock.
1503  */
folio_put(struct folio * folio)1504 static inline void folio_put(struct folio *folio)
1505 {
1506 	if (folio_put_testzero(folio))
1507 		__folio_put(folio);
1508 }
1509 
1510 /**
1511  * folio_put_refs - Reduce the reference count on a folio.
1512  * @folio: The folio.
1513  * @refs: The amount to subtract from the folio's reference count.
1514  *
1515  * If the folio's reference count reaches zero, the memory will be
1516  * released back to the page allocator and may be used by another
1517  * allocation immediately.  Do not access the memory or the struct folio
1518  * after calling folio_put_refs() unless you can be sure that these weren't
1519  * the last references.
1520  *
1521  * Context: May be called in process or interrupt context, but not in NMI
1522  * context.  May be called while holding a spinlock.
1523  */
folio_put_refs(struct folio * folio,int refs)1524 static inline void folio_put_refs(struct folio *folio, int refs)
1525 {
1526 	if (folio_ref_sub_and_test(folio, refs))
1527 		__folio_put(folio);
1528 }
1529 
1530 /*
1531  * union release_pages_arg - an array of pages or folios
1532  *
1533  * release_pages() releases a simple array of multiple pages, and
1534  * accepts various different forms of said page array: either
1535  * a regular old boring array of pages, an array of folios, or
1536  * an array of encoded page pointers.
1537  *
1538  * The transparent union syntax for this kind of "any of these
1539  * argument types" is all kinds of ugly, so look away.
1540  */
1541 typedef union {
1542 	struct page **pages;
1543 	struct folio **folios;
1544 	struct encoded_page **encoded_pages;
1545 } release_pages_arg __attribute__ ((__transparent_union__));
1546 
1547 void release_pages(release_pages_arg, int nr);
1548 
1549 /**
1550  * folios_put - Decrement the reference count on an array of folios.
1551  * @folios: The folios.
1552  * @nr: How many folios there are.
1553  *
1554  * Like folio_put(), but for an array of folios.  This is more efficient
1555  * than writing the loop yourself as it will optimise the locks which
1556  * need to be taken if the folios are freed.
1557  *
1558  * Context: May be called in process or interrupt context, but not in NMI
1559  * context.  May be called while holding a spinlock.
1560  */
folios_put(struct folio ** folios,unsigned int nr)1561 static inline void folios_put(struct folio **folios, unsigned int nr)
1562 {
1563 	release_pages(folios, nr);
1564 }
1565 
put_page(struct page * page)1566 static inline void put_page(struct page *page)
1567 {
1568 	struct folio *folio = page_folio(page);
1569 
1570 	/*
1571 	 * For some devmap managed pages we need to catch refcount transition
1572 	 * from 2 to 1:
1573 	 */
1574 	if (put_devmap_managed_page(&folio->page))
1575 		return;
1576 	folio_put(folio);
1577 }
1578 
1579 /*
1580  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1581  * the page's refcount so that two separate items are tracked: the original page
1582  * reference count, and also a new count of how many pin_user_pages() calls were
1583  * made against the page. ("gup-pinned" is another term for the latter).
1584  *
1585  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1586  * distinct from normal pages. As such, the unpin_user_page() call (and its
1587  * variants) must be used in order to release gup-pinned pages.
1588  *
1589  * Choice of value:
1590  *
1591  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1592  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1593  * simpler, due to the fact that adding an even power of two to the page
1594  * refcount has the effect of using only the upper N bits, for the code that
1595  * counts up using the bias value. This means that the lower bits are left for
1596  * the exclusive use of the original code that increments and decrements by one
1597  * (or at least, by much smaller values than the bias value).
1598  *
1599  * Of course, once the lower bits overflow into the upper bits (and this is
1600  * OK, because subtraction recovers the original values), then visual inspection
1601  * no longer suffices to directly view the separate counts. However, for normal
1602  * applications that don't have huge page reference counts, this won't be an
1603  * issue.
1604  *
1605  * Locking: the lockless algorithm described in folio_try_get_rcu()
1606  * provides safe operation for get_user_pages(), page_mkclean() and
1607  * other calls that race to set up page table entries.
1608  */
1609 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1610 
1611 void unpin_user_page(struct page *page);
1612 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1613 				 bool make_dirty);
1614 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1615 				      bool make_dirty);
1616 void unpin_user_pages(struct page **pages, unsigned long npages);
1617 
is_cow_mapping(vm_flags_t flags)1618 static inline bool is_cow_mapping(vm_flags_t flags)
1619 {
1620 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1621 }
1622 
1623 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1624 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1625 {
1626 	/*
1627 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1628 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1629 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1630 	 * underlying memory if ptrace is active, so this is only possible if
1631 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1632 	 * write permissions later.
1633 	 */
1634 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1635 }
1636 #endif
1637 
1638 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1639 #define SECTION_IN_PAGE_FLAGS
1640 #endif
1641 
1642 /*
1643  * The identification function is mainly used by the buddy allocator for
1644  * determining if two pages could be buddies. We are not really identifying
1645  * the zone since we could be using the section number id if we do not have
1646  * node id available in page flags.
1647  * We only guarantee that it will return the same value for two combinable
1648  * pages in a zone.
1649  */
page_zone_id(struct page * page)1650 static inline int page_zone_id(struct page *page)
1651 {
1652 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1653 }
1654 
1655 #ifdef NODE_NOT_IN_PAGE_FLAGS
1656 extern int page_to_nid(const struct page *page);
1657 #else
page_to_nid(const struct page * page)1658 static inline int page_to_nid(const struct page *page)
1659 {
1660 	struct page *p = (struct page *)page;
1661 
1662 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1663 }
1664 #endif
1665 
folio_nid(const struct folio * folio)1666 static inline int folio_nid(const struct folio *folio)
1667 {
1668 	return page_to_nid(&folio->page);
1669 }
1670 
1671 #ifdef CONFIG_NUMA_BALANCING
1672 /* page access time bits needs to hold at least 4 seconds */
1673 #define PAGE_ACCESS_TIME_MIN_BITS	12
1674 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1675 #define PAGE_ACCESS_TIME_BUCKETS				\
1676 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1677 #else
1678 #define PAGE_ACCESS_TIME_BUCKETS	0
1679 #endif
1680 
1681 #define PAGE_ACCESS_TIME_MASK				\
1682 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1683 
cpu_pid_to_cpupid(int cpu,int pid)1684 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1685 {
1686 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1687 }
1688 
cpupid_to_pid(int cpupid)1689 static inline int cpupid_to_pid(int cpupid)
1690 {
1691 	return cpupid & LAST__PID_MASK;
1692 }
1693 
cpupid_to_cpu(int cpupid)1694 static inline int cpupid_to_cpu(int cpupid)
1695 {
1696 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1697 }
1698 
cpupid_to_nid(int cpupid)1699 static inline int cpupid_to_nid(int cpupid)
1700 {
1701 	return cpu_to_node(cpupid_to_cpu(cpupid));
1702 }
1703 
cpupid_pid_unset(int cpupid)1704 static inline bool cpupid_pid_unset(int cpupid)
1705 {
1706 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1707 }
1708 
cpupid_cpu_unset(int cpupid)1709 static inline bool cpupid_cpu_unset(int cpupid)
1710 {
1711 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1712 }
1713 
__cpupid_match_pid(pid_t task_pid,int cpupid)1714 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1715 {
1716 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1717 }
1718 
1719 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1720 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1721 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1722 {
1723 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1724 }
1725 
page_cpupid_last(struct page * page)1726 static inline int page_cpupid_last(struct page *page)
1727 {
1728 	return page->_last_cpupid;
1729 }
page_cpupid_reset_last(struct page * page)1730 static inline void page_cpupid_reset_last(struct page *page)
1731 {
1732 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1733 }
1734 #else
page_cpupid_last(struct page * page)1735 static inline int page_cpupid_last(struct page *page)
1736 {
1737 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1738 }
1739 
1740 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1741 
page_cpupid_reset_last(struct page * page)1742 static inline void page_cpupid_reset_last(struct page *page)
1743 {
1744 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1745 }
1746 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1747 
xchg_page_access_time(struct page * page,int time)1748 static inline int xchg_page_access_time(struct page *page, int time)
1749 {
1750 	int last_time;
1751 
1752 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1753 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1754 }
1755 
vma_set_access_pid_bit(struct vm_area_struct * vma)1756 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1757 {
1758 	unsigned int pid_bit;
1759 
1760 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1761 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1762 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1763 	}
1764 }
1765 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1766 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1767 {
1768 	return page_to_nid(page); /* XXX */
1769 }
1770 
xchg_page_access_time(struct page * page,int time)1771 static inline int xchg_page_access_time(struct page *page, int time)
1772 {
1773 	return 0;
1774 }
1775 
page_cpupid_last(struct page * page)1776 static inline int page_cpupid_last(struct page *page)
1777 {
1778 	return page_to_nid(page); /* XXX */
1779 }
1780 
cpupid_to_nid(int cpupid)1781 static inline int cpupid_to_nid(int cpupid)
1782 {
1783 	return -1;
1784 }
1785 
cpupid_to_pid(int cpupid)1786 static inline int cpupid_to_pid(int cpupid)
1787 {
1788 	return -1;
1789 }
1790 
cpupid_to_cpu(int cpupid)1791 static inline int cpupid_to_cpu(int cpupid)
1792 {
1793 	return -1;
1794 }
1795 
cpu_pid_to_cpupid(int nid,int pid)1796 static inline int cpu_pid_to_cpupid(int nid, int pid)
1797 {
1798 	return -1;
1799 }
1800 
cpupid_pid_unset(int cpupid)1801 static inline bool cpupid_pid_unset(int cpupid)
1802 {
1803 	return true;
1804 }
1805 
page_cpupid_reset_last(struct page * page)1806 static inline void page_cpupid_reset_last(struct page *page)
1807 {
1808 }
1809 
cpupid_match_pid(struct task_struct * task,int cpupid)1810 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1811 {
1812 	return false;
1813 }
1814 
vma_set_access_pid_bit(struct vm_area_struct * vma)1815 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1816 {
1817 }
1818 #endif /* CONFIG_NUMA_BALANCING */
1819 
1820 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1821 
1822 /*
1823  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1824  * setting tags for all pages to native kernel tag value 0xff, as the default
1825  * value 0x00 maps to 0xff.
1826  */
1827 
page_kasan_tag(const struct page * page)1828 static inline u8 page_kasan_tag(const struct page *page)
1829 {
1830 	u8 tag = 0xff;
1831 
1832 	if (kasan_enabled()) {
1833 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1834 		tag ^= 0xff;
1835 	}
1836 
1837 	return tag;
1838 }
1839 
page_kasan_tag_set(struct page * page,u8 tag)1840 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1841 {
1842 	unsigned long old_flags, flags;
1843 
1844 	if (!kasan_enabled())
1845 		return;
1846 
1847 	tag ^= 0xff;
1848 	old_flags = READ_ONCE(page->flags);
1849 	do {
1850 		flags = old_flags;
1851 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1852 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1853 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1854 }
1855 
page_kasan_tag_reset(struct page * page)1856 static inline void page_kasan_tag_reset(struct page *page)
1857 {
1858 	if (kasan_enabled())
1859 		page_kasan_tag_set(page, 0xff);
1860 }
1861 
1862 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1863 
page_kasan_tag(const struct page * page)1864 static inline u8 page_kasan_tag(const struct page *page)
1865 {
1866 	return 0xff;
1867 }
1868 
page_kasan_tag_set(struct page * page,u8 tag)1869 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1870 static inline void page_kasan_tag_reset(struct page *page) { }
1871 
1872 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1873 
page_zone(const struct page * page)1874 static inline struct zone *page_zone(const struct page *page)
1875 {
1876 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1877 }
1878 
page_pgdat(const struct page * page)1879 static inline pg_data_t *page_pgdat(const struct page *page)
1880 {
1881 	return NODE_DATA(page_to_nid(page));
1882 }
1883 
folio_zone(const struct folio * folio)1884 static inline struct zone *folio_zone(const struct folio *folio)
1885 {
1886 	return page_zone(&folio->page);
1887 }
1888 
folio_pgdat(const struct folio * folio)1889 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1890 {
1891 	return page_pgdat(&folio->page);
1892 }
1893 
1894 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1895 static inline void set_page_section(struct page *page, unsigned long section)
1896 {
1897 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1898 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1899 }
1900 
page_to_section(const struct page * page)1901 static inline unsigned long page_to_section(const struct page *page)
1902 {
1903 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1904 }
1905 #endif
1906 
1907 /**
1908  * folio_pfn - Return the Page Frame Number of a folio.
1909  * @folio: The folio.
1910  *
1911  * A folio may contain multiple pages.  The pages have consecutive
1912  * Page Frame Numbers.
1913  *
1914  * Return: The Page Frame Number of the first page in the folio.
1915  */
folio_pfn(struct folio * folio)1916 static inline unsigned long folio_pfn(struct folio *folio)
1917 {
1918 	return page_to_pfn(&folio->page);
1919 }
1920 
pfn_folio(unsigned long pfn)1921 static inline struct folio *pfn_folio(unsigned long pfn)
1922 {
1923 	return page_folio(pfn_to_page(pfn));
1924 }
1925 
1926 /**
1927  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1928  * @folio: The folio.
1929  *
1930  * This function checks if a folio has been pinned via a call to
1931  * a function in the pin_user_pages() family.
1932  *
1933  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1934  * because it means "definitely not pinned for DMA", but true means "probably
1935  * pinned for DMA, but possibly a false positive due to having at least
1936  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1937  *
1938  * False positives are OK, because: a) it's unlikely for a folio to
1939  * get that many refcounts, and b) all the callers of this routine are
1940  * expected to be able to deal gracefully with a false positive.
1941  *
1942  * For large folios, the result will be exactly correct. That's because
1943  * we have more tracking data available: the _pincount field is used
1944  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1945  *
1946  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1947  *
1948  * Return: True, if it is likely that the page has been "dma-pinned".
1949  * False, if the page is definitely not dma-pinned.
1950  */
folio_maybe_dma_pinned(struct folio * folio)1951 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1952 {
1953 	if (folio_test_large(folio))
1954 		return atomic_read(&folio->_pincount) > 0;
1955 
1956 	/*
1957 	 * folio_ref_count() is signed. If that refcount overflows, then
1958 	 * folio_ref_count() returns a negative value, and callers will avoid
1959 	 * further incrementing the refcount.
1960 	 *
1961 	 * Here, for that overflow case, use the sign bit to count a little
1962 	 * bit higher via unsigned math, and thus still get an accurate result.
1963 	 */
1964 	return ((unsigned int)folio_ref_count(folio)) >=
1965 		GUP_PIN_COUNTING_BIAS;
1966 }
1967 
page_maybe_dma_pinned(struct page * page)1968 static inline bool page_maybe_dma_pinned(struct page *page)
1969 {
1970 	return folio_maybe_dma_pinned(page_folio(page));
1971 }
1972 
1973 /*
1974  * This should most likely only be called during fork() to see whether we
1975  * should break the cow immediately for an anon page on the src mm.
1976  *
1977  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1978  */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1979 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1980 					  struct page *page)
1981 {
1982 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1983 
1984 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1985 		return false;
1986 
1987 	return page_maybe_dma_pinned(page);
1988 }
1989 
1990 /**
1991  * is_zero_page - Query if a page is a zero page
1992  * @page: The page to query
1993  *
1994  * This returns true if @page is one of the permanent zero pages.
1995  */
is_zero_page(const struct page * page)1996 static inline bool is_zero_page(const struct page *page)
1997 {
1998 	return is_zero_pfn(page_to_pfn(page));
1999 }
2000 
2001 /**
2002  * is_zero_folio - Query if a folio is a zero page
2003  * @folio: The folio to query
2004  *
2005  * This returns true if @folio is one of the permanent zero pages.
2006  */
is_zero_folio(const struct folio * folio)2007 static inline bool is_zero_folio(const struct folio *folio)
2008 {
2009 	return is_zero_page(&folio->page);
2010 }
2011 
2012 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2013 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2014 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2015 {
2016 #ifdef CONFIG_CMA
2017 	int mt = folio_migratetype(folio);
2018 
2019 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2020 		return false;
2021 #endif
2022 	/* The zero page can be "pinned" but gets special handling. */
2023 	if (is_zero_folio(folio))
2024 		return true;
2025 
2026 	/* Coherent device memory must always allow eviction. */
2027 	if (folio_is_device_coherent(folio))
2028 		return false;
2029 
2030 	/* Otherwise, non-movable zone folios can be pinned. */
2031 	return !folio_is_zone_movable(folio);
2032 
2033 }
2034 #else
folio_is_longterm_pinnable(struct folio * folio)2035 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2036 {
2037 	return true;
2038 }
2039 #endif
2040 
set_page_zone(struct page * page,enum zone_type zone)2041 static inline void set_page_zone(struct page *page, enum zone_type zone)
2042 {
2043 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2044 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2045 }
2046 
set_page_node(struct page * page,unsigned long node)2047 static inline void set_page_node(struct page *page, unsigned long node)
2048 {
2049 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2050 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2051 }
2052 
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2053 static inline void set_page_links(struct page *page, enum zone_type zone,
2054 	unsigned long node, unsigned long pfn)
2055 {
2056 	set_page_zone(page, zone);
2057 	set_page_node(page, node);
2058 #ifdef SECTION_IN_PAGE_FLAGS
2059 	set_page_section(page, pfn_to_section_nr(pfn));
2060 #endif
2061 }
2062 
2063 /**
2064  * folio_nr_pages - The number of pages in the folio.
2065  * @folio: The folio.
2066  *
2067  * Return: A positive power of two.
2068  */
folio_nr_pages(struct folio * folio)2069 static inline long folio_nr_pages(struct folio *folio)
2070 {
2071 	if (!folio_test_large(folio))
2072 		return 1;
2073 #ifdef CONFIG_64BIT
2074 	return folio->_folio_nr_pages;
2075 #else
2076 	return 1L << (folio->_flags_1 & 0xff);
2077 #endif
2078 }
2079 
2080 /*
2081  * compound_nr() returns the number of pages in this potentially compound
2082  * page.  compound_nr() can be called on a tail page, and is defined to
2083  * return 1 in that case.
2084  */
compound_nr(struct page * page)2085 static inline unsigned long compound_nr(struct page *page)
2086 {
2087 	struct folio *folio = (struct folio *)page;
2088 
2089 	if (!test_bit(PG_head, &folio->flags))
2090 		return 1;
2091 #ifdef CONFIG_64BIT
2092 	return folio->_folio_nr_pages;
2093 #else
2094 	return 1L << (folio->_flags_1 & 0xff);
2095 #endif
2096 }
2097 
2098 /**
2099  * thp_nr_pages - The number of regular pages in this huge page.
2100  * @page: The head page of a huge page.
2101  */
thp_nr_pages(struct page * page)2102 static inline int thp_nr_pages(struct page *page)
2103 {
2104 	return folio_nr_pages((struct folio *)page);
2105 }
2106 
2107 /**
2108  * folio_next - Move to the next physical folio.
2109  * @folio: The folio we're currently operating on.
2110  *
2111  * If you have physically contiguous memory which may span more than
2112  * one folio (eg a &struct bio_vec), use this function to move from one
2113  * folio to the next.  Do not use it if the memory is only virtually
2114  * contiguous as the folios are almost certainly not adjacent to each
2115  * other.  This is the folio equivalent to writing ``page++``.
2116  *
2117  * Context: We assume that the folios are refcounted and/or locked at a
2118  * higher level and do not adjust the reference counts.
2119  * Return: The next struct folio.
2120  */
folio_next(struct folio * folio)2121 static inline struct folio *folio_next(struct folio *folio)
2122 {
2123 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2124 }
2125 
2126 /**
2127  * folio_shift - The size of the memory described by this folio.
2128  * @folio: The folio.
2129  *
2130  * A folio represents a number of bytes which is a power-of-two in size.
2131  * This function tells you which power-of-two the folio is.  See also
2132  * folio_size() and folio_order().
2133  *
2134  * Context: The caller should have a reference on the folio to prevent
2135  * it from being split.  It is not necessary for the folio to be locked.
2136  * Return: The base-2 logarithm of the size of this folio.
2137  */
folio_shift(struct folio * folio)2138 static inline unsigned int folio_shift(struct folio *folio)
2139 {
2140 	return PAGE_SHIFT + folio_order(folio);
2141 }
2142 
2143 /**
2144  * folio_size - The number of bytes in a folio.
2145  * @folio: The folio.
2146  *
2147  * Context: The caller should have a reference on the folio to prevent
2148  * it from being split.  It is not necessary for the folio to be locked.
2149  * Return: The number of bytes in this folio.
2150  */
folio_size(struct folio * folio)2151 static inline size_t folio_size(struct folio *folio)
2152 {
2153 	return PAGE_SIZE << folio_order(folio);
2154 }
2155 
2156 /**
2157  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2158  * @folio: The folio.
2159  *
2160  * folio_estimated_sharers() aims to serve as a function to efficiently
2161  * estimate the number of processes sharing a folio. This is done by
2162  * looking at the precise mapcount of the first subpage in the folio, and
2163  * assuming the other subpages are the same. This may not be true for large
2164  * folios. If you want exact mapcounts for exact calculations, look at
2165  * page_mapcount() or folio_total_mapcount().
2166  *
2167  * Return: The estimated number of processes sharing a folio.
2168  */
folio_estimated_sharers(struct folio * folio)2169 static inline int folio_estimated_sharers(struct folio *folio)
2170 {
2171 	return page_mapcount(folio_page(folio, 0));
2172 }
2173 
2174 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)2175 static inline int arch_make_page_accessible(struct page *page)
2176 {
2177 	return 0;
2178 }
2179 #endif
2180 
2181 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2182 static inline int arch_make_folio_accessible(struct folio *folio)
2183 {
2184 	int ret;
2185 	long i, nr = folio_nr_pages(folio);
2186 
2187 	for (i = 0; i < nr; i++) {
2188 		ret = arch_make_page_accessible(folio_page(folio, i));
2189 		if (ret)
2190 			break;
2191 	}
2192 
2193 	return ret;
2194 }
2195 #endif
2196 
2197 /*
2198  * Some inline functions in vmstat.h depend on page_zone()
2199  */
2200 #include <linux/vmstat.h>
2201 
lowmem_page_address(const struct page * page)2202 static __always_inline void *lowmem_page_address(const struct page *page)
2203 {
2204 	return page_to_virt(page);
2205 }
2206 
2207 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2208 #define HASHED_PAGE_VIRTUAL
2209 #endif
2210 
2211 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2212 static inline void *page_address(const struct page *page)
2213 {
2214 	return page->virtual;
2215 }
set_page_address(struct page * page,void * address)2216 static inline void set_page_address(struct page *page, void *address)
2217 {
2218 	page->virtual = address;
2219 }
2220 #define page_address_init()  do { } while(0)
2221 #endif
2222 
2223 #if defined(HASHED_PAGE_VIRTUAL)
2224 void *page_address(const struct page *page);
2225 void set_page_address(struct page *page, void *virtual);
2226 void page_address_init(void);
2227 #endif
2228 
2229 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2230 #define page_address(page) lowmem_page_address(page)
2231 #define set_page_address(page, address)  do { } while(0)
2232 #define page_address_init()  do { } while(0)
2233 #endif
2234 
folio_address(const struct folio * folio)2235 static inline void *folio_address(const struct folio *folio)
2236 {
2237 	return page_address(&folio->page);
2238 }
2239 
2240 extern pgoff_t __page_file_index(struct page *page);
2241 
2242 /*
2243  * Return the pagecache index of the passed page.  Regular pagecache pages
2244  * use ->index whereas swapcache pages use swp_offset(->private)
2245  */
page_index(struct page * page)2246 static inline pgoff_t page_index(struct page *page)
2247 {
2248 	if (unlikely(PageSwapCache(page)))
2249 		return __page_file_index(page);
2250 	return page->index;
2251 }
2252 
2253 /*
2254  * Return true only if the page has been allocated with
2255  * ALLOC_NO_WATERMARKS and the low watermark was not
2256  * met implying that the system is under some pressure.
2257  */
page_is_pfmemalloc(const struct page * page)2258 static inline bool page_is_pfmemalloc(const struct page *page)
2259 {
2260 	/*
2261 	 * lru.next has bit 1 set if the page is allocated from the
2262 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2263 	 * they do not need to preserve that information.
2264 	 */
2265 	return (uintptr_t)page->lru.next & BIT(1);
2266 }
2267 
2268 /*
2269  * Return true only if the folio has been allocated with
2270  * ALLOC_NO_WATERMARKS and the low watermark was not
2271  * met implying that the system is under some pressure.
2272  */
folio_is_pfmemalloc(const struct folio * folio)2273 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2274 {
2275 	/*
2276 	 * lru.next has bit 1 set if the page is allocated from the
2277 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2278 	 * they do not need to preserve that information.
2279 	 */
2280 	return (uintptr_t)folio->lru.next & BIT(1);
2281 }
2282 
2283 /*
2284  * Only to be called by the page allocator on a freshly allocated
2285  * page.
2286  */
set_page_pfmemalloc(struct page * page)2287 static inline void set_page_pfmemalloc(struct page *page)
2288 {
2289 	page->lru.next = (void *)BIT(1);
2290 }
2291 
clear_page_pfmemalloc(struct page * page)2292 static inline void clear_page_pfmemalloc(struct page *page)
2293 {
2294 	page->lru.next = NULL;
2295 }
2296 
2297 /*
2298  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2299  */
2300 extern void pagefault_out_of_memory(void);
2301 
2302 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2303 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2304 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2305 
2306 /*
2307  * Parameter block passed down to zap_pte_range in exceptional cases.
2308  */
2309 struct zap_details {
2310 	struct folio *single_folio;	/* Locked folio to be unmapped */
2311 	bool even_cows;			/* Zap COWed private pages too? */
2312 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2313 };
2314 
2315 /*
2316  * Whether to drop the pte markers, for example, the uffd-wp information for
2317  * file-backed memory.  This should only be specified when we will completely
2318  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2319  * default, the flag is not set.
2320  */
2321 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2322 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2323 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2324 
2325 #ifdef CONFIG_SCHED_MM_CID
2326 void sched_mm_cid_before_execve(struct task_struct *t);
2327 void sched_mm_cid_after_execve(struct task_struct *t);
2328 void sched_mm_cid_fork(struct task_struct *t);
2329 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2330 static inline int task_mm_cid(struct task_struct *t)
2331 {
2332 	return t->mm_cid;
2333 }
2334 #else
sched_mm_cid_before_execve(struct task_struct * t)2335 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2336 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2337 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2338 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2339 static inline int task_mm_cid(struct task_struct *t)
2340 {
2341 	/*
2342 	 * Use the processor id as a fall-back when the mm cid feature is
2343 	 * disabled. This provides functional per-cpu data structure accesses
2344 	 * in user-space, althrough it won't provide the memory usage benefits.
2345 	 */
2346 	return raw_smp_processor_id();
2347 }
2348 #endif
2349 
2350 #ifdef CONFIG_MMU
2351 extern bool can_do_mlock(void);
2352 #else
can_do_mlock(void)2353 static inline bool can_do_mlock(void) { return false; }
2354 #endif
2355 extern int user_shm_lock(size_t, struct ucounts *);
2356 extern void user_shm_unlock(size_t, struct ucounts *);
2357 
2358 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2359 			     pte_t pte);
2360 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2361 			     pte_t pte);
2362 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2363 				pmd_t pmd);
2364 
2365 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2366 		  unsigned long size);
2367 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2368 			   unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2369 static inline void zap_vma_pages(struct vm_area_struct *vma)
2370 {
2371 	zap_page_range_single(vma, vma->vm_start,
2372 			      vma->vm_end - vma->vm_start, NULL);
2373 }
2374 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2375 		struct vm_area_struct *start_vma, unsigned long start,
2376 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2377 
2378 struct mmu_notifier_range;
2379 
2380 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2381 		unsigned long end, unsigned long floor, unsigned long ceiling);
2382 int
2383 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2384 int follow_pte(struct mm_struct *mm, unsigned long address,
2385 	       pte_t **ptepp, spinlock_t **ptlp);
2386 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2387 	unsigned long *pfn);
2388 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2389 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2390 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2391 			void *buf, int len, int write);
2392 
2393 extern void truncate_pagecache(struct inode *inode, loff_t new);
2394 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2395 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2396 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2397 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2398 
2399 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2400 		unsigned long address, struct pt_regs *regs);
2401 
2402 #ifdef CONFIG_MMU
2403 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2404 				  unsigned long address, unsigned int flags,
2405 				  struct pt_regs *regs);
2406 extern int fixup_user_fault(struct mm_struct *mm,
2407 			    unsigned long address, unsigned int fault_flags,
2408 			    bool *unlocked);
2409 void unmap_mapping_pages(struct address_space *mapping,
2410 		pgoff_t start, pgoff_t nr, bool even_cows);
2411 void unmap_mapping_range(struct address_space *mapping,
2412 		loff_t const holebegin, loff_t const holelen, int even_cows);
2413 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2414 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2415 					 unsigned long address, unsigned int flags,
2416 					 struct pt_regs *regs)
2417 {
2418 	/* should never happen if there's no MMU */
2419 	BUG();
2420 	return VM_FAULT_SIGBUS;
2421 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2422 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2423 		unsigned int fault_flags, bool *unlocked)
2424 {
2425 	/* should never happen if there's no MMU */
2426 	BUG();
2427 	return -EFAULT;
2428 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2429 static inline void unmap_mapping_pages(struct address_space *mapping,
2430 		pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2431 static inline void unmap_mapping_range(struct address_space *mapping,
2432 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2433 #endif
2434 
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2435 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2436 		loff_t const holebegin, loff_t const holelen)
2437 {
2438 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2439 }
2440 
2441 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2442 						unsigned long addr);
2443 
2444 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2445 		void *buf, int len, unsigned int gup_flags);
2446 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2447 		void *buf, int len, unsigned int gup_flags);
2448 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2449 			      void *buf, int len, unsigned int gup_flags);
2450 
2451 long get_user_pages_remote(struct mm_struct *mm,
2452 			   unsigned long start, unsigned long nr_pages,
2453 			   unsigned int gup_flags, struct page **pages,
2454 			   int *locked);
2455 long pin_user_pages_remote(struct mm_struct *mm,
2456 			   unsigned long start, unsigned long nr_pages,
2457 			   unsigned int gup_flags, struct page **pages,
2458 			   int *locked);
2459 
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2460 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2461 						    unsigned long addr,
2462 						    int gup_flags,
2463 						    struct vm_area_struct **vmap)
2464 {
2465 	struct page *page;
2466 	struct vm_area_struct *vma;
2467 	int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2468 
2469 	if (got < 0)
2470 		return ERR_PTR(got);
2471 	if (got == 0)
2472 		return NULL;
2473 
2474 	vma = vma_lookup(mm, addr);
2475 	if (WARN_ON_ONCE(!vma)) {
2476 		put_page(page);
2477 		return ERR_PTR(-EINVAL);
2478 	}
2479 
2480 	*vmap = vma;
2481 	return page;
2482 }
2483 
2484 long get_user_pages(unsigned long start, unsigned long nr_pages,
2485 		    unsigned int gup_flags, struct page **pages);
2486 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2487 		    unsigned int gup_flags, struct page **pages);
2488 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2489 		    struct page **pages, unsigned int gup_flags);
2490 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2491 		    struct page **pages, unsigned int gup_flags);
2492 
2493 int get_user_pages_fast(unsigned long start, int nr_pages,
2494 			unsigned int gup_flags, struct page **pages);
2495 int pin_user_pages_fast(unsigned long start, int nr_pages,
2496 			unsigned int gup_flags, struct page **pages);
2497 void folio_add_pin(struct folio *folio);
2498 
2499 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2500 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2501 			struct task_struct *task, bool bypass_rlim);
2502 
2503 struct kvec;
2504 struct page *get_dump_page(unsigned long addr);
2505 
2506 bool folio_mark_dirty(struct folio *folio);
2507 bool set_page_dirty(struct page *page);
2508 int set_page_dirty_lock(struct page *page);
2509 
2510 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2511 
2512 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2513 		unsigned long old_addr, struct vm_area_struct *new_vma,
2514 		unsigned long new_addr, unsigned long len,
2515 		bool need_rmap_locks);
2516 
2517 /*
2518  * Flags used by change_protection().  For now we make it a bitmap so
2519  * that we can pass in multiple flags just like parameters.  However
2520  * for now all the callers are only use one of the flags at the same
2521  * time.
2522  */
2523 /*
2524  * Whether we should manually check if we can map individual PTEs writable,
2525  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2526  * PTEs automatically in a writable mapping.
2527  */
2528 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2529 /* Whether this protection change is for NUMA hints */
2530 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2531 /* Whether this change is for write protecting */
2532 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2533 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2534 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2535 					    MM_CP_UFFD_WP_RESOLVE)
2536 
2537 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2538 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
vma_wants_manual_pte_write_upgrade(struct vm_area_struct * vma)2539 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2540 {
2541 	/*
2542 	 * We want to check manually if we can change individual PTEs writable
2543 	 * if we can't do that automatically for all PTEs in a mapping. For
2544 	 * private mappings, that's always the case when we have write
2545 	 * permissions as we properly have to handle COW.
2546 	 */
2547 	if (vma->vm_flags & VM_SHARED)
2548 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2549 	return !!(vma->vm_flags & VM_WRITE);
2550 
2551 }
2552 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2553 			     pte_t pte);
2554 extern long change_protection(struct mmu_gather *tlb,
2555 			      struct vm_area_struct *vma, unsigned long start,
2556 			      unsigned long end, unsigned long cp_flags);
2557 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2558 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2559 	  unsigned long start, unsigned long end, unsigned long newflags);
2560 
2561 /*
2562  * doesn't attempt to fault and will return short.
2563  */
2564 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2565 			     unsigned int gup_flags, struct page **pages);
2566 
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2567 static inline bool get_user_page_fast_only(unsigned long addr,
2568 			unsigned int gup_flags, struct page **pagep)
2569 {
2570 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2571 }
2572 /*
2573  * per-process(per-mm_struct) statistics.
2574  */
get_mm_counter(struct mm_struct * mm,int member)2575 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2576 {
2577 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2578 }
2579 
get_mm_counter_sum(struct mm_struct * mm,int member)2580 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2581 {
2582 	return percpu_counter_sum_positive(&mm->rss_stat[member]);
2583 }
2584 
2585 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2586 
add_mm_counter(struct mm_struct * mm,int member,long value)2587 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2588 {
2589 	percpu_counter_add(&mm->rss_stat[member], value);
2590 
2591 	mm_trace_rss_stat(mm, member);
2592 }
2593 
inc_mm_counter(struct mm_struct * mm,int member)2594 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2595 {
2596 	percpu_counter_inc(&mm->rss_stat[member]);
2597 
2598 	mm_trace_rss_stat(mm, member);
2599 }
2600 
dec_mm_counter(struct mm_struct * mm,int member)2601 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2602 {
2603 	percpu_counter_dec(&mm->rss_stat[member]);
2604 
2605 	mm_trace_rss_stat(mm, member);
2606 }
2607 
2608 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2609 static inline int mm_counter_file(struct page *page)
2610 {
2611 	if (PageSwapBacked(page))
2612 		return MM_SHMEMPAGES;
2613 	return MM_FILEPAGES;
2614 }
2615 
mm_counter(struct page * page)2616 static inline int mm_counter(struct page *page)
2617 {
2618 	if (PageAnon(page))
2619 		return MM_ANONPAGES;
2620 	return mm_counter_file(page);
2621 }
2622 
get_mm_rss(struct mm_struct * mm)2623 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2624 {
2625 	return get_mm_counter(mm, MM_FILEPAGES) +
2626 		get_mm_counter(mm, MM_ANONPAGES) +
2627 		get_mm_counter(mm, MM_SHMEMPAGES);
2628 }
2629 
get_mm_hiwater_rss(struct mm_struct * mm)2630 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2631 {
2632 	return max(mm->hiwater_rss, get_mm_rss(mm));
2633 }
2634 
get_mm_hiwater_vm(struct mm_struct * mm)2635 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2636 {
2637 	return max(mm->hiwater_vm, mm->total_vm);
2638 }
2639 
update_hiwater_rss(struct mm_struct * mm)2640 static inline void update_hiwater_rss(struct mm_struct *mm)
2641 {
2642 	unsigned long _rss = get_mm_rss(mm);
2643 
2644 	if ((mm)->hiwater_rss < _rss)
2645 		(mm)->hiwater_rss = _rss;
2646 }
2647 
update_hiwater_vm(struct mm_struct * mm)2648 static inline void update_hiwater_vm(struct mm_struct *mm)
2649 {
2650 	if (mm->hiwater_vm < mm->total_vm)
2651 		mm->hiwater_vm = mm->total_vm;
2652 }
2653 
reset_mm_hiwater_rss(struct mm_struct * mm)2654 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2655 {
2656 	mm->hiwater_rss = get_mm_rss(mm);
2657 }
2658 
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2659 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2660 					 struct mm_struct *mm)
2661 {
2662 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2663 
2664 	if (*maxrss < hiwater_rss)
2665 		*maxrss = hiwater_rss;
2666 }
2667 
2668 #if defined(SPLIT_RSS_COUNTING)
2669 void sync_mm_rss(struct mm_struct *mm);
2670 #else
sync_mm_rss(struct mm_struct * mm)2671 static inline void sync_mm_rss(struct mm_struct *mm)
2672 {
2673 }
2674 #endif
2675 
2676 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2677 static inline int pte_special(pte_t pte)
2678 {
2679 	return 0;
2680 }
2681 
pte_mkspecial(pte_t pte)2682 static inline pte_t pte_mkspecial(pte_t pte)
2683 {
2684 	return pte;
2685 }
2686 #endif
2687 
2688 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2689 static inline int pte_devmap(pte_t pte)
2690 {
2691 	return 0;
2692 }
2693 #endif
2694 
2695 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2696 			       spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2697 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2698 				    spinlock_t **ptl)
2699 {
2700 	pte_t *ptep;
2701 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2702 	return ptep;
2703 }
2704 
2705 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2706 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2707 						unsigned long address)
2708 {
2709 	return 0;
2710 }
2711 #else
2712 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2713 #endif
2714 
2715 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2716 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2717 						unsigned long address)
2718 {
2719 	return 0;
2720 }
mm_inc_nr_puds(struct mm_struct * mm)2721 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2722 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2723 
2724 #else
2725 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2726 
mm_inc_nr_puds(struct mm_struct * mm)2727 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2728 {
2729 	if (mm_pud_folded(mm))
2730 		return;
2731 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2732 }
2733 
mm_dec_nr_puds(struct mm_struct * mm)2734 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2735 {
2736 	if (mm_pud_folded(mm))
2737 		return;
2738 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2739 }
2740 #endif
2741 
2742 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2743 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2744 						unsigned long address)
2745 {
2746 	return 0;
2747 }
2748 
mm_inc_nr_pmds(struct mm_struct * mm)2749 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2750 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2751 
2752 #else
2753 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2754 
mm_inc_nr_pmds(struct mm_struct * mm)2755 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2756 {
2757 	if (mm_pmd_folded(mm))
2758 		return;
2759 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2760 }
2761 
mm_dec_nr_pmds(struct mm_struct * mm)2762 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2763 {
2764 	if (mm_pmd_folded(mm))
2765 		return;
2766 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2767 }
2768 #endif
2769 
2770 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2771 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2772 {
2773 	atomic_long_set(&mm->pgtables_bytes, 0);
2774 }
2775 
mm_pgtables_bytes(const struct mm_struct * mm)2776 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2777 {
2778 	return atomic_long_read(&mm->pgtables_bytes);
2779 }
2780 
mm_inc_nr_ptes(struct mm_struct * mm)2781 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2782 {
2783 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2784 }
2785 
mm_dec_nr_ptes(struct mm_struct * mm)2786 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2787 {
2788 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2789 }
2790 #else
2791 
mm_pgtables_bytes_init(struct mm_struct * mm)2792 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2793 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2794 {
2795 	return 0;
2796 }
2797 
mm_inc_nr_ptes(struct mm_struct * mm)2798 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2799 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2800 #endif
2801 
2802 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2803 int __pte_alloc_kernel(pmd_t *pmd);
2804 
2805 #if defined(CONFIG_MMU)
2806 
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2807 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2808 		unsigned long address)
2809 {
2810 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2811 		NULL : p4d_offset(pgd, address);
2812 }
2813 
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2814 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2815 		unsigned long address)
2816 {
2817 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2818 		NULL : pud_offset(p4d, address);
2819 }
2820 
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2821 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2822 {
2823 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2824 		NULL: pmd_offset(pud, address);
2825 }
2826 #endif /* CONFIG_MMU */
2827 
virt_to_ptdesc(const void * x)2828 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2829 {
2830 	return page_ptdesc(virt_to_page(x));
2831 }
2832 
ptdesc_to_virt(const struct ptdesc * pt)2833 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2834 {
2835 	return page_to_virt(ptdesc_page(pt));
2836 }
2837 
ptdesc_address(const struct ptdesc * pt)2838 static inline void *ptdesc_address(const struct ptdesc *pt)
2839 {
2840 	return folio_address(ptdesc_folio(pt));
2841 }
2842 
pagetable_is_reserved(struct ptdesc * pt)2843 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2844 {
2845 	return folio_test_reserved(ptdesc_folio(pt));
2846 }
2847 
2848 /**
2849  * pagetable_alloc - Allocate pagetables
2850  * @gfp:    GFP flags
2851  * @order:  desired pagetable order
2852  *
2853  * pagetable_alloc allocates memory for page tables as well as a page table
2854  * descriptor to describe that memory.
2855  *
2856  * Return: The ptdesc describing the allocated page tables.
2857  */
pagetable_alloc(gfp_t gfp,unsigned int order)2858 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2859 {
2860 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2861 
2862 	return page_ptdesc(page);
2863 }
2864 
2865 /**
2866  * pagetable_free - Free pagetables
2867  * @pt:	The page table descriptor
2868  *
2869  * pagetable_free frees the memory of all page tables described by a page
2870  * table descriptor and the memory for the descriptor itself.
2871  */
pagetable_free(struct ptdesc * pt)2872 static inline void pagetable_free(struct ptdesc *pt)
2873 {
2874 	struct page *page = ptdesc_page(pt);
2875 
2876 	__free_pages(page, compound_order(page));
2877 }
2878 
2879 #if USE_SPLIT_PTE_PTLOCKS
2880 #if ALLOC_SPLIT_PTLOCKS
2881 void __init ptlock_cache_init(void);
2882 bool ptlock_alloc(struct ptdesc *ptdesc);
2883 void ptlock_free(struct ptdesc *ptdesc);
2884 
ptlock_ptr(struct ptdesc * ptdesc)2885 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2886 {
2887 	return ptdesc->ptl;
2888 }
2889 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2890 static inline void ptlock_cache_init(void)
2891 {
2892 }
2893 
ptlock_alloc(struct ptdesc * ptdesc)2894 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2895 {
2896 	return true;
2897 }
2898 
ptlock_free(struct ptdesc * ptdesc)2899 static inline void ptlock_free(struct ptdesc *ptdesc)
2900 {
2901 }
2902 
ptlock_ptr(struct ptdesc * ptdesc)2903 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2904 {
2905 	return &ptdesc->ptl;
2906 }
2907 #endif /* ALLOC_SPLIT_PTLOCKS */
2908 
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2909 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2910 {
2911 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2912 }
2913 
ptlock_init(struct ptdesc * ptdesc)2914 static inline bool ptlock_init(struct ptdesc *ptdesc)
2915 {
2916 	/*
2917 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2918 	 * with 0. Make sure nobody took it in use in between.
2919 	 *
2920 	 * It can happen if arch try to use slab for page table allocation:
2921 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2922 	 */
2923 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2924 	if (!ptlock_alloc(ptdesc))
2925 		return false;
2926 	spin_lock_init(ptlock_ptr(ptdesc));
2927 	return true;
2928 }
2929 
2930 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2931 /*
2932  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2933  */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2934 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2935 {
2936 	return &mm->page_table_lock;
2937 }
ptlock_cache_init(void)2938 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2939 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2940 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2941 #endif /* USE_SPLIT_PTE_PTLOCKS */
2942 
pagetable_pte_ctor(struct ptdesc * ptdesc)2943 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2944 {
2945 	struct folio *folio = ptdesc_folio(ptdesc);
2946 
2947 	if (!ptlock_init(ptdesc))
2948 		return false;
2949 	__folio_set_pgtable(folio);
2950 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2951 	return true;
2952 }
2953 
pagetable_pte_dtor(struct ptdesc * ptdesc)2954 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2955 {
2956 	struct folio *folio = ptdesc_folio(ptdesc);
2957 
2958 	ptlock_free(ptdesc);
2959 	__folio_clear_pgtable(folio);
2960 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2961 }
2962 
2963 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
pte_offset_map(pmd_t * pmd,unsigned long addr)2964 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2965 {
2966 	return __pte_offset_map(pmd, addr, NULL);
2967 }
2968 
2969 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2970 			unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)2971 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2972 			unsigned long addr, spinlock_t **ptlp)
2973 {
2974 	pte_t *pte;
2975 
2976 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2977 	return pte;
2978 }
2979 
2980 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2981 			unsigned long addr, spinlock_t **ptlp);
2982 
2983 #define pte_unmap_unlock(pte, ptl)	do {		\
2984 	spin_unlock(ptl);				\
2985 	pte_unmap(pte);					\
2986 } while (0)
2987 
2988 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2989 
2990 #define pte_alloc_map(mm, pmd, address)			\
2991 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2992 
2993 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2994 	(pte_alloc(mm, pmd) ?			\
2995 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2996 
2997 #define pte_alloc_kernel(pmd, address)			\
2998 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2999 		NULL: pte_offset_kernel(pmd, address))
3000 
3001 #if USE_SPLIT_PMD_PTLOCKS
3002 
pmd_pgtable_page(pmd_t * pmd)3003 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3004 {
3005 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3006 	return virt_to_page((void *)((unsigned long) pmd & mask));
3007 }
3008 
pmd_ptdesc(pmd_t * pmd)3009 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3010 {
3011 	return page_ptdesc(pmd_pgtable_page(pmd));
3012 }
3013 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3014 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3015 {
3016 	return ptlock_ptr(pmd_ptdesc(pmd));
3017 }
3018 
pmd_ptlock_init(struct ptdesc * ptdesc)3019 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3020 {
3021 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3022 	ptdesc->pmd_huge_pte = NULL;
3023 #endif
3024 	return ptlock_init(ptdesc);
3025 }
3026 
pmd_ptlock_free(struct ptdesc * ptdesc)3027 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3028 {
3029 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3030 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3031 #endif
3032 	ptlock_free(ptdesc);
3033 }
3034 
3035 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3036 
3037 #else
3038 
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3039 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3040 {
3041 	return &mm->page_table_lock;
3042 }
3043 
pmd_ptlock_init(struct ptdesc * ptdesc)3044 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
pmd_ptlock_free(struct ptdesc * ptdesc)3045 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3046 
3047 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3048 
3049 #endif
3050 
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3051 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3052 {
3053 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3054 	spin_lock(ptl);
3055 	return ptl;
3056 }
3057 
pagetable_pmd_ctor(struct ptdesc * ptdesc)3058 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3059 {
3060 	struct folio *folio = ptdesc_folio(ptdesc);
3061 
3062 	if (!pmd_ptlock_init(ptdesc))
3063 		return false;
3064 	__folio_set_pgtable(folio);
3065 	ptdesc_pmd_pts_init(ptdesc);
3066 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3067 	return true;
3068 }
3069 
pagetable_pmd_dtor(struct ptdesc * ptdesc)3070 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3071 {
3072 	struct folio *folio = ptdesc_folio(ptdesc);
3073 
3074 	pmd_ptlock_free(ptdesc);
3075 	__folio_clear_pgtable(folio);
3076 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3077 }
3078 
3079 /*
3080  * No scalability reason to split PUD locks yet, but follow the same pattern
3081  * as the PMD locks to make it easier if we decide to.  The VM should not be
3082  * considered ready to switch to split PUD locks yet; there may be places
3083  * which need to be converted from page_table_lock.
3084  */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3085 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3086 {
3087 	return &mm->page_table_lock;
3088 }
3089 
pud_lock(struct mm_struct * mm,pud_t * pud)3090 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3091 {
3092 	spinlock_t *ptl = pud_lockptr(mm, pud);
3093 
3094 	spin_lock(ptl);
3095 	return ptl;
3096 }
3097 
3098 extern void __init pagecache_init(void);
3099 extern void free_initmem(void);
3100 
3101 /*
3102  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3103  * into the buddy system. The freed pages will be poisoned with pattern
3104  * "poison" if it's within range [0, UCHAR_MAX].
3105  * Return pages freed into the buddy system.
3106  */
3107 extern unsigned long free_reserved_area(void *start, void *end,
3108 					int poison, const char *s);
3109 
3110 extern void adjust_managed_page_count(struct page *page, long count);
3111 
3112 extern void reserve_bootmem_region(phys_addr_t start,
3113 				   phys_addr_t end, int nid);
3114 
3115 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)3116 static inline void free_reserved_page(struct page *page)
3117 {
3118 	ClearPageReserved(page);
3119 	init_page_count(page);
3120 	__free_page(page);
3121 	adjust_managed_page_count(page, 1);
3122 }
3123 #define free_highmem_page(page) free_reserved_page(page)
3124 
mark_page_reserved(struct page * page)3125 static inline void mark_page_reserved(struct page *page)
3126 {
3127 	SetPageReserved(page);
3128 	adjust_managed_page_count(page, -1);
3129 }
3130 
free_reserved_ptdesc(struct ptdesc * pt)3131 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3132 {
3133 	free_reserved_page(ptdesc_page(pt));
3134 }
3135 
3136 /*
3137  * Default method to free all the __init memory into the buddy system.
3138  * The freed pages will be poisoned with pattern "poison" if it's within
3139  * range [0, UCHAR_MAX].
3140  * Return pages freed into the buddy system.
3141  */
free_initmem_default(int poison)3142 static inline unsigned long free_initmem_default(int poison)
3143 {
3144 	extern char __init_begin[], __init_end[];
3145 
3146 	return free_reserved_area(&__init_begin, &__init_end,
3147 				  poison, "unused kernel image (initmem)");
3148 }
3149 
get_num_physpages(void)3150 static inline unsigned long get_num_physpages(void)
3151 {
3152 	int nid;
3153 	unsigned long phys_pages = 0;
3154 
3155 	for_each_online_node(nid)
3156 		phys_pages += node_present_pages(nid);
3157 
3158 	return phys_pages;
3159 }
3160 
3161 /*
3162  * Using memblock node mappings, an architecture may initialise its
3163  * zones, allocate the backing mem_map and account for memory holes in an
3164  * architecture independent manner.
3165  *
3166  * An architecture is expected to register range of page frames backed by
3167  * physical memory with memblock_add[_node]() before calling
3168  * free_area_init() passing in the PFN each zone ends at. At a basic
3169  * usage, an architecture is expected to do something like
3170  *
3171  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3172  * 							 max_highmem_pfn};
3173  * for_each_valid_physical_page_range()
3174  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3175  * free_area_init(max_zone_pfns);
3176  */
3177 void free_area_init(unsigned long *max_zone_pfn);
3178 unsigned long node_map_pfn_alignment(void);
3179 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3180 						unsigned long end_pfn);
3181 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3182 						unsigned long end_pfn);
3183 extern void get_pfn_range_for_nid(unsigned int nid,
3184 			unsigned long *start_pfn, unsigned long *end_pfn);
3185 
3186 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3187 static inline int early_pfn_to_nid(unsigned long pfn)
3188 {
3189 	return 0;
3190 }
3191 #else
3192 /* please see mm/page_alloc.c */
3193 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3194 #endif
3195 
3196 extern void set_dma_reserve(unsigned long new_dma_reserve);
3197 extern void mem_init(void);
3198 extern void __init mmap_init(void);
3199 
3200 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3201 static inline void show_mem(void)
3202 {
3203 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3204 }
3205 extern long si_mem_available(void);
3206 extern void si_meminfo(struct sysinfo * val);
3207 extern void si_meminfo_node(struct sysinfo *val, int nid);
3208 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3209 extern unsigned long arch_reserved_kernel_pages(void);
3210 #endif
3211 
3212 extern __printf(3, 4)
3213 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3214 
3215 extern void setup_per_cpu_pageset(void);
3216 
3217 /* nommu.c */
3218 extern atomic_long_t mmap_pages_allocated;
3219 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3220 
3221 /* interval_tree.c */
3222 void vma_interval_tree_insert(struct vm_area_struct *node,
3223 			      struct rb_root_cached *root);
3224 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3225 				    struct vm_area_struct *prev,
3226 				    struct rb_root_cached *root);
3227 void vma_interval_tree_remove(struct vm_area_struct *node,
3228 			      struct rb_root_cached *root);
3229 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3230 				unsigned long start, unsigned long last);
3231 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3232 				unsigned long start, unsigned long last);
3233 
3234 #define vma_interval_tree_foreach(vma, root, start, last)		\
3235 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3236 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3237 
3238 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3239 				   struct rb_root_cached *root);
3240 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3241 				   struct rb_root_cached *root);
3242 struct anon_vma_chain *
3243 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3244 				  unsigned long start, unsigned long last);
3245 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3246 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3247 #ifdef CONFIG_DEBUG_VM_RB
3248 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3249 #endif
3250 
3251 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3252 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3253 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3254 
3255 /* mmap.c */
3256 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3257 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3258 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3259 		      struct vm_area_struct *next);
3260 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3261 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3262 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3263 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3264 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3265 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3266 	struct anon_vma_name *);
3267 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3268 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3269 		       unsigned long addr, int new_below);
3270 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3271 			 unsigned long addr, int new_below);
3272 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3273 extern void unlink_file_vma(struct vm_area_struct *);
3274 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3275 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3276 	bool *need_rmap_locks);
3277 extern void exit_mmap(struct mm_struct *);
3278 
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3279 static inline int check_data_rlimit(unsigned long rlim,
3280 				    unsigned long new,
3281 				    unsigned long start,
3282 				    unsigned long end_data,
3283 				    unsigned long start_data)
3284 {
3285 	if (rlim < RLIM_INFINITY) {
3286 		if (((new - start) + (end_data - start_data)) > rlim)
3287 			return -ENOSPC;
3288 	}
3289 
3290 	return 0;
3291 }
3292 
3293 extern int mm_take_all_locks(struct mm_struct *mm);
3294 extern void mm_drop_all_locks(struct mm_struct *mm);
3295 
3296 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3297 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3298 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3299 extern struct file *get_task_exe_file(struct task_struct *task);
3300 
3301 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3302 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3303 
3304 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3305 				   const struct vm_special_mapping *sm);
3306 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3307 				   unsigned long addr, unsigned long len,
3308 				   unsigned long flags,
3309 				   const struct vm_special_mapping *spec);
3310 /* This is an obsolete alternative to _install_special_mapping. */
3311 extern int install_special_mapping(struct mm_struct *mm,
3312 				   unsigned long addr, unsigned long len,
3313 				   unsigned long flags, struct page **pages);
3314 
3315 unsigned long randomize_stack_top(unsigned long stack_top);
3316 unsigned long randomize_page(unsigned long start, unsigned long range);
3317 
3318 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3319 
3320 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3321 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3322 	struct list_head *uf);
3323 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3324 	unsigned long len, unsigned long prot, unsigned long flags,
3325 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3326 	struct list_head *uf);
3327 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3328 			 unsigned long start, size_t len, struct list_head *uf,
3329 			 bool unlock);
3330 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3331 		     struct list_head *uf);
3332 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3333 
3334 #ifdef CONFIG_MMU
3335 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3336 			 unsigned long start, unsigned long end,
3337 			 struct list_head *uf, bool unlock);
3338 extern int __mm_populate(unsigned long addr, unsigned long len,
3339 			 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3340 static inline void mm_populate(unsigned long addr, unsigned long len)
3341 {
3342 	/* Ignore errors */
3343 	(void) __mm_populate(addr, len, 1);
3344 }
3345 #else
mm_populate(unsigned long addr,unsigned long len)3346 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3347 #endif
3348 
3349 /* These take the mm semaphore themselves */
3350 extern int __must_check vm_brk(unsigned long, unsigned long);
3351 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3352 extern int vm_munmap(unsigned long, size_t);
3353 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3354         unsigned long, unsigned long,
3355         unsigned long, unsigned long);
3356 
3357 struct vm_unmapped_area_info {
3358 #define VM_UNMAPPED_AREA_TOPDOWN 1
3359 #define VM_UNMAPPED_AREA_XPM 2
3360 	unsigned long flags;
3361 	unsigned long length;
3362 	unsigned long low_limit;
3363 	unsigned long high_limit;
3364 	unsigned long align_mask;
3365 	unsigned long align_offset;
3366 };
3367 
3368 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3369 
3370 /* truncate.c */
3371 extern void truncate_inode_pages(struct address_space *, loff_t);
3372 extern void truncate_inode_pages_range(struct address_space *,
3373 				       loff_t lstart, loff_t lend);
3374 extern void truncate_inode_pages_final(struct address_space *);
3375 
3376 /* generic vm_area_ops exported for stackable file systems */
3377 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3378 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3379 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3380 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3381 
3382 extern unsigned long stack_guard_gap;
3383 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3384 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3385 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3386 
3387 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3388 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3389 
3390 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3391 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3392 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3393 					     struct vm_area_struct **pprev);
3394 
3395 /*
3396  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3397  * NULL if none.  Assume start_addr < end_addr.
3398  */
3399 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3400 			unsigned long start_addr, unsigned long end_addr);
3401 
3402 /**
3403  * vma_lookup() - Find a VMA at a specific address
3404  * @mm: The process address space.
3405  * @addr: The user address.
3406  *
3407  * Return: The vm_area_struct at the given address, %NULL otherwise.
3408  */
3409 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3410 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3411 {
3412 	return mtree_load(&mm->mm_mt, addr);
3413 }
3414 
stack_guard_start_gap(struct vm_area_struct * vma)3415 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3416 {
3417 	if (vma->vm_flags & VM_GROWSDOWN)
3418 		return stack_guard_gap;
3419 
3420 	/* See reasoning around the VM_SHADOW_STACK definition */
3421 	if (vma->vm_flags & VM_SHADOW_STACK)
3422 		return PAGE_SIZE;
3423 
3424 	return 0;
3425 }
3426 
vm_start_gap(struct vm_area_struct * vma)3427 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3428 {
3429 	unsigned long gap = stack_guard_start_gap(vma);
3430 	unsigned long vm_start = vma->vm_start;
3431 
3432 	vm_start -= gap;
3433 	if (vm_start > vma->vm_start)
3434 		vm_start = 0;
3435 	return vm_start;
3436 }
3437 
vm_end_gap(struct vm_area_struct * vma)3438 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3439 {
3440 	unsigned long vm_end = vma->vm_end;
3441 
3442 	if (vma->vm_flags & VM_GROWSUP) {
3443 		vm_end += stack_guard_gap;
3444 		if (vm_end < vma->vm_end)
3445 			vm_end = -PAGE_SIZE;
3446 	}
3447 	return vm_end;
3448 }
3449 
vma_pages(struct vm_area_struct * vma)3450 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3451 {
3452 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3453 }
3454 
3455 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3456 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3457 				unsigned long vm_start, unsigned long vm_end)
3458 {
3459 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3460 
3461 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3462 		vma = NULL;
3463 
3464 	return vma;
3465 }
3466 
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3467 static inline bool range_in_vma(struct vm_area_struct *vma,
3468 				unsigned long start, unsigned long end)
3469 {
3470 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3471 }
3472 
3473 #ifdef CONFIG_MMU
3474 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3475 void vma_set_page_prot(struct vm_area_struct *vma);
3476 #else
vm_get_page_prot(unsigned long vm_flags)3477 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3478 {
3479 	return __pgprot(0);
3480 }
vma_set_page_prot(struct vm_area_struct * vma)3481 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3482 {
3483 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3484 }
3485 #endif
3486 
3487 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3488 
3489 #ifdef CONFIG_NUMA_BALANCING
3490 unsigned long change_prot_numa(struct vm_area_struct *vma,
3491 			unsigned long start, unsigned long end);
3492 #endif
3493 
3494 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3495 		unsigned long addr);
3496 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3497 			unsigned long pfn, unsigned long size, pgprot_t);
3498 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3499 		unsigned long pfn, unsigned long size, pgprot_t prot);
3500 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3501 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3502 			struct page **pages, unsigned long *num);
3503 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3504 				unsigned long num);
3505 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3506 				unsigned long num);
3507 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3508 			unsigned long pfn);
3509 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3510 			unsigned long pfn, pgprot_t pgprot);
3511 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3512 			pfn_t pfn);
3513 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3514 		unsigned long addr, pfn_t pfn);
3515 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3516 
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3517 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3518 				unsigned long addr, struct page *page)
3519 {
3520 	int err = vm_insert_page(vma, addr, page);
3521 
3522 	if (err == -ENOMEM)
3523 		return VM_FAULT_OOM;
3524 	if (err < 0 && err != -EBUSY)
3525 		return VM_FAULT_SIGBUS;
3526 
3527 	return VM_FAULT_NOPAGE;
3528 }
3529 
3530 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3531 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3532 				     unsigned long addr, unsigned long pfn,
3533 				     unsigned long size, pgprot_t prot)
3534 {
3535 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3536 }
3537 #endif
3538 
vmf_error(int err)3539 static inline vm_fault_t vmf_error(int err)
3540 {
3541 	if (err == -ENOMEM)
3542 		return VM_FAULT_OOM;
3543 	else if (err == -EHWPOISON)
3544 		return VM_FAULT_HWPOISON;
3545 	return VM_FAULT_SIGBUS;
3546 }
3547 
3548 /*
3549  * Convert errno to return value for ->page_mkwrite() calls.
3550  *
3551  * This should eventually be merged with vmf_error() above, but will need a
3552  * careful audit of all vmf_error() callers.
3553  */
vmf_fs_error(int err)3554 static inline vm_fault_t vmf_fs_error(int err)
3555 {
3556 	if (err == 0)
3557 		return VM_FAULT_LOCKED;
3558 	if (err == -EFAULT || err == -EAGAIN)
3559 		return VM_FAULT_NOPAGE;
3560 	if (err == -ENOMEM)
3561 		return VM_FAULT_OOM;
3562 	/* -ENOSPC, -EDQUOT, -EIO ... */
3563 	return VM_FAULT_SIGBUS;
3564 }
3565 
3566 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3567 			 unsigned int foll_flags);
3568 
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3569 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3570 {
3571 	if (vm_fault & VM_FAULT_OOM)
3572 		return -ENOMEM;
3573 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3574 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3575 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3576 		return -EFAULT;
3577 	return 0;
3578 }
3579 
3580 /*
3581  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3582  * a (NUMA hinting) fault is required.
3583  */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3584 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3585 					   unsigned int flags)
3586 {
3587 	/*
3588 	 * If callers don't want to honor NUMA hinting faults, no need to
3589 	 * determine if we would actually have to trigger a NUMA hinting fault.
3590 	 */
3591 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3592 		return true;
3593 
3594 	/*
3595 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3596 	 *
3597 	 * Requiring a fault here even for inaccessible VMAs would mean that
3598 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3599 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3600 	 */
3601 	return !vma_is_accessible(vma);
3602 }
3603 
3604 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3605 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3606 			       unsigned long size, pte_fn_t fn, void *data);
3607 extern int apply_to_existing_page_range(struct mm_struct *mm,
3608 				   unsigned long address, unsigned long size,
3609 				   pte_fn_t fn, void *data);
3610 
3611 #ifdef CONFIG_PAGE_POISONING
3612 extern void __kernel_poison_pages(struct page *page, int numpages);
3613 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3614 extern bool _page_poisoning_enabled_early;
3615 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3616 static inline bool page_poisoning_enabled(void)
3617 {
3618 	return _page_poisoning_enabled_early;
3619 }
3620 /*
3621  * For use in fast paths after init_mem_debugging() has run, or when a
3622  * false negative result is not harmful when called too early.
3623  */
page_poisoning_enabled_static(void)3624 static inline bool page_poisoning_enabled_static(void)
3625 {
3626 	return static_branch_unlikely(&_page_poisoning_enabled);
3627 }
kernel_poison_pages(struct page * page,int numpages)3628 static inline void kernel_poison_pages(struct page *page, int numpages)
3629 {
3630 	if (page_poisoning_enabled_static())
3631 		__kernel_poison_pages(page, numpages);
3632 }
kernel_unpoison_pages(struct page * page,int numpages)3633 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3634 {
3635 	if (page_poisoning_enabled_static())
3636 		__kernel_unpoison_pages(page, numpages);
3637 }
3638 #else
page_poisoning_enabled(void)3639 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3640 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3641 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3642 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3643 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3644 #endif
3645 
3646 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3647 static inline bool want_init_on_alloc(gfp_t flags)
3648 {
3649 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3650 				&init_on_alloc))
3651 		return true;
3652 	return flags & __GFP_ZERO;
3653 }
3654 
3655 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3656 static inline bool want_init_on_free(void)
3657 {
3658 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3659 				   &init_on_free);
3660 }
3661 
3662 extern bool _debug_pagealloc_enabled_early;
3663 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3664 
debug_pagealloc_enabled(void)3665 static inline bool debug_pagealloc_enabled(void)
3666 {
3667 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3668 		_debug_pagealloc_enabled_early;
3669 }
3670 
3671 /*
3672  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3673  * or when a false negative result is not harmful when called too early.
3674  */
debug_pagealloc_enabled_static(void)3675 static inline bool debug_pagealloc_enabled_static(void)
3676 {
3677 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3678 		return false;
3679 
3680 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3681 }
3682 
3683 /*
3684  * To support DEBUG_PAGEALLOC architecture must ensure that
3685  * __kernel_map_pages() never fails
3686  */
3687 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3688 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3689 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3690 {
3691 	if (debug_pagealloc_enabled_static())
3692 		__kernel_map_pages(page, numpages, 1);
3693 }
3694 
debug_pagealloc_unmap_pages(struct page * page,int numpages)3695 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3696 {
3697 	if (debug_pagealloc_enabled_static())
3698 		__kernel_map_pages(page, numpages, 0);
3699 }
3700 
3701 extern unsigned int _debug_guardpage_minorder;
3702 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3703 
debug_guardpage_minorder(void)3704 static inline unsigned int debug_guardpage_minorder(void)
3705 {
3706 	return _debug_guardpage_minorder;
3707 }
3708 
debug_guardpage_enabled(void)3709 static inline bool debug_guardpage_enabled(void)
3710 {
3711 	return static_branch_unlikely(&_debug_guardpage_enabled);
3712 }
3713 
page_is_guard(struct page * page)3714 static inline bool page_is_guard(struct page *page)
3715 {
3716 	if (!debug_guardpage_enabled())
3717 		return false;
3718 
3719 	return PageGuard(page);
3720 }
3721 
3722 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3723 		      int migratetype);
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3724 static inline bool set_page_guard(struct zone *zone, struct page *page,
3725 				  unsigned int order, int migratetype)
3726 {
3727 	if (!debug_guardpage_enabled())
3728 		return false;
3729 	return __set_page_guard(zone, page, order, migratetype);
3730 }
3731 
3732 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3733 			int migratetype);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3734 static inline void clear_page_guard(struct zone *zone, struct page *page,
3735 				    unsigned int order, int migratetype)
3736 {
3737 	if (!debug_guardpage_enabled())
3738 		return;
3739 	__clear_page_guard(zone, page, order, migratetype);
3740 }
3741 
3742 #else	/* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3743 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3744 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3745 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3746 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3747 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3748 static inline bool set_page_guard(struct zone *zone, struct page *page,
3749 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3750 static inline void clear_page_guard(struct zone *zone, struct page *page,
3751 				unsigned int order, int migratetype) {}
3752 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3753 
3754 #ifdef __HAVE_ARCH_GATE_AREA
3755 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3756 extern int in_gate_area_no_mm(unsigned long addr);
3757 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3758 #else
get_gate_vma(struct mm_struct * mm)3759 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3760 {
3761 	return NULL;
3762 }
in_gate_area_no_mm(unsigned long addr)3763 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3764 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3765 {
3766 	return 0;
3767 }
3768 #endif	/* __HAVE_ARCH_GATE_AREA */
3769 
3770 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3771 
3772 #ifdef CONFIG_SYSCTL
3773 extern int sysctl_drop_caches;
3774 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3775 		loff_t *);
3776 #endif
3777 
3778 void drop_slab(void);
3779 
3780 #ifndef CONFIG_MMU
3781 #define randomize_va_space 0
3782 #else
3783 extern int randomize_va_space;
3784 #endif
3785 
3786 const char * arch_vma_name(struct vm_area_struct *vma);
3787 #ifdef CONFIG_MMU
3788 void print_vma_addr(char *prefix, unsigned long rip);
3789 #else
print_vma_addr(char * prefix,unsigned long rip)3790 static inline void print_vma_addr(char *prefix, unsigned long rip)
3791 {
3792 }
3793 #endif
3794 
3795 void *sparse_buffer_alloc(unsigned long size);
3796 struct page * __populate_section_memmap(unsigned long pfn,
3797 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3798 		struct dev_pagemap *pgmap);
3799 void pmd_init(void *addr);
3800 void pud_init(void *addr);
3801 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3802 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3803 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3804 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3805 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3806 			    struct vmem_altmap *altmap, struct page *reuse);
3807 void *vmemmap_alloc_block(unsigned long size, int node);
3808 struct vmem_altmap;
3809 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3810 			      struct vmem_altmap *altmap);
3811 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3812 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3813 		     unsigned long addr, unsigned long next);
3814 int vmemmap_check_pmd(pmd_t *pmd, int node,
3815 		      unsigned long addr, unsigned long next);
3816 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3817 			       int node, struct vmem_altmap *altmap);
3818 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3819 			       int node, struct vmem_altmap *altmap);
3820 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3821 		struct vmem_altmap *altmap);
3822 void vmemmap_populate_print_last(void);
3823 #ifdef CONFIG_MEMORY_HOTPLUG
3824 void vmemmap_free(unsigned long start, unsigned long end,
3825 		struct vmem_altmap *altmap);
3826 #endif
3827 
3828 #define VMEMMAP_RESERVE_NR	2
3829 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3830 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3831 					  struct dev_pagemap *pgmap)
3832 {
3833 	unsigned long nr_pages;
3834 	unsigned long nr_vmemmap_pages;
3835 
3836 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3837 		return false;
3838 
3839 	nr_pages = pgmap_vmemmap_nr(pgmap);
3840 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3841 	/*
3842 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3843 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3844 	 */
3845 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3846 }
3847 /*
3848  * If we don't have an architecture override, use the generic rule
3849  */
3850 #ifndef vmemmap_can_optimize
3851 #define vmemmap_can_optimize __vmemmap_can_optimize
3852 #endif
3853 
3854 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3855 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3856 					   struct dev_pagemap *pgmap)
3857 {
3858 	return false;
3859 }
3860 #endif
3861 
3862 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3863 				  unsigned long nr_pages);
3864 
3865 enum mf_flags {
3866 	MF_COUNT_INCREASED = 1 << 0,
3867 	MF_ACTION_REQUIRED = 1 << 1,
3868 	MF_MUST_KILL = 1 << 2,
3869 	MF_SOFT_OFFLINE = 1 << 3,
3870 	MF_UNPOISON = 1 << 4,
3871 	MF_SW_SIMULATED = 1 << 5,
3872 	MF_NO_RETRY = 1 << 6,
3873 };
3874 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3875 		      unsigned long count, int mf_flags);
3876 extern int memory_failure(unsigned long pfn, int flags);
3877 extern void memory_failure_queue_kick(int cpu);
3878 extern int unpoison_memory(unsigned long pfn);
3879 extern void shake_page(struct page *p);
3880 extern atomic_long_t num_poisoned_pages __read_mostly;
3881 extern int soft_offline_page(unsigned long pfn, int flags);
3882 #ifdef CONFIG_MEMORY_FAILURE
3883 /*
3884  * Sysfs entries for memory failure handling statistics.
3885  */
3886 extern const struct attribute_group memory_failure_attr_group;
3887 extern void memory_failure_queue(unsigned long pfn, int flags);
3888 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3889 					bool *migratable_cleared);
3890 void num_poisoned_pages_inc(unsigned long pfn);
3891 void num_poisoned_pages_sub(unsigned long pfn, long i);
3892 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3893 #else
memory_failure_queue(unsigned long pfn,int flags)3894 static inline void memory_failure_queue(unsigned long pfn, int flags)
3895 {
3896 }
3897 
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3898 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3899 					bool *migratable_cleared)
3900 {
3901 	return 0;
3902 }
3903 
num_poisoned_pages_inc(unsigned long pfn)3904 static inline void num_poisoned_pages_inc(unsigned long pfn)
3905 {
3906 }
3907 
num_poisoned_pages_sub(unsigned long pfn,long i)3908 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3909 {
3910 }
3911 #endif
3912 
3913 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3914 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3915 		     struct vm_area_struct *vma, struct list_head *to_kill,
3916 		     unsigned long ksm_addr);
3917 #endif
3918 
3919 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3920 extern void memblk_nr_poison_inc(unsigned long pfn);
3921 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3922 #else
memblk_nr_poison_inc(unsigned long pfn)3923 static inline void memblk_nr_poison_inc(unsigned long pfn)
3924 {
3925 }
3926 
memblk_nr_poison_sub(unsigned long pfn,long i)3927 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3928 {
3929 }
3930 #endif
3931 
3932 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3933 static inline int arch_memory_failure(unsigned long pfn, int flags)
3934 {
3935 	return -ENXIO;
3936 }
3937 #endif
3938 
3939 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3940 static inline bool arch_is_platform_page(u64 paddr)
3941 {
3942 	return false;
3943 }
3944 #endif
3945 
3946 /*
3947  * Error handlers for various types of pages.
3948  */
3949 enum mf_result {
3950 	MF_IGNORED,	/* Error: cannot be handled */
3951 	MF_FAILED,	/* Error: handling failed */
3952 	MF_DELAYED,	/* Will be handled later */
3953 	MF_RECOVERED,	/* Successfully recovered */
3954 };
3955 
3956 enum mf_action_page_type {
3957 	MF_MSG_KERNEL,
3958 	MF_MSG_KERNEL_HIGH_ORDER,
3959 	MF_MSG_SLAB,
3960 	MF_MSG_DIFFERENT_COMPOUND,
3961 	MF_MSG_HUGE,
3962 	MF_MSG_FREE_HUGE,
3963 	MF_MSG_UNMAP_FAILED,
3964 	MF_MSG_DIRTY_SWAPCACHE,
3965 	MF_MSG_CLEAN_SWAPCACHE,
3966 	MF_MSG_DIRTY_MLOCKED_LRU,
3967 	MF_MSG_CLEAN_MLOCKED_LRU,
3968 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3969 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3970 	MF_MSG_DIRTY_LRU,
3971 	MF_MSG_CLEAN_LRU,
3972 	MF_MSG_TRUNCATED_LRU,
3973 	MF_MSG_BUDDY,
3974 	MF_MSG_DAX,
3975 	MF_MSG_UNSPLIT_THP,
3976 	MF_MSG_UNKNOWN,
3977 };
3978 
3979 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3980 extern void clear_huge_page(struct page *page,
3981 			    unsigned long addr_hint,
3982 			    unsigned int pages_per_huge_page);
3983 int copy_user_large_folio(struct folio *dst, struct folio *src,
3984 			  unsigned long addr_hint,
3985 			  struct vm_area_struct *vma);
3986 long copy_folio_from_user(struct folio *dst_folio,
3987 			   const void __user *usr_src,
3988 			   bool allow_pagefault);
3989 
3990 /**
3991  * vma_is_special_huge - Are transhuge page-table entries considered special?
3992  * @vma: Pointer to the struct vm_area_struct to consider
3993  *
3994  * Whether transhuge page-table entries are considered "special" following
3995  * the definition in vm_normal_page().
3996  *
3997  * Return: true if transhuge page-table entries should be considered special,
3998  * false otherwise.
3999  */
vma_is_special_huge(const struct vm_area_struct * vma)4000 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4001 {
4002 	return vma_is_dax(vma) || (vma->vm_file &&
4003 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4004 }
4005 
4006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4007 
4008 #if MAX_NUMNODES > 1
4009 void __init setup_nr_node_ids(void);
4010 #else
setup_nr_node_ids(void)4011 static inline void setup_nr_node_ids(void) {}
4012 #endif
4013 
4014 extern int memcmp_pages(struct page *page1, struct page *page2);
4015 
pages_identical(struct page * page1,struct page * page2)4016 static inline int pages_identical(struct page *page1, struct page *page2)
4017 {
4018 	return !memcmp_pages(page1, page2);
4019 }
4020 
4021 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4022 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4023 						pgoff_t first_index, pgoff_t nr,
4024 						pgoff_t bitmap_pgoff,
4025 						unsigned long *bitmap,
4026 						pgoff_t *start,
4027 						pgoff_t *end);
4028 
4029 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4030 				      pgoff_t first_index, pgoff_t nr);
4031 #endif
4032 
4033 extern int sysctl_nr_trim_pages;
4034 
4035 #ifdef CONFIG_PRINTK
4036 void mem_dump_obj(void *object);
4037 #else
mem_dump_obj(void * object)4038 static inline void mem_dump_obj(void *object) {}
4039 #endif
4040 
4041 /**
4042  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
4043  * @seals: the seals to check
4044  * @vma: the vma to operate on
4045  *
4046  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
4047  * the vma flags.  Return 0 if check pass, or <0 for errors.
4048  */
seal_check_future_write(int seals,struct vm_area_struct * vma)4049 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
4050 {
4051 	if (seals & F_SEAL_FUTURE_WRITE) {
4052 		/*
4053 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4054 		 * "future write" seal active.
4055 		 */
4056 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4057 			return -EPERM;
4058 
4059 		/*
4060 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
4061 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4062 		 * revert protections on such mappings. Do this only for shared
4063 		 * mappings. For private mappings, don't need to mask
4064 		 * VM_MAYWRITE as we still want them to be COW-writable.
4065 		 */
4066 		if (vma->vm_flags & VM_SHARED)
4067 			vm_flags_clear(vma, VM_MAYWRITE);
4068 	}
4069 
4070 	return 0;
4071 }
4072 
4073 #ifdef CONFIG_ANON_VMA_NAME
4074 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4075 			  unsigned long len_in,
4076 			  struct anon_vma_name *anon_name);
4077 #else
4078 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4079 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4080 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4081 	return 0;
4082 }
4083 #endif
4084 
4085 #ifdef CONFIG_UNACCEPTED_MEMORY
4086 
4087 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4088 void accept_memory(phys_addr_t start, phys_addr_t end);
4089 
4090 #else
4091 
range_contains_unaccepted_memory(phys_addr_t start,phys_addr_t end)4092 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4093 						    phys_addr_t end)
4094 {
4095 	return false;
4096 }
4097 
accept_memory(phys_addr_t start,phys_addr_t end)4098 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4099 {
4100 }
4101 
4102 #endif
4103 
4104 #endif /* _LINUX_MM_H */
4105