1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39
40 extern int sysctl_page_lock_unfairness;
41
42 void mm_core_init(void);
43 void init_mm_internals(void);
44
45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47
set_max_mapnr(unsigned long limit)48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 max_mapnr = limit;
51 }
52 #else
set_max_mapnr(unsigned long limit)53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55
56 extern atomic_long_t _totalram_pages;
totalram_pages(void)57 static inline unsigned long totalram_pages(void)
58 {
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61
totalram_pages_inc(void)62 static inline void totalram_pages_inc(void)
63 {
64 atomic_long_inc(&_totalram_pages);
65 }
66
totalram_pages_dec(void)67 static inline void totalram_pages_dec(void)
68 {
69 atomic_long_dec(&_totalram_pages);
70 }
71
totalram_pages_add(long count)72 static inline void totalram_pages_add(long count)
73 {
74 atomic_long_add(count, &_totalram_pages);
75 }
76
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97
98 #ifndef PHYSMEM_END
99 # define PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
100 #endif
101
102 #include <asm/page.h>
103 #include <asm/processor.h>
104
105 #ifndef __pa_symbol
106 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
107 #endif
108
109 #ifndef page_to_virt
110 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
111 #endif
112
113 #ifndef lm_alias
114 #define lm_alias(x) __va(__pa_symbol(x))
115 #endif
116
117 /*
118 * To prevent common memory management code establishing
119 * a zero page mapping on a read fault.
120 * This macro should be defined within <asm/pgtable.h>.
121 * s390 does this to prevent multiplexing of hardware bits
122 * related to the physical page in case of virtualization.
123 */
124 #ifndef mm_forbids_zeropage
125 #define mm_forbids_zeropage(X) (0)
126 #endif
127
128 /*
129 * On some architectures it is expensive to call memset() for small sizes.
130 * If an architecture decides to implement their own version of
131 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
132 * define their own version of this macro in <asm/pgtable.h>
133 */
134 #if BITS_PER_LONG == 64
135 /* This function must be updated when the size of struct page grows above 96
136 * or reduces below 56. The idea that compiler optimizes out switch()
137 * statement, and only leaves move/store instructions. Also the compiler can
138 * combine write statements if they are both assignments and can be reordered,
139 * this can result in several of the writes here being dropped.
140 */
141 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)142 static inline void __mm_zero_struct_page(struct page *page)
143 {
144 unsigned long *_pp = (void *)page;
145
146 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
147 BUILD_BUG_ON(sizeof(struct page) & 7);
148 BUILD_BUG_ON(sizeof(struct page) < 56);
149 BUILD_BUG_ON(sizeof(struct page) > 96);
150
151 switch (sizeof(struct page)) {
152 case 96:
153 _pp[11] = 0;
154 fallthrough;
155 case 88:
156 _pp[10] = 0;
157 fallthrough;
158 case 80:
159 _pp[9] = 0;
160 fallthrough;
161 case 72:
162 _pp[8] = 0;
163 fallthrough;
164 case 64:
165 _pp[7] = 0;
166 fallthrough;
167 case 56:
168 _pp[6] = 0;
169 _pp[5] = 0;
170 _pp[4] = 0;
171 _pp[3] = 0;
172 _pp[2] = 0;
173 _pp[1] = 0;
174 _pp[0] = 0;
175 }
176 }
177 #else
178 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
179 #endif
180
181 /*
182 * Default maximum number of active map areas, this limits the number of vmas
183 * per mm struct. Users can overwrite this number by sysctl but there is a
184 * problem.
185 *
186 * When a program's coredump is generated as ELF format, a section is created
187 * per a vma. In ELF, the number of sections is represented in unsigned short.
188 * This means the number of sections should be smaller than 65535 at coredump.
189 * Because the kernel adds some informative sections to a image of program at
190 * generating coredump, we need some margin. The number of extra sections is
191 * 1-3 now and depends on arch. We use "5" as safe margin, here.
192 *
193 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
194 * not a hard limit any more. Although some userspace tools can be surprised by
195 * that.
196 */
197 #define MAPCOUNT_ELF_CORE_MARGIN (5)
198 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
199
200 extern int sysctl_max_map_count;
201
202 extern unsigned long sysctl_user_reserve_kbytes;
203 extern unsigned long sysctl_admin_reserve_kbytes;
204
205 extern int sysctl_overcommit_memory;
206 extern int sysctl_overcommit_ratio;
207 extern unsigned long sysctl_overcommit_kbytes;
208
209 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
211 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
213 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
214 loff_t *);
215
216 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
217 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
218 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
219 #else
220 #define nth_page(page,n) ((page) + (n))
221 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
222 #endif
223
224 /* to align the pointer to the (next) page boundary */
225 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
226
227 /* to align the pointer to the (prev) page boundary */
228 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
229
230 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
231 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
232
233 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
lru_to_folio(struct list_head * head)234 static inline struct folio *lru_to_folio(struct list_head *head)
235 {
236 return list_entry((head)->prev, struct folio, lru);
237 }
238
239 void setup_initial_init_mm(void *start_code, void *end_code,
240 void *end_data, void *brk);
241
242 /*
243 * Linux kernel virtual memory manager primitives.
244 * The idea being to have a "virtual" mm in the same way
245 * we have a virtual fs - giving a cleaner interface to the
246 * mm details, and allowing different kinds of memory mappings
247 * (from shared memory to executable loading to arbitrary
248 * mmap() functions).
249 */
250
251 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
252 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
253 void vm_area_free(struct vm_area_struct *);
254 /* Use only if VMA has no other users */
255 void __vm_area_free(struct vm_area_struct *vma);
256
257 #ifndef CONFIG_MMU
258 extern struct rb_root nommu_region_tree;
259 extern struct rw_semaphore nommu_region_sem;
260
261 extern unsigned int kobjsize(const void *objp);
262 #endif
263
264 /*
265 * vm_flags in vm_area_struct, see mm_types.h.
266 * When changing, update also include/trace/events/mmflags.h
267 */
268 #define VM_NONE 0x00000000
269
270 #define VM_READ 0x00000001 /* currently active flags */
271 #define VM_WRITE 0x00000002
272 #define VM_EXEC 0x00000004
273 #define VM_SHARED 0x00000008
274
275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
276 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
277 #define VM_MAYWRITE 0x00000020
278 #define VM_MAYEXEC 0x00000040
279 #define VM_MAYSHARE 0x00000080
280
281 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
282 #ifdef CONFIG_MMU
283 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
284 #else /* CONFIG_MMU */
285 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
286 #define VM_UFFD_MISSING 0
287 #endif /* CONFIG_MMU */
288 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
289 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
290
291 #define VM_LOCKED 0x00002000
292 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
293
294 /* Used by sys_madvise() */
295 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
296 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
297
298 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
299 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
300 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
301 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
302 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
303 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
304 #define VM_SYNC 0x00800000 /* Synchronous page faults */
305 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
306 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
307 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
308
309 #ifdef CONFIG_MEM_SOFT_DIRTY
310 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
311 #else
312 # define VM_SOFTDIRTY 0
313 #endif
314
315 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
316 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
317 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
318 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
319
320 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
321 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
326 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_7 39 /* bit only usable on 64-bit architectures */
329 #ifdef CONFIG_MEM_PURGEABLE
330 #define VM_HIGH_ARCH_BIT_8 40 /* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_9 41 /* bit only usable on 64-bit architectures */
332 #endif /* CONFIG_MEM_PURGEABLE */
333 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
338 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
339 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
340 #define VM_HIGH_ARCH_7 BIT(VM_HIGH_ARCH_BIT_7)
341 #ifdef CONFIG_MEM_PURGEABLE
342 #define VM_HIGH_ARCH_8 BIT(VM_HIGH_ARCH_BIT_8)
343 #define VM_HIGH_ARCH_9 BIT(VM_HIGH_ARCH_BIT_9)
344 #endif /* CONFIG_MEM_PURGEABLE */
345 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
346
347 #ifdef CONFIG_MEM_PURGEABLE
348 #define VM_PURGEABLE VM_HIGH_ARCH_8
349 #define VM_USEREXPTE VM_HIGH_ARCH_9
350 #else /* CONFIG_MEM_PURGEABLE */
351 #define VM_PURGEABLE 0
352 #define VM_USEREXPTE 0
353 #endif /* CONFIG_MEM_PURGEABLE */
354
355 #ifdef CONFIG_SECURITY_XPM
356 #define VM_XPM VM_HIGH_ARCH_7
357 #else /* CONFIG_SECURITY_XPM */
358 #define VM_XPM VM_NONE
359 #endif /* CONFIG_SECURITY_XPM */
360
361 #ifdef CONFIG_ARCH_HAS_PKEYS
362 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
363 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
364 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
365 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
366 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
367 #ifdef CONFIG_PPC
368 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
369 #else
370 # define VM_PKEY_BIT4 0
371 #endif
372 #endif /* CONFIG_ARCH_HAS_PKEYS */
373
374 #ifdef CONFIG_X86_USER_SHADOW_STACK
375 /*
376 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
377 * support core mm.
378 *
379 * These VMAs will get a single end guard page. This helps userspace protect
380 * itself from attacks. A single page is enough for current shadow stack archs
381 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
382 * for more details on the guard size.
383 */
384 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
385 #else
386 # define VM_SHADOW_STACK VM_NONE
387 #endif
388
389 #if defined(CONFIG_X86)
390 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
391 #elif defined(CONFIG_PPC)
392 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
393 #elif defined(CONFIG_PARISC)
394 # define VM_GROWSUP VM_ARCH_1
395 #elif defined(CONFIG_IA64)
396 # define VM_GROWSUP VM_ARCH_1
397 #elif defined(CONFIG_SPARC64)
398 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
399 # define VM_ARCH_CLEAR VM_SPARC_ADI
400 #elif defined(CONFIG_ARM64)
401 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
402 # define VM_ARCH_CLEAR VM_ARM64_BTI
403 #elif !defined(CONFIG_MMU)
404 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
405 #endif
406
407 #if defined(CONFIG_ARM64_MTE)
408 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
409 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
410 #else
411 # define VM_MTE VM_NONE
412 # define VM_MTE_ALLOWED VM_NONE
413 #endif
414
415 #ifndef VM_GROWSUP
416 # define VM_GROWSUP VM_NONE
417 #endif
418
419 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
420 # define VM_UFFD_MINOR_BIT 38
421 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
422 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
423 # define VM_UFFD_MINOR VM_NONE
424 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
425
426 /* Bits set in the VMA until the stack is in its final location */
427 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
428
429 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
430
431 /* Common data flag combinations */
432 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
433 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
434 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
435 VM_MAYWRITE | VM_MAYEXEC)
436 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
437 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
438
439 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
440 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
441 #endif
442
443 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
444 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
445 #endif
446
447 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
448
449 #ifdef CONFIG_STACK_GROWSUP
450 #define VM_STACK VM_GROWSUP
451 #define VM_STACK_EARLY VM_GROWSDOWN
452 #else
453 #define VM_STACK VM_GROWSDOWN
454 #define VM_STACK_EARLY 0
455 #endif
456
457 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
458
459 /* VMA basic access permission flags */
460 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
461
462
463 /*
464 * Special vmas that are non-mergable, non-mlock()able.
465 */
466 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
467
468 /* This mask prevents VMA from being scanned with khugepaged */
469 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
470
471 /* This mask defines which mm->def_flags a process can inherit its parent */
472 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
473
474 /* This mask represents all the VMA flag bits used by mlock */
475 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
476
477 /* Arch-specific flags to clear when updating VM flags on protection change */
478 #ifndef VM_ARCH_CLEAR
479 # define VM_ARCH_CLEAR VM_NONE
480 #endif
481 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
482
483 /*
484 * mapping from the currently active vm_flags protection bits (the
485 * low four bits) to a page protection mask..
486 */
487
488 /*
489 * The default fault flags that should be used by most of the
490 * arch-specific page fault handlers.
491 */
492 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
493 FAULT_FLAG_KILLABLE | \
494 FAULT_FLAG_INTERRUPTIBLE)
495
496 /**
497 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
498 * @flags: Fault flags.
499 *
500 * This is mostly used for places where we want to try to avoid taking
501 * the mmap_lock for too long a time when waiting for another condition
502 * to change, in which case we can try to be polite to release the
503 * mmap_lock in the first round to avoid potential starvation of other
504 * processes that would also want the mmap_lock.
505 *
506 * Return: true if the page fault allows retry and this is the first
507 * attempt of the fault handling; false otherwise.
508 */
fault_flag_allow_retry_first(enum fault_flag flags)509 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
510 {
511 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
512 (!(flags & FAULT_FLAG_TRIED));
513 }
514
515 #define FAULT_FLAG_TRACE \
516 { FAULT_FLAG_WRITE, "WRITE" }, \
517 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
518 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
519 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
520 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
521 { FAULT_FLAG_TRIED, "TRIED" }, \
522 { FAULT_FLAG_USER, "USER" }, \
523 { FAULT_FLAG_REMOTE, "REMOTE" }, \
524 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
525 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
526 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
527
528 /*
529 * vm_fault is filled by the pagefault handler and passed to the vma's
530 * ->fault function. The vma's ->fault is responsible for returning a bitmask
531 * of VM_FAULT_xxx flags that give details about how the fault was handled.
532 *
533 * MM layer fills up gfp_mask for page allocations but fault handler might
534 * alter it if its implementation requires a different allocation context.
535 *
536 * pgoff should be used in favour of virtual_address, if possible.
537 */
538 struct vm_fault {
539 const struct {
540 struct vm_area_struct *vma; /* Target VMA */
541 gfp_t gfp_mask; /* gfp mask to be used for allocations */
542 pgoff_t pgoff; /* Logical page offset based on vma */
543 unsigned long address; /* Faulting virtual address - masked */
544 unsigned long real_address; /* Faulting virtual address - unmasked */
545 };
546 enum fault_flag flags; /* FAULT_FLAG_xxx flags
547 * XXX: should really be 'const' */
548 pmd_t *pmd; /* Pointer to pmd entry matching
549 * the 'address' */
550 pud_t *pud; /* Pointer to pud entry matching
551 * the 'address'
552 */
553 union {
554 pte_t orig_pte; /* Value of PTE at the time of fault */
555 pmd_t orig_pmd; /* Value of PMD at the time of fault,
556 * used by PMD fault only.
557 */
558 };
559
560 struct page *cow_page; /* Page handler may use for COW fault */
561 struct page *page; /* ->fault handlers should return a
562 * page here, unless VM_FAULT_NOPAGE
563 * is set (which is also implied by
564 * VM_FAULT_ERROR).
565 */
566 /* These three entries are valid only while holding ptl lock */
567 pte_t *pte; /* Pointer to pte entry matching
568 * the 'address'. NULL if the page
569 * table hasn't been allocated.
570 */
571 spinlock_t *ptl; /* Page table lock.
572 * Protects pte page table if 'pte'
573 * is not NULL, otherwise pmd.
574 */
575 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
576 * vm_ops->map_pages() sets up a page
577 * table from atomic context.
578 * do_fault_around() pre-allocates
579 * page table to avoid allocation from
580 * atomic context.
581 */
582 };
583
584 /*
585 * These are the virtual MM functions - opening of an area, closing and
586 * unmapping it (needed to keep files on disk up-to-date etc), pointer
587 * to the functions called when a no-page or a wp-page exception occurs.
588 */
589 struct vm_operations_struct {
590 void (*open)(struct vm_area_struct * area);
591 /**
592 * @close: Called when the VMA is being removed from the MM.
593 * Context: User context. May sleep. Caller holds mmap_lock.
594 */
595 void (*close)(struct vm_area_struct * area);
596 /* Called any time before splitting to check if it's allowed */
597 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
598 int (*mremap)(struct vm_area_struct *area);
599 /*
600 * Called by mprotect() to make driver-specific permission
601 * checks before mprotect() is finalised. The VMA must not
602 * be modified. Returns 0 if mprotect() can proceed.
603 */
604 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
605 unsigned long end, unsigned long newflags);
606 vm_fault_t (*fault)(struct vm_fault *vmf);
607 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
608 vm_fault_t (*map_pages)(struct vm_fault *vmf,
609 pgoff_t start_pgoff, pgoff_t end_pgoff);
610 unsigned long (*pagesize)(struct vm_area_struct * area);
611
612 /* notification that a previously read-only page is about to become
613 * writable, if an error is returned it will cause a SIGBUS */
614 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
615
616 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
617 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
618
619 /* called by access_process_vm when get_user_pages() fails, typically
620 * for use by special VMAs. See also generic_access_phys() for a generic
621 * implementation useful for any iomem mapping.
622 */
623 int (*access)(struct vm_area_struct *vma, unsigned long addr,
624 void *buf, int len, int write);
625
626 /* Called by the /proc/PID/maps code to ask the vma whether it
627 * has a special name. Returning non-NULL will also cause this
628 * vma to be dumped unconditionally. */
629 const char *(*name)(struct vm_area_struct *vma);
630
631 #ifdef CONFIG_NUMA
632 /*
633 * set_policy() op must add a reference to any non-NULL @new mempolicy
634 * to hold the policy upon return. Caller should pass NULL @new to
635 * remove a policy and fall back to surrounding context--i.e. do not
636 * install a MPOL_DEFAULT policy, nor the task or system default
637 * mempolicy.
638 */
639 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
640
641 /*
642 * get_policy() op must add reference [mpol_get()] to any policy at
643 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
644 * in mm/mempolicy.c will do this automatically.
645 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
646 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
647 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
648 * must return NULL--i.e., do not "fallback" to task or system default
649 * policy.
650 */
651 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
652 unsigned long addr);
653 #endif
654 /*
655 * Called by vm_normal_page() for special PTEs to find the
656 * page for @addr. This is useful if the default behavior
657 * (using pte_page()) would not find the correct page.
658 */
659 struct page *(*find_special_page)(struct vm_area_struct *vma,
660 unsigned long addr);
661 };
662
663 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)664 static inline void vma_numab_state_init(struct vm_area_struct *vma)
665 {
666 vma->numab_state = NULL;
667 }
vma_numab_state_free(struct vm_area_struct * vma)668 static inline void vma_numab_state_free(struct vm_area_struct *vma)
669 {
670 kfree(vma->numab_state);
671 }
672 #else
vma_numab_state_init(struct vm_area_struct * vma)673 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)674 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
675 #endif /* CONFIG_NUMA_BALANCING */
676
677 #ifdef CONFIG_PER_VMA_LOCK
678 /*
679 * Try to read-lock a vma. The function is allowed to occasionally yield false
680 * locked result to avoid performance overhead, in which case we fall back to
681 * using mmap_lock. The function should never yield false unlocked result.
682 */
vma_start_read(struct vm_area_struct * vma)683 static inline bool vma_start_read(struct vm_area_struct *vma)
684 {
685 /*
686 * Check before locking. A race might cause false locked result.
687 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
688 * ACQUIRE semantics, because this is just a lockless check whose result
689 * we don't rely on for anything - the mm_lock_seq read against which we
690 * need ordering is below.
691 */
692 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
693 return false;
694
695 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
696 return false;
697
698 /*
699 * Overflow might produce false locked result.
700 * False unlocked result is impossible because we modify and check
701 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
702 * modification invalidates all existing locks.
703 *
704 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
705 * racing with vma_end_write_all(), we only start reading from the VMA
706 * after it has been unlocked.
707 * This pairs with RELEASE semantics in vma_end_write_all().
708 */
709 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
710 up_read(&vma->vm_lock->lock);
711 return false;
712 }
713 return true;
714 }
715
vma_end_read(struct vm_area_struct * vma)716 static inline void vma_end_read(struct vm_area_struct *vma)
717 {
718 rcu_read_lock(); /* keeps vma alive till the end of up_read */
719 up_read(&vma->vm_lock->lock);
720 rcu_read_unlock();
721 }
722
723 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,int * mm_lock_seq)724 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
725 {
726 mmap_assert_write_locked(vma->vm_mm);
727
728 /*
729 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
730 * mm->mm_lock_seq can't be concurrently modified.
731 */
732 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
733 return (vma->vm_lock_seq == *mm_lock_seq);
734 }
735
736 /*
737 * Begin writing to a VMA.
738 * Exclude concurrent readers under the per-VMA lock until the currently
739 * write-locked mmap_lock is dropped or downgraded.
740 */
vma_start_write(struct vm_area_struct * vma)741 static inline void vma_start_write(struct vm_area_struct *vma)
742 {
743 int mm_lock_seq;
744
745 if (__is_vma_write_locked(vma, &mm_lock_seq))
746 return;
747
748 down_write(&vma->vm_lock->lock);
749 /*
750 * We should use WRITE_ONCE() here because we can have concurrent reads
751 * from the early lockless pessimistic check in vma_start_read().
752 * We don't really care about the correctness of that early check, but
753 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
754 */
755 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
756 up_write(&vma->vm_lock->lock);
757 }
758
vma_assert_write_locked(struct vm_area_struct * vma)759 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
760 {
761 int mm_lock_seq;
762
763 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
764 }
765
vma_assert_locked(struct vm_area_struct * vma)766 static inline void vma_assert_locked(struct vm_area_struct *vma)
767 {
768 if (!rwsem_is_locked(&vma->vm_lock->lock))
769 vma_assert_write_locked(vma);
770 }
771
vma_mark_detached(struct vm_area_struct * vma,bool detached)772 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
773 {
774 /* When detaching vma should be write-locked */
775 if (detached)
776 vma_assert_write_locked(vma);
777 vma->detached = detached;
778 }
779
release_fault_lock(struct vm_fault * vmf)780 static inline void release_fault_lock(struct vm_fault *vmf)
781 {
782 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
783 vma_end_read(vmf->vma);
784 else
785 mmap_read_unlock(vmf->vma->vm_mm);
786 }
787
assert_fault_locked(struct vm_fault * vmf)788 static inline void assert_fault_locked(struct vm_fault *vmf)
789 {
790 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
791 vma_assert_locked(vmf->vma);
792 else
793 mmap_assert_locked(vmf->vma->vm_mm);
794 }
795
796 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
797 unsigned long address);
798
799 #else /* CONFIG_PER_VMA_LOCK */
800
vma_start_read(struct vm_area_struct * vma)801 static inline bool vma_start_read(struct vm_area_struct *vma)
802 { return false; }
vma_end_read(struct vm_area_struct * vma)803 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)804 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)805 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
806 { mmap_assert_write_locked(vma->vm_mm); }
vma_mark_detached(struct vm_area_struct * vma,bool detached)807 static inline void vma_mark_detached(struct vm_area_struct *vma,
808 bool detached) {}
809
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)810 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
811 unsigned long address)
812 {
813 return NULL;
814 }
815
release_fault_lock(struct vm_fault * vmf)816 static inline void release_fault_lock(struct vm_fault *vmf)
817 {
818 mmap_read_unlock(vmf->vma->vm_mm);
819 }
820
assert_fault_locked(struct vm_fault * vmf)821 static inline void assert_fault_locked(struct vm_fault *vmf)
822 {
823 mmap_assert_locked(vmf->vma->vm_mm);
824 }
825
826 #endif /* CONFIG_PER_VMA_LOCK */
827
828 extern const struct vm_operations_struct vma_dummy_vm_ops;
829
830 /*
831 * WARNING: vma_init does not initialize vma->vm_lock.
832 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
833 */
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
835 {
836 memset(vma, 0, sizeof(*vma));
837 vma->vm_mm = mm;
838 vma->vm_ops = &vma_dummy_vm_ops;
839 INIT_LIST_HEAD(&vma->anon_vma_chain);
840 vma_mark_detached(vma, false);
841 vma_numab_state_init(vma);
842 }
843
844 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)845 static inline void vm_flags_init(struct vm_area_struct *vma,
846 vm_flags_t flags)
847 {
848 ACCESS_PRIVATE(vma, __vm_flags) = flags;
849 }
850
851 /*
852 * Use when VMA is part of the VMA tree and modifications need coordination
853 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
854 * it should be locked explicitly beforehand.
855 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)856 static inline void vm_flags_reset(struct vm_area_struct *vma,
857 vm_flags_t flags)
858 {
859 vma_assert_write_locked(vma);
860 vm_flags_init(vma, flags);
861 }
862
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)863 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
864 vm_flags_t flags)
865 {
866 vma_assert_write_locked(vma);
867 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
868 }
869
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)870 static inline void vm_flags_set(struct vm_area_struct *vma,
871 vm_flags_t flags)
872 {
873 vma_start_write(vma);
874 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
875 }
876
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)877 static inline void vm_flags_clear(struct vm_area_struct *vma,
878 vm_flags_t flags)
879 {
880 vma_start_write(vma);
881 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
882 }
883
884 /*
885 * Use only if VMA is not part of the VMA tree or has no other users and
886 * therefore needs no locking.
887 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)888 static inline void __vm_flags_mod(struct vm_area_struct *vma,
889 vm_flags_t set, vm_flags_t clear)
890 {
891 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
892 }
893
894 /*
895 * Use only when the order of set/clear operations is unimportant, otherwise
896 * use vm_flags_{set|clear} explicitly.
897 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)898 static inline void vm_flags_mod(struct vm_area_struct *vma,
899 vm_flags_t set, vm_flags_t clear)
900 {
901 vma_start_write(vma);
902 __vm_flags_mod(vma, set, clear);
903 }
904
vma_set_anonymous(struct vm_area_struct * vma)905 static inline void vma_set_anonymous(struct vm_area_struct *vma)
906 {
907 vma->vm_ops = NULL;
908 }
909
vma_is_anonymous(struct vm_area_struct * vma)910 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
911 {
912 return !vma->vm_ops;
913 }
914
915 /*
916 * Indicate if the VMA is a heap for the given task; for
917 * /proc/PID/maps that is the heap of the main task.
918 */
vma_is_initial_heap(const struct vm_area_struct * vma)919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
920 {
921 return vma->vm_start <= vma->vm_mm->brk &&
922 vma->vm_end >= vma->vm_mm->start_brk;
923 }
924
925 /*
926 * Indicate if the VMA is a stack for the given task; for
927 * /proc/PID/maps that is the stack of the main task.
928 */
vma_is_initial_stack(const struct vm_area_struct * vma)929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
930 {
931 /*
932 * We make no effort to guess what a given thread considers to be
933 * its "stack". It's not even well-defined for programs written
934 * languages like Go.
935 */
936 return vma->vm_start <= vma->vm_mm->start_stack &&
937 vma->vm_end >= vma->vm_mm->start_stack;
938 }
939
vma_is_temporary_stack(struct vm_area_struct * vma)940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
941 {
942 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
943
944 if (!maybe_stack)
945 return false;
946
947 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
948 VM_STACK_INCOMPLETE_SETUP)
949 return true;
950
951 return false;
952 }
953
vma_is_foreign(struct vm_area_struct * vma)954 static inline bool vma_is_foreign(struct vm_area_struct *vma)
955 {
956 if (!current->mm)
957 return true;
958
959 if (current->mm != vma->vm_mm)
960 return true;
961
962 return false;
963 }
964
vma_is_accessible(struct vm_area_struct * vma)965 static inline bool vma_is_accessible(struct vm_area_struct *vma)
966 {
967 return vma->vm_flags & VM_ACCESS_FLAGS;
968 }
969
970 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)971 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
972 {
973 return mas_find(&vmi->mas, max - 1);
974 }
975
vma_next(struct vma_iterator * vmi)976 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
977 {
978 /*
979 * Uses mas_find() to get the first VMA when the iterator starts.
980 * Calling mas_next() could skip the first entry.
981 */
982 return mas_find(&vmi->mas, ULONG_MAX);
983 }
984
985 static inline
vma_iter_next_range(struct vma_iterator * vmi)986 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
987 {
988 return mas_next_range(&vmi->mas, ULONG_MAX);
989 }
990
991
vma_prev(struct vma_iterator * vmi)992 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
993 {
994 return mas_prev(&vmi->mas, 0);
995 }
996
997 static inline
vma_iter_prev_range(struct vma_iterator * vmi)998 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
999 {
1000 return mas_prev_range(&vmi->mas, 0);
1001 }
1002
vma_iter_addr(struct vma_iterator * vmi)1003 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1004 {
1005 return vmi->mas.index;
1006 }
1007
vma_iter_end(struct vma_iterator * vmi)1008 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1009 {
1010 return vmi->mas.last + 1;
1011 }
vma_iter_bulk_alloc(struct vma_iterator * vmi,unsigned long count)1012 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1013 unsigned long count)
1014 {
1015 return mas_expected_entries(&vmi->mas, count);
1016 }
1017
1018 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1019 static inline void vma_iter_free(struct vma_iterator *vmi)
1020 {
1021 mas_destroy(&vmi->mas);
1022 }
1023
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1024 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1025 struct vm_area_struct *vma)
1026 {
1027 vmi->mas.index = vma->vm_start;
1028 vmi->mas.last = vma->vm_end - 1;
1029 mas_store(&vmi->mas, vma);
1030 if (unlikely(mas_is_err(&vmi->mas)))
1031 return -ENOMEM;
1032
1033 return 0;
1034 }
1035
vma_iter_invalidate(struct vma_iterator * vmi)1036 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1037 {
1038 mas_pause(&vmi->mas);
1039 }
1040
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1041 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1042 {
1043 mas_set(&vmi->mas, addr);
1044 }
1045
1046 #define for_each_vma(__vmi, __vma) \
1047 while (((__vma) = vma_next(&(__vmi))) != NULL)
1048
1049 /* The MM code likes to work with exclusive end addresses */
1050 #define for_each_vma_range(__vmi, __vma, __end) \
1051 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1052
1053 #ifdef CONFIG_SHMEM
1054 /*
1055 * The vma_is_shmem is not inline because it is used only by slow
1056 * paths in userfault.
1057 */
1058 bool vma_is_shmem(struct vm_area_struct *vma);
1059 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1060 #else
vma_is_shmem(struct vm_area_struct * vma)1061 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1062 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1063 #endif
1064
1065 int vma_is_stack_for_current(struct vm_area_struct *vma);
1066
1067 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1068 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1069
1070 struct mmu_gather;
1071 struct inode;
1072
1073 /*
1074 * compound_order() can be called without holding a reference, which means
1075 * that niceties like page_folio() don't work. These callers should be
1076 * prepared to handle wild return values. For example, PG_head may be
1077 * set before the order is initialised, or this may be a tail page.
1078 * See compaction.c for some good examples.
1079 */
compound_order(struct page * page)1080 static inline unsigned int compound_order(struct page *page)
1081 {
1082 struct folio *folio = (struct folio *)page;
1083
1084 if (!test_bit(PG_head, &folio->flags))
1085 return 0;
1086 return folio->_flags_1 & 0xff;
1087 }
1088
1089 /**
1090 * folio_order - The allocation order of a folio.
1091 * @folio: The folio.
1092 *
1093 * A folio is composed of 2^order pages. See get_order() for the definition
1094 * of order.
1095 *
1096 * Return: The order of the folio.
1097 */
folio_order(struct folio * folio)1098 static inline unsigned int folio_order(struct folio *folio)
1099 {
1100 if (!folio_test_large(folio))
1101 return 0;
1102 return folio->_flags_1 & 0xff;
1103 }
1104
1105 #include <linux/huge_mm.h>
1106
1107 /*
1108 * Methods to modify the page usage count.
1109 *
1110 * What counts for a page usage:
1111 * - cache mapping (page->mapping)
1112 * - private data (page->private)
1113 * - page mapped in a task's page tables, each mapping
1114 * is counted separately
1115 *
1116 * Also, many kernel routines increase the page count before a critical
1117 * routine so they can be sure the page doesn't go away from under them.
1118 */
1119
1120 /*
1121 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1122 */
put_page_testzero(struct page * page)1123 static inline int put_page_testzero(struct page *page)
1124 {
1125 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1126 return page_ref_dec_and_test(page);
1127 }
1128
folio_put_testzero(struct folio * folio)1129 static inline int folio_put_testzero(struct folio *folio)
1130 {
1131 return put_page_testzero(&folio->page);
1132 }
1133
1134 /*
1135 * Try to grab a ref unless the page has a refcount of zero, return false if
1136 * that is the case.
1137 * This can be called when MMU is off so it must not access
1138 * any of the virtual mappings.
1139 */
get_page_unless_zero(struct page * page)1140 static inline bool get_page_unless_zero(struct page *page)
1141 {
1142 return page_ref_add_unless(page, 1, 0);
1143 }
1144
folio_get_nontail_page(struct page * page)1145 static inline struct folio *folio_get_nontail_page(struct page *page)
1146 {
1147 if (unlikely(!get_page_unless_zero(page)))
1148 return NULL;
1149 return (struct folio *)page;
1150 }
1151
1152 extern int page_is_ram(unsigned long pfn);
1153
1154 enum {
1155 REGION_INTERSECTS,
1156 REGION_DISJOINT,
1157 REGION_MIXED,
1158 };
1159
1160 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1161 unsigned long desc);
1162
1163 /* Support for virtually mapped pages */
1164 struct page *vmalloc_to_page(const void *addr);
1165 unsigned long vmalloc_to_pfn(const void *addr);
1166
1167 /*
1168 * Determine if an address is within the vmalloc range
1169 *
1170 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1171 * is no special casing required.
1172 */
1173 #ifdef CONFIG_MMU
1174 extern bool is_vmalloc_addr(const void *x);
1175 extern int is_vmalloc_or_module_addr(const void *x);
1176 #else
is_vmalloc_addr(const void * x)1177 static inline bool is_vmalloc_addr(const void *x)
1178 {
1179 return false;
1180 }
is_vmalloc_or_module_addr(const void * x)1181 static inline int is_vmalloc_or_module_addr(const void *x)
1182 {
1183 return 0;
1184 }
1185 #endif
1186
1187 /*
1188 * How many times the entire folio is mapped as a single unit (eg by a
1189 * PMD or PUD entry). This is probably not what you want, except for
1190 * debugging purposes - it does not include PTE-mapped sub-pages; look
1191 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1192 */
folio_entire_mapcount(struct folio * folio)1193 static inline int folio_entire_mapcount(struct folio *folio)
1194 {
1195 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1196 return atomic_read(&folio->_entire_mapcount) + 1;
1197 }
1198
1199 /*
1200 * The atomic page->_mapcount, starts from -1: so that transitions
1201 * both from it and to it can be tracked, using atomic_inc_and_test
1202 * and atomic_add_negative(-1).
1203 */
page_mapcount_reset(struct page * page)1204 static inline void page_mapcount_reset(struct page *page)
1205 {
1206 atomic_set(&(page)->_mapcount, -1);
1207 }
1208
1209 /**
1210 * page_mapcount() - Number of times this precise page is mapped.
1211 * @page: The page.
1212 *
1213 * The number of times this page is mapped. If this page is part of
1214 * a large folio, it includes the number of times this page is mapped
1215 * as part of that folio.
1216 *
1217 * Will report 0 for pages which cannot be mapped into userspace, eg
1218 * slab, page tables and similar.
1219 */
page_mapcount(struct page * page)1220 static inline int page_mapcount(struct page *page)
1221 {
1222 int mapcount = atomic_read(&page->_mapcount) + 1;
1223
1224 /* Handle page_has_type() pages */
1225 if (mapcount < 0)
1226 mapcount = 0;
1227 if (unlikely(PageCompound(page)))
1228 mapcount += folio_entire_mapcount(page_folio(page));
1229
1230 return mapcount;
1231 }
1232
1233 int folio_total_mapcount(struct folio *folio);
1234
1235 /**
1236 * folio_mapcount() - Calculate the number of mappings of this folio.
1237 * @folio: The folio.
1238 *
1239 * A large folio tracks both how many times the entire folio is mapped,
1240 * and how many times each individual page in the folio is mapped.
1241 * This function calculates the total number of times the folio is
1242 * mapped.
1243 *
1244 * Return: The number of times this folio is mapped.
1245 */
folio_mapcount(struct folio * folio)1246 static inline int folio_mapcount(struct folio *folio)
1247 {
1248 if (likely(!folio_test_large(folio)))
1249 return atomic_read(&folio->_mapcount) + 1;
1250 return folio_total_mapcount(folio);
1251 }
1252
total_mapcount(struct page * page)1253 static inline int total_mapcount(struct page *page)
1254 {
1255 if (likely(!PageCompound(page)))
1256 return atomic_read(&page->_mapcount) + 1;
1257 return folio_total_mapcount(page_folio(page));
1258 }
1259
folio_large_is_mapped(struct folio * folio)1260 static inline bool folio_large_is_mapped(struct folio *folio)
1261 {
1262 /*
1263 * Reading _entire_mapcount below could be omitted if hugetlb
1264 * participated in incrementing nr_pages_mapped when compound mapped.
1265 */
1266 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1267 atomic_read(&folio->_entire_mapcount) >= 0;
1268 }
1269
1270 /**
1271 * folio_mapped - Is this folio mapped into userspace?
1272 * @folio: The folio.
1273 *
1274 * Return: True if any page in this folio is referenced by user page tables.
1275 */
folio_mapped(struct folio * folio)1276 static inline bool folio_mapped(struct folio *folio)
1277 {
1278 if (likely(!folio_test_large(folio)))
1279 return atomic_read(&folio->_mapcount) >= 0;
1280 return folio_large_is_mapped(folio);
1281 }
1282
1283 /*
1284 * Return true if this page is mapped into pagetables.
1285 * For compound page it returns true if any sub-page of compound page is mapped,
1286 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1287 */
page_mapped(struct page * page)1288 static inline bool page_mapped(struct page *page)
1289 {
1290 if (likely(!PageCompound(page)))
1291 return atomic_read(&page->_mapcount) >= 0;
1292 return folio_large_is_mapped(page_folio(page));
1293 }
1294
virt_to_head_page(const void * x)1295 static inline struct page *virt_to_head_page(const void *x)
1296 {
1297 struct page *page = virt_to_page(x);
1298
1299 return compound_head(page);
1300 }
1301
virt_to_folio(const void * x)1302 static inline struct folio *virt_to_folio(const void *x)
1303 {
1304 struct page *page = virt_to_page(x);
1305
1306 return page_folio(page);
1307 }
1308
1309 void __folio_put(struct folio *folio);
1310
1311 void put_pages_list(struct list_head *pages);
1312
1313 void split_page(struct page *page, unsigned int order);
1314 void folio_copy(struct folio *dst, struct folio *src);
1315
1316 unsigned long nr_free_buffer_pages(void);
1317
1318 void destroy_large_folio(struct folio *folio);
1319
1320 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1321 static inline unsigned long page_size(struct page *page)
1322 {
1323 return PAGE_SIZE << compound_order(page);
1324 }
1325
1326 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1327 static inline unsigned int page_shift(struct page *page)
1328 {
1329 return PAGE_SHIFT + compound_order(page);
1330 }
1331
1332 /**
1333 * thp_order - Order of a transparent huge page.
1334 * @page: Head page of a transparent huge page.
1335 */
thp_order(struct page * page)1336 static inline unsigned int thp_order(struct page *page)
1337 {
1338 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1339 return compound_order(page);
1340 }
1341
1342 /**
1343 * thp_size - Size of a transparent huge page.
1344 * @page: Head page of a transparent huge page.
1345 *
1346 * Return: Number of bytes in this page.
1347 */
thp_size(struct page * page)1348 static inline unsigned long thp_size(struct page *page)
1349 {
1350 return PAGE_SIZE << thp_order(page);
1351 }
1352
1353 #ifdef CONFIG_MMU
1354 /*
1355 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1356 * servicing faults for write access. In the normal case, do always want
1357 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1358 * that do not have writing enabled, when used by access_process_vm.
1359 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1360 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1361 {
1362 if (likely(vma->vm_flags & VM_WRITE))
1363 pte = pte_mkwrite(pte, vma);
1364 return pte;
1365 }
1366
1367 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1368 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1369 struct page *page, unsigned int nr, unsigned long addr);
1370
1371 vm_fault_t finish_fault(struct vm_fault *vmf);
1372 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1373 #endif
1374
1375 /*
1376 * Multiple processes may "see" the same page. E.g. for untouched
1377 * mappings of /dev/null, all processes see the same page full of
1378 * zeroes, and text pages of executables and shared libraries have
1379 * only one copy in memory, at most, normally.
1380 *
1381 * For the non-reserved pages, page_count(page) denotes a reference count.
1382 * page_count() == 0 means the page is free. page->lru is then used for
1383 * freelist management in the buddy allocator.
1384 * page_count() > 0 means the page has been allocated.
1385 *
1386 * Pages are allocated by the slab allocator in order to provide memory
1387 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1388 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1389 * unless a particular usage is carefully commented. (the responsibility of
1390 * freeing the kmalloc memory is the caller's, of course).
1391 *
1392 * A page may be used by anyone else who does a __get_free_page().
1393 * In this case, page_count still tracks the references, and should only
1394 * be used through the normal accessor functions. The top bits of page->flags
1395 * and page->virtual store page management information, but all other fields
1396 * are unused and could be used privately, carefully. The management of this
1397 * page is the responsibility of the one who allocated it, and those who have
1398 * subsequently been given references to it.
1399 *
1400 * The other pages (we may call them "pagecache pages") are completely
1401 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1402 * The following discussion applies only to them.
1403 *
1404 * A pagecache page contains an opaque `private' member, which belongs to the
1405 * page's address_space. Usually, this is the address of a circular list of
1406 * the page's disk buffers. PG_private must be set to tell the VM to call
1407 * into the filesystem to release these pages.
1408 *
1409 * A page may belong to an inode's memory mapping. In this case, page->mapping
1410 * is the pointer to the inode, and page->index is the file offset of the page,
1411 * in units of PAGE_SIZE.
1412 *
1413 * If pagecache pages are not associated with an inode, they are said to be
1414 * anonymous pages. These may become associated with the swapcache, and in that
1415 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1416 *
1417 * In either case (swapcache or inode backed), the pagecache itself holds one
1418 * reference to the page. Setting PG_private should also increment the
1419 * refcount. The each user mapping also has a reference to the page.
1420 *
1421 * The pagecache pages are stored in a per-mapping radix tree, which is
1422 * rooted at mapping->i_pages, and indexed by offset.
1423 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1424 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1425 *
1426 * All pagecache pages may be subject to I/O:
1427 * - inode pages may need to be read from disk,
1428 * - inode pages which have been modified and are MAP_SHARED may need
1429 * to be written back to the inode on disk,
1430 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1431 * modified may need to be swapped out to swap space and (later) to be read
1432 * back into memory.
1433 */
1434
1435 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1436 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1437
1438 bool __put_devmap_managed_page_refs(struct page *page, int refs);
put_devmap_managed_page_refs(struct page * page,int refs)1439 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1440 {
1441 if (!static_branch_unlikely(&devmap_managed_key))
1442 return false;
1443 if (!is_zone_device_page(page))
1444 return false;
1445 return __put_devmap_managed_page_refs(page, refs);
1446 }
1447 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_page_refs(struct page * page,int refs)1448 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1449 {
1450 return false;
1451 }
1452 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1453
put_devmap_managed_page(struct page * page)1454 static inline bool put_devmap_managed_page(struct page *page)
1455 {
1456 return put_devmap_managed_page_refs(page, 1);
1457 }
1458
1459 /* 127: arbitrary random number, small enough to assemble well */
1460 #define folio_ref_zero_or_close_to_overflow(folio) \
1461 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1462
1463 /**
1464 * folio_get - Increment the reference count on a folio.
1465 * @folio: The folio.
1466 *
1467 * Context: May be called in any context, as long as you know that
1468 * you have a refcount on the folio. If you do not already have one,
1469 * folio_try_get() may be the right interface for you to use.
1470 */
folio_get(struct folio * folio)1471 static inline void folio_get(struct folio *folio)
1472 {
1473 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1474 folio_ref_inc(folio);
1475 }
1476
get_page(struct page * page)1477 static inline void get_page(struct page *page)
1478 {
1479 folio_get(page_folio(page));
1480 }
1481
try_get_page(struct page * page)1482 static inline __must_check bool try_get_page(struct page *page)
1483 {
1484 page = compound_head(page);
1485 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1486 return false;
1487 page_ref_inc(page);
1488 return true;
1489 }
1490
1491 /**
1492 * folio_put - Decrement the reference count on a folio.
1493 * @folio: The folio.
1494 *
1495 * If the folio's reference count reaches zero, the memory will be
1496 * released back to the page allocator and may be used by another
1497 * allocation immediately. Do not access the memory or the struct folio
1498 * after calling folio_put() unless you can be sure that it wasn't the
1499 * last reference.
1500 *
1501 * Context: May be called in process or interrupt context, but not in NMI
1502 * context. May be called while holding a spinlock.
1503 */
folio_put(struct folio * folio)1504 static inline void folio_put(struct folio *folio)
1505 {
1506 if (folio_put_testzero(folio))
1507 __folio_put(folio);
1508 }
1509
1510 /**
1511 * folio_put_refs - Reduce the reference count on a folio.
1512 * @folio: The folio.
1513 * @refs: The amount to subtract from the folio's reference count.
1514 *
1515 * If the folio's reference count reaches zero, the memory will be
1516 * released back to the page allocator and may be used by another
1517 * allocation immediately. Do not access the memory or the struct folio
1518 * after calling folio_put_refs() unless you can be sure that these weren't
1519 * the last references.
1520 *
1521 * Context: May be called in process or interrupt context, but not in NMI
1522 * context. May be called while holding a spinlock.
1523 */
folio_put_refs(struct folio * folio,int refs)1524 static inline void folio_put_refs(struct folio *folio, int refs)
1525 {
1526 if (folio_ref_sub_and_test(folio, refs))
1527 __folio_put(folio);
1528 }
1529
1530 /*
1531 * union release_pages_arg - an array of pages or folios
1532 *
1533 * release_pages() releases a simple array of multiple pages, and
1534 * accepts various different forms of said page array: either
1535 * a regular old boring array of pages, an array of folios, or
1536 * an array of encoded page pointers.
1537 *
1538 * The transparent union syntax for this kind of "any of these
1539 * argument types" is all kinds of ugly, so look away.
1540 */
1541 typedef union {
1542 struct page **pages;
1543 struct folio **folios;
1544 struct encoded_page **encoded_pages;
1545 } release_pages_arg __attribute__ ((__transparent_union__));
1546
1547 void release_pages(release_pages_arg, int nr);
1548
1549 /**
1550 * folios_put - Decrement the reference count on an array of folios.
1551 * @folios: The folios.
1552 * @nr: How many folios there are.
1553 *
1554 * Like folio_put(), but for an array of folios. This is more efficient
1555 * than writing the loop yourself as it will optimise the locks which
1556 * need to be taken if the folios are freed.
1557 *
1558 * Context: May be called in process or interrupt context, but not in NMI
1559 * context. May be called while holding a spinlock.
1560 */
folios_put(struct folio ** folios,unsigned int nr)1561 static inline void folios_put(struct folio **folios, unsigned int nr)
1562 {
1563 release_pages(folios, nr);
1564 }
1565
put_page(struct page * page)1566 static inline void put_page(struct page *page)
1567 {
1568 struct folio *folio = page_folio(page);
1569
1570 /*
1571 * For some devmap managed pages we need to catch refcount transition
1572 * from 2 to 1:
1573 */
1574 if (put_devmap_managed_page(&folio->page))
1575 return;
1576 folio_put(folio);
1577 }
1578
1579 /*
1580 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1581 * the page's refcount so that two separate items are tracked: the original page
1582 * reference count, and also a new count of how many pin_user_pages() calls were
1583 * made against the page. ("gup-pinned" is another term for the latter).
1584 *
1585 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1586 * distinct from normal pages. As such, the unpin_user_page() call (and its
1587 * variants) must be used in order to release gup-pinned pages.
1588 *
1589 * Choice of value:
1590 *
1591 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1592 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1593 * simpler, due to the fact that adding an even power of two to the page
1594 * refcount has the effect of using only the upper N bits, for the code that
1595 * counts up using the bias value. This means that the lower bits are left for
1596 * the exclusive use of the original code that increments and decrements by one
1597 * (or at least, by much smaller values than the bias value).
1598 *
1599 * Of course, once the lower bits overflow into the upper bits (and this is
1600 * OK, because subtraction recovers the original values), then visual inspection
1601 * no longer suffices to directly view the separate counts. However, for normal
1602 * applications that don't have huge page reference counts, this won't be an
1603 * issue.
1604 *
1605 * Locking: the lockless algorithm described in folio_try_get_rcu()
1606 * provides safe operation for get_user_pages(), page_mkclean() and
1607 * other calls that race to set up page table entries.
1608 */
1609 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1610
1611 void unpin_user_page(struct page *page);
1612 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1613 bool make_dirty);
1614 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1615 bool make_dirty);
1616 void unpin_user_pages(struct page **pages, unsigned long npages);
1617
is_cow_mapping(vm_flags_t flags)1618 static inline bool is_cow_mapping(vm_flags_t flags)
1619 {
1620 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1621 }
1622
1623 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1624 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1625 {
1626 /*
1627 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1628 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1629 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1630 * underlying memory if ptrace is active, so this is only possible if
1631 * ptrace does not apply. Note that there is no mprotect() to upgrade
1632 * write permissions later.
1633 */
1634 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1635 }
1636 #endif
1637
1638 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1639 #define SECTION_IN_PAGE_FLAGS
1640 #endif
1641
1642 /*
1643 * The identification function is mainly used by the buddy allocator for
1644 * determining if two pages could be buddies. We are not really identifying
1645 * the zone since we could be using the section number id if we do not have
1646 * node id available in page flags.
1647 * We only guarantee that it will return the same value for two combinable
1648 * pages in a zone.
1649 */
page_zone_id(struct page * page)1650 static inline int page_zone_id(struct page *page)
1651 {
1652 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1653 }
1654
1655 #ifdef NODE_NOT_IN_PAGE_FLAGS
1656 extern int page_to_nid(const struct page *page);
1657 #else
page_to_nid(const struct page * page)1658 static inline int page_to_nid(const struct page *page)
1659 {
1660 struct page *p = (struct page *)page;
1661
1662 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1663 }
1664 #endif
1665
folio_nid(const struct folio * folio)1666 static inline int folio_nid(const struct folio *folio)
1667 {
1668 return page_to_nid(&folio->page);
1669 }
1670
1671 #ifdef CONFIG_NUMA_BALANCING
1672 /* page access time bits needs to hold at least 4 seconds */
1673 #define PAGE_ACCESS_TIME_MIN_BITS 12
1674 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1675 #define PAGE_ACCESS_TIME_BUCKETS \
1676 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1677 #else
1678 #define PAGE_ACCESS_TIME_BUCKETS 0
1679 #endif
1680
1681 #define PAGE_ACCESS_TIME_MASK \
1682 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1683
cpu_pid_to_cpupid(int cpu,int pid)1684 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1685 {
1686 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1687 }
1688
cpupid_to_pid(int cpupid)1689 static inline int cpupid_to_pid(int cpupid)
1690 {
1691 return cpupid & LAST__PID_MASK;
1692 }
1693
cpupid_to_cpu(int cpupid)1694 static inline int cpupid_to_cpu(int cpupid)
1695 {
1696 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1697 }
1698
cpupid_to_nid(int cpupid)1699 static inline int cpupid_to_nid(int cpupid)
1700 {
1701 return cpu_to_node(cpupid_to_cpu(cpupid));
1702 }
1703
cpupid_pid_unset(int cpupid)1704 static inline bool cpupid_pid_unset(int cpupid)
1705 {
1706 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1707 }
1708
cpupid_cpu_unset(int cpupid)1709 static inline bool cpupid_cpu_unset(int cpupid)
1710 {
1711 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1712 }
1713
__cpupid_match_pid(pid_t task_pid,int cpupid)1714 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1715 {
1716 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1717 }
1718
1719 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1720 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1721 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1722 {
1723 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1724 }
1725
page_cpupid_last(struct page * page)1726 static inline int page_cpupid_last(struct page *page)
1727 {
1728 return page->_last_cpupid;
1729 }
page_cpupid_reset_last(struct page * page)1730 static inline void page_cpupid_reset_last(struct page *page)
1731 {
1732 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1733 }
1734 #else
page_cpupid_last(struct page * page)1735 static inline int page_cpupid_last(struct page *page)
1736 {
1737 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1738 }
1739
1740 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1741
page_cpupid_reset_last(struct page * page)1742 static inline void page_cpupid_reset_last(struct page *page)
1743 {
1744 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1745 }
1746 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1747
xchg_page_access_time(struct page * page,int time)1748 static inline int xchg_page_access_time(struct page *page, int time)
1749 {
1750 int last_time;
1751
1752 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1753 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1754 }
1755
vma_set_access_pid_bit(struct vm_area_struct * vma)1756 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1757 {
1758 unsigned int pid_bit;
1759
1760 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1761 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1762 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1763 }
1764 }
1765 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1766 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1767 {
1768 return page_to_nid(page); /* XXX */
1769 }
1770
xchg_page_access_time(struct page * page,int time)1771 static inline int xchg_page_access_time(struct page *page, int time)
1772 {
1773 return 0;
1774 }
1775
page_cpupid_last(struct page * page)1776 static inline int page_cpupid_last(struct page *page)
1777 {
1778 return page_to_nid(page); /* XXX */
1779 }
1780
cpupid_to_nid(int cpupid)1781 static inline int cpupid_to_nid(int cpupid)
1782 {
1783 return -1;
1784 }
1785
cpupid_to_pid(int cpupid)1786 static inline int cpupid_to_pid(int cpupid)
1787 {
1788 return -1;
1789 }
1790
cpupid_to_cpu(int cpupid)1791 static inline int cpupid_to_cpu(int cpupid)
1792 {
1793 return -1;
1794 }
1795
cpu_pid_to_cpupid(int nid,int pid)1796 static inline int cpu_pid_to_cpupid(int nid, int pid)
1797 {
1798 return -1;
1799 }
1800
cpupid_pid_unset(int cpupid)1801 static inline bool cpupid_pid_unset(int cpupid)
1802 {
1803 return true;
1804 }
1805
page_cpupid_reset_last(struct page * page)1806 static inline void page_cpupid_reset_last(struct page *page)
1807 {
1808 }
1809
cpupid_match_pid(struct task_struct * task,int cpupid)1810 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1811 {
1812 return false;
1813 }
1814
vma_set_access_pid_bit(struct vm_area_struct * vma)1815 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1816 {
1817 }
1818 #endif /* CONFIG_NUMA_BALANCING */
1819
1820 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1821
1822 /*
1823 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1824 * setting tags for all pages to native kernel tag value 0xff, as the default
1825 * value 0x00 maps to 0xff.
1826 */
1827
page_kasan_tag(const struct page * page)1828 static inline u8 page_kasan_tag(const struct page *page)
1829 {
1830 u8 tag = 0xff;
1831
1832 if (kasan_enabled()) {
1833 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1834 tag ^= 0xff;
1835 }
1836
1837 return tag;
1838 }
1839
page_kasan_tag_set(struct page * page,u8 tag)1840 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1841 {
1842 unsigned long old_flags, flags;
1843
1844 if (!kasan_enabled())
1845 return;
1846
1847 tag ^= 0xff;
1848 old_flags = READ_ONCE(page->flags);
1849 do {
1850 flags = old_flags;
1851 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1852 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1853 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1854 }
1855
page_kasan_tag_reset(struct page * page)1856 static inline void page_kasan_tag_reset(struct page *page)
1857 {
1858 if (kasan_enabled())
1859 page_kasan_tag_set(page, 0xff);
1860 }
1861
1862 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1863
page_kasan_tag(const struct page * page)1864 static inline u8 page_kasan_tag(const struct page *page)
1865 {
1866 return 0xff;
1867 }
1868
page_kasan_tag_set(struct page * page,u8 tag)1869 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1870 static inline void page_kasan_tag_reset(struct page *page) { }
1871
1872 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1873
page_zone(const struct page * page)1874 static inline struct zone *page_zone(const struct page *page)
1875 {
1876 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1877 }
1878
page_pgdat(const struct page * page)1879 static inline pg_data_t *page_pgdat(const struct page *page)
1880 {
1881 return NODE_DATA(page_to_nid(page));
1882 }
1883
folio_zone(const struct folio * folio)1884 static inline struct zone *folio_zone(const struct folio *folio)
1885 {
1886 return page_zone(&folio->page);
1887 }
1888
folio_pgdat(const struct folio * folio)1889 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1890 {
1891 return page_pgdat(&folio->page);
1892 }
1893
1894 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1895 static inline void set_page_section(struct page *page, unsigned long section)
1896 {
1897 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1898 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1899 }
1900
page_to_section(const struct page * page)1901 static inline unsigned long page_to_section(const struct page *page)
1902 {
1903 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1904 }
1905 #endif
1906
1907 /**
1908 * folio_pfn - Return the Page Frame Number of a folio.
1909 * @folio: The folio.
1910 *
1911 * A folio may contain multiple pages. The pages have consecutive
1912 * Page Frame Numbers.
1913 *
1914 * Return: The Page Frame Number of the first page in the folio.
1915 */
folio_pfn(struct folio * folio)1916 static inline unsigned long folio_pfn(struct folio *folio)
1917 {
1918 return page_to_pfn(&folio->page);
1919 }
1920
pfn_folio(unsigned long pfn)1921 static inline struct folio *pfn_folio(unsigned long pfn)
1922 {
1923 return page_folio(pfn_to_page(pfn));
1924 }
1925
1926 /**
1927 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1928 * @folio: The folio.
1929 *
1930 * This function checks if a folio has been pinned via a call to
1931 * a function in the pin_user_pages() family.
1932 *
1933 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1934 * because it means "definitely not pinned for DMA", but true means "probably
1935 * pinned for DMA, but possibly a false positive due to having at least
1936 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1937 *
1938 * False positives are OK, because: a) it's unlikely for a folio to
1939 * get that many refcounts, and b) all the callers of this routine are
1940 * expected to be able to deal gracefully with a false positive.
1941 *
1942 * For large folios, the result will be exactly correct. That's because
1943 * we have more tracking data available: the _pincount field is used
1944 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1945 *
1946 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1947 *
1948 * Return: True, if it is likely that the page has been "dma-pinned".
1949 * False, if the page is definitely not dma-pinned.
1950 */
folio_maybe_dma_pinned(struct folio * folio)1951 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1952 {
1953 if (folio_test_large(folio))
1954 return atomic_read(&folio->_pincount) > 0;
1955
1956 /*
1957 * folio_ref_count() is signed. If that refcount overflows, then
1958 * folio_ref_count() returns a negative value, and callers will avoid
1959 * further incrementing the refcount.
1960 *
1961 * Here, for that overflow case, use the sign bit to count a little
1962 * bit higher via unsigned math, and thus still get an accurate result.
1963 */
1964 return ((unsigned int)folio_ref_count(folio)) >=
1965 GUP_PIN_COUNTING_BIAS;
1966 }
1967
page_maybe_dma_pinned(struct page * page)1968 static inline bool page_maybe_dma_pinned(struct page *page)
1969 {
1970 return folio_maybe_dma_pinned(page_folio(page));
1971 }
1972
1973 /*
1974 * This should most likely only be called during fork() to see whether we
1975 * should break the cow immediately for an anon page on the src mm.
1976 *
1977 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1978 */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1979 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1980 struct page *page)
1981 {
1982 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1983
1984 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1985 return false;
1986
1987 return page_maybe_dma_pinned(page);
1988 }
1989
1990 /**
1991 * is_zero_page - Query if a page is a zero page
1992 * @page: The page to query
1993 *
1994 * This returns true if @page is one of the permanent zero pages.
1995 */
is_zero_page(const struct page * page)1996 static inline bool is_zero_page(const struct page *page)
1997 {
1998 return is_zero_pfn(page_to_pfn(page));
1999 }
2000
2001 /**
2002 * is_zero_folio - Query if a folio is a zero page
2003 * @folio: The folio to query
2004 *
2005 * This returns true if @folio is one of the permanent zero pages.
2006 */
is_zero_folio(const struct folio * folio)2007 static inline bool is_zero_folio(const struct folio *folio)
2008 {
2009 return is_zero_page(&folio->page);
2010 }
2011
2012 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2013 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2014 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2015 {
2016 #ifdef CONFIG_CMA
2017 int mt = folio_migratetype(folio);
2018
2019 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2020 return false;
2021 #endif
2022 /* The zero page can be "pinned" but gets special handling. */
2023 if (is_zero_folio(folio))
2024 return true;
2025
2026 /* Coherent device memory must always allow eviction. */
2027 if (folio_is_device_coherent(folio))
2028 return false;
2029
2030 /* Otherwise, non-movable zone folios can be pinned. */
2031 return !folio_is_zone_movable(folio);
2032
2033 }
2034 #else
folio_is_longterm_pinnable(struct folio * folio)2035 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2036 {
2037 return true;
2038 }
2039 #endif
2040
set_page_zone(struct page * page,enum zone_type zone)2041 static inline void set_page_zone(struct page *page, enum zone_type zone)
2042 {
2043 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2044 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2045 }
2046
set_page_node(struct page * page,unsigned long node)2047 static inline void set_page_node(struct page *page, unsigned long node)
2048 {
2049 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2050 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2051 }
2052
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2053 static inline void set_page_links(struct page *page, enum zone_type zone,
2054 unsigned long node, unsigned long pfn)
2055 {
2056 set_page_zone(page, zone);
2057 set_page_node(page, node);
2058 #ifdef SECTION_IN_PAGE_FLAGS
2059 set_page_section(page, pfn_to_section_nr(pfn));
2060 #endif
2061 }
2062
2063 /**
2064 * folio_nr_pages - The number of pages in the folio.
2065 * @folio: The folio.
2066 *
2067 * Return: A positive power of two.
2068 */
folio_nr_pages(struct folio * folio)2069 static inline long folio_nr_pages(struct folio *folio)
2070 {
2071 if (!folio_test_large(folio))
2072 return 1;
2073 #ifdef CONFIG_64BIT
2074 return folio->_folio_nr_pages;
2075 #else
2076 return 1L << (folio->_flags_1 & 0xff);
2077 #endif
2078 }
2079
2080 /*
2081 * compound_nr() returns the number of pages in this potentially compound
2082 * page. compound_nr() can be called on a tail page, and is defined to
2083 * return 1 in that case.
2084 */
compound_nr(struct page * page)2085 static inline unsigned long compound_nr(struct page *page)
2086 {
2087 struct folio *folio = (struct folio *)page;
2088
2089 if (!test_bit(PG_head, &folio->flags))
2090 return 1;
2091 #ifdef CONFIG_64BIT
2092 return folio->_folio_nr_pages;
2093 #else
2094 return 1L << (folio->_flags_1 & 0xff);
2095 #endif
2096 }
2097
2098 /**
2099 * thp_nr_pages - The number of regular pages in this huge page.
2100 * @page: The head page of a huge page.
2101 */
thp_nr_pages(struct page * page)2102 static inline int thp_nr_pages(struct page *page)
2103 {
2104 return folio_nr_pages((struct folio *)page);
2105 }
2106
2107 /**
2108 * folio_next - Move to the next physical folio.
2109 * @folio: The folio we're currently operating on.
2110 *
2111 * If you have physically contiguous memory which may span more than
2112 * one folio (eg a &struct bio_vec), use this function to move from one
2113 * folio to the next. Do not use it if the memory is only virtually
2114 * contiguous as the folios are almost certainly not adjacent to each
2115 * other. This is the folio equivalent to writing ``page++``.
2116 *
2117 * Context: We assume that the folios are refcounted and/or locked at a
2118 * higher level and do not adjust the reference counts.
2119 * Return: The next struct folio.
2120 */
folio_next(struct folio * folio)2121 static inline struct folio *folio_next(struct folio *folio)
2122 {
2123 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2124 }
2125
2126 /**
2127 * folio_shift - The size of the memory described by this folio.
2128 * @folio: The folio.
2129 *
2130 * A folio represents a number of bytes which is a power-of-two in size.
2131 * This function tells you which power-of-two the folio is. See also
2132 * folio_size() and folio_order().
2133 *
2134 * Context: The caller should have a reference on the folio to prevent
2135 * it from being split. It is not necessary for the folio to be locked.
2136 * Return: The base-2 logarithm of the size of this folio.
2137 */
folio_shift(struct folio * folio)2138 static inline unsigned int folio_shift(struct folio *folio)
2139 {
2140 return PAGE_SHIFT + folio_order(folio);
2141 }
2142
2143 /**
2144 * folio_size - The number of bytes in a folio.
2145 * @folio: The folio.
2146 *
2147 * Context: The caller should have a reference on the folio to prevent
2148 * it from being split. It is not necessary for the folio to be locked.
2149 * Return: The number of bytes in this folio.
2150 */
folio_size(struct folio * folio)2151 static inline size_t folio_size(struct folio *folio)
2152 {
2153 return PAGE_SIZE << folio_order(folio);
2154 }
2155
2156 /**
2157 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2158 * @folio: The folio.
2159 *
2160 * folio_estimated_sharers() aims to serve as a function to efficiently
2161 * estimate the number of processes sharing a folio. This is done by
2162 * looking at the precise mapcount of the first subpage in the folio, and
2163 * assuming the other subpages are the same. This may not be true for large
2164 * folios. If you want exact mapcounts for exact calculations, look at
2165 * page_mapcount() or folio_total_mapcount().
2166 *
2167 * Return: The estimated number of processes sharing a folio.
2168 */
folio_estimated_sharers(struct folio * folio)2169 static inline int folio_estimated_sharers(struct folio *folio)
2170 {
2171 return page_mapcount(folio_page(folio, 0));
2172 }
2173
2174 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)2175 static inline int arch_make_page_accessible(struct page *page)
2176 {
2177 return 0;
2178 }
2179 #endif
2180
2181 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2182 static inline int arch_make_folio_accessible(struct folio *folio)
2183 {
2184 int ret;
2185 long i, nr = folio_nr_pages(folio);
2186
2187 for (i = 0; i < nr; i++) {
2188 ret = arch_make_page_accessible(folio_page(folio, i));
2189 if (ret)
2190 break;
2191 }
2192
2193 return ret;
2194 }
2195 #endif
2196
2197 /*
2198 * Some inline functions in vmstat.h depend on page_zone()
2199 */
2200 #include <linux/vmstat.h>
2201
lowmem_page_address(const struct page * page)2202 static __always_inline void *lowmem_page_address(const struct page *page)
2203 {
2204 return page_to_virt(page);
2205 }
2206
2207 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2208 #define HASHED_PAGE_VIRTUAL
2209 #endif
2210
2211 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2212 static inline void *page_address(const struct page *page)
2213 {
2214 return page->virtual;
2215 }
set_page_address(struct page * page,void * address)2216 static inline void set_page_address(struct page *page, void *address)
2217 {
2218 page->virtual = address;
2219 }
2220 #define page_address_init() do { } while(0)
2221 #endif
2222
2223 #if defined(HASHED_PAGE_VIRTUAL)
2224 void *page_address(const struct page *page);
2225 void set_page_address(struct page *page, void *virtual);
2226 void page_address_init(void);
2227 #endif
2228
2229 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2230 #define page_address(page) lowmem_page_address(page)
2231 #define set_page_address(page, address) do { } while(0)
2232 #define page_address_init() do { } while(0)
2233 #endif
2234
folio_address(const struct folio * folio)2235 static inline void *folio_address(const struct folio *folio)
2236 {
2237 return page_address(&folio->page);
2238 }
2239
2240 extern pgoff_t __page_file_index(struct page *page);
2241
2242 /*
2243 * Return the pagecache index of the passed page. Regular pagecache pages
2244 * use ->index whereas swapcache pages use swp_offset(->private)
2245 */
page_index(struct page * page)2246 static inline pgoff_t page_index(struct page *page)
2247 {
2248 if (unlikely(PageSwapCache(page)))
2249 return __page_file_index(page);
2250 return page->index;
2251 }
2252
2253 /*
2254 * Return true only if the page has been allocated with
2255 * ALLOC_NO_WATERMARKS and the low watermark was not
2256 * met implying that the system is under some pressure.
2257 */
page_is_pfmemalloc(const struct page * page)2258 static inline bool page_is_pfmemalloc(const struct page *page)
2259 {
2260 /*
2261 * lru.next has bit 1 set if the page is allocated from the
2262 * pfmemalloc reserves. Callers may simply overwrite it if
2263 * they do not need to preserve that information.
2264 */
2265 return (uintptr_t)page->lru.next & BIT(1);
2266 }
2267
2268 /*
2269 * Return true only if the folio has been allocated with
2270 * ALLOC_NO_WATERMARKS and the low watermark was not
2271 * met implying that the system is under some pressure.
2272 */
folio_is_pfmemalloc(const struct folio * folio)2273 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2274 {
2275 /*
2276 * lru.next has bit 1 set if the page is allocated from the
2277 * pfmemalloc reserves. Callers may simply overwrite it if
2278 * they do not need to preserve that information.
2279 */
2280 return (uintptr_t)folio->lru.next & BIT(1);
2281 }
2282
2283 /*
2284 * Only to be called by the page allocator on a freshly allocated
2285 * page.
2286 */
set_page_pfmemalloc(struct page * page)2287 static inline void set_page_pfmemalloc(struct page *page)
2288 {
2289 page->lru.next = (void *)BIT(1);
2290 }
2291
clear_page_pfmemalloc(struct page * page)2292 static inline void clear_page_pfmemalloc(struct page *page)
2293 {
2294 page->lru.next = NULL;
2295 }
2296
2297 /*
2298 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2299 */
2300 extern void pagefault_out_of_memory(void);
2301
2302 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2303 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2304 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2305
2306 /*
2307 * Parameter block passed down to zap_pte_range in exceptional cases.
2308 */
2309 struct zap_details {
2310 struct folio *single_folio; /* Locked folio to be unmapped */
2311 bool even_cows; /* Zap COWed private pages too? */
2312 zap_flags_t zap_flags; /* Extra flags for zapping */
2313 };
2314
2315 /*
2316 * Whether to drop the pte markers, for example, the uffd-wp information for
2317 * file-backed memory. This should only be specified when we will completely
2318 * drop the page in the mm, either by truncation or unmapping of the vma. By
2319 * default, the flag is not set.
2320 */
2321 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2322 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2323 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2324
2325 #ifdef CONFIG_SCHED_MM_CID
2326 void sched_mm_cid_before_execve(struct task_struct *t);
2327 void sched_mm_cid_after_execve(struct task_struct *t);
2328 void sched_mm_cid_fork(struct task_struct *t);
2329 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2330 static inline int task_mm_cid(struct task_struct *t)
2331 {
2332 return t->mm_cid;
2333 }
2334 #else
sched_mm_cid_before_execve(struct task_struct * t)2335 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2336 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2337 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2338 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2339 static inline int task_mm_cid(struct task_struct *t)
2340 {
2341 /*
2342 * Use the processor id as a fall-back when the mm cid feature is
2343 * disabled. This provides functional per-cpu data structure accesses
2344 * in user-space, althrough it won't provide the memory usage benefits.
2345 */
2346 return raw_smp_processor_id();
2347 }
2348 #endif
2349
2350 #ifdef CONFIG_MMU
2351 extern bool can_do_mlock(void);
2352 #else
can_do_mlock(void)2353 static inline bool can_do_mlock(void) { return false; }
2354 #endif
2355 extern int user_shm_lock(size_t, struct ucounts *);
2356 extern void user_shm_unlock(size_t, struct ucounts *);
2357
2358 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2359 pte_t pte);
2360 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2361 pte_t pte);
2362 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2363 pmd_t pmd);
2364
2365 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2366 unsigned long size);
2367 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2368 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2369 static inline void zap_vma_pages(struct vm_area_struct *vma)
2370 {
2371 zap_page_range_single(vma, vma->vm_start,
2372 vma->vm_end - vma->vm_start, NULL);
2373 }
2374 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2375 struct vm_area_struct *start_vma, unsigned long start,
2376 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2377
2378 struct mmu_notifier_range;
2379
2380 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2381 unsigned long end, unsigned long floor, unsigned long ceiling);
2382 int
2383 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2384 int follow_pte(struct mm_struct *mm, unsigned long address,
2385 pte_t **ptepp, spinlock_t **ptlp);
2386 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2387 unsigned long *pfn);
2388 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2389 unsigned int flags, unsigned long *prot, resource_size_t *phys);
2390 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2391 void *buf, int len, int write);
2392
2393 extern void truncate_pagecache(struct inode *inode, loff_t new);
2394 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2395 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2396 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2397 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2398
2399 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2400 unsigned long address, struct pt_regs *regs);
2401
2402 #ifdef CONFIG_MMU
2403 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2404 unsigned long address, unsigned int flags,
2405 struct pt_regs *regs);
2406 extern int fixup_user_fault(struct mm_struct *mm,
2407 unsigned long address, unsigned int fault_flags,
2408 bool *unlocked);
2409 void unmap_mapping_pages(struct address_space *mapping,
2410 pgoff_t start, pgoff_t nr, bool even_cows);
2411 void unmap_mapping_range(struct address_space *mapping,
2412 loff_t const holebegin, loff_t const holelen, int even_cows);
2413 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2414 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2415 unsigned long address, unsigned int flags,
2416 struct pt_regs *regs)
2417 {
2418 /* should never happen if there's no MMU */
2419 BUG();
2420 return VM_FAULT_SIGBUS;
2421 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2422 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2423 unsigned int fault_flags, bool *unlocked)
2424 {
2425 /* should never happen if there's no MMU */
2426 BUG();
2427 return -EFAULT;
2428 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2429 static inline void unmap_mapping_pages(struct address_space *mapping,
2430 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2431 static inline void unmap_mapping_range(struct address_space *mapping,
2432 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2433 #endif
2434
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2435 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2436 loff_t const holebegin, loff_t const holelen)
2437 {
2438 unmap_mapping_range(mapping, holebegin, holelen, 0);
2439 }
2440
2441 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2442 unsigned long addr);
2443
2444 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2445 void *buf, int len, unsigned int gup_flags);
2446 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2447 void *buf, int len, unsigned int gup_flags);
2448 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2449 void *buf, int len, unsigned int gup_flags);
2450
2451 long get_user_pages_remote(struct mm_struct *mm,
2452 unsigned long start, unsigned long nr_pages,
2453 unsigned int gup_flags, struct page **pages,
2454 int *locked);
2455 long pin_user_pages_remote(struct mm_struct *mm,
2456 unsigned long start, unsigned long nr_pages,
2457 unsigned int gup_flags, struct page **pages,
2458 int *locked);
2459
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2460 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2461 unsigned long addr,
2462 int gup_flags,
2463 struct vm_area_struct **vmap)
2464 {
2465 struct page *page;
2466 struct vm_area_struct *vma;
2467 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2468
2469 if (got < 0)
2470 return ERR_PTR(got);
2471 if (got == 0)
2472 return NULL;
2473
2474 vma = vma_lookup(mm, addr);
2475 if (WARN_ON_ONCE(!vma)) {
2476 put_page(page);
2477 return ERR_PTR(-EINVAL);
2478 }
2479
2480 *vmap = vma;
2481 return page;
2482 }
2483
2484 long get_user_pages(unsigned long start, unsigned long nr_pages,
2485 unsigned int gup_flags, struct page **pages);
2486 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2487 unsigned int gup_flags, struct page **pages);
2488 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2489 struct page **pages, unsigned int gup_flags);
2490 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2491 struct page **pages, unsigned int gup_flags);
2492
2493 int get_user_pages_fast(unsigned long start, int nr_pages,
2494 unsigned int gup_flags, struct page **pages);
2495 int pin_user_pages_fast(unsigned long start, int nr_pages,
2496 unsigned int gup_flags, struct page **pages);
2497 void folio_add_pin(struct folio *folio);
2498
2499 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2500 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2501 struct task_struct *task, bool bypass_rlim);
2502
2503 struct kvec;
2504 struct page *get_dump_page(unsigned long addr);
2505
2506 bool folio_mark_dirty(struct folio *folio);
2507 bool set_page_dirty(struct page *page);
2508 int set_page_dirty_lock(struct page *page);
2509
2510 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2511
2512 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2513 unsigned long old_addr, struct vm_area_struct *new_vma,
2514 unsigned long new_addr, unsigned long len,
2515 bool need_rmap_locks);
2516
2517 /*
2518 * Flags used by change_protection(). For now we make it a bitmap so
2519 * that we can pass in multiple flags just like parameters. However
2520 * for now all the callers are only use one of the flags at the same
2521 * time.
2522 */
2523 /*
2524 * Whether we should manually check if we can map individual PTEs writable,
2525 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2526 * PTEs automatically in a writable mapping.
2527 */
2528 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2529 /* Whether this protection change is for NUMA hints */
2530 #define MM_CP_PROT_NUMA (1UL << 1)
2531 /* Whether this change is for write protecting */
2532 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2533 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2534 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2535 MM_CP_UFFD_WP_RESOLVE)
2536
2537 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2538 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
vma_wants_manual_pte_write_upgrade(struct vm_area_struct * vma)2539 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2540 {
2541 /*
2542 * We want to check manually if we can change individual PTEs writable
2543 * if we can't do that automatically for all PTEs in a mapping. For
2544 * private mappings, that's always the case when we have write
2545 * permissions as we properly have to handle COW.
2546 */
2547 if (vma->vm_flags & VM_SHARED)
2548 return vma_wants_writenotify(vma, vma->vm_page_prot);
2549 return !!(vma->vm_flags & VM_WRITE);
2550
2551 }
2552 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2553 pte_t pte);
2554 extern long change_protection(struct mmu_gather *tlb,
2555 struct vm_area_struct *vma, unsigned long start,
2556 unsigned long end, unsigned long cp_flags);
2557 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2558 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2559 unsigned long start, unsigned long end, unsigned long newflags);
2560
2561 /*
2562 * doesn't attempt to fault and will return short.
2563 */
2564 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2565 unsigned int gup_flags, struct page **pages);
2566
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2567 static inline bool get_user_page_fast_only(unsigned long addr,
2568 unsigned int gup_flags, struct page **pagep)
2569 {
2570 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2571 }
2572 /*
2573 * per-process(per-mm_struct) statistics.
2574 */
get_mm_counter(struct mm_struct * mm,int member)2575 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2576 {
2577 return percpu_counter_read_positive(&mm->rss_stat[member]);
2578 }
2579
get_mm_counter_sum(struct mm_struct * mm,int member)2580 static inline unsigned long get_mm_counter_sum(struct mm_struct *mm, int member)
2581 {
2582 return percpu_counter_sum_positive(&mm->rss_stat[member]);
2583 }
2584
2585 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2586
add_mm_counter(struct mm_struct * mm,int member,long value)2587 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2588 {
2589 percpu_counter_add(&mm->rss_stat[member], value);
2590
2591 mm_trace_rss_stat(mm, member);
2592 }
2593
inc_mm_counter(struct mm_struct * mm,int member)2594 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2595 {
2596 percpu_counter_inc(&mm->rss_stat[member]);
2597
2598 mm_trace_rss_stat(mm, member);
2599 }
2600
dec_mm_counter(struct mm_struct * mm,int member)2601 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2602 {
2603 percpu_counter_dec(&mm->rss_stat[member]);
2604
2605 mm_trace_rss_stat(mm, member);
2606 }
2607
2608 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2609 static inline int mm_counter_file(struct page *page)
2610 {
2611 if (PageSwapBacked(page))
2612 return MM_SHMEMPAGES;
2613 return MM_FILEPAGES;
2614 }
2615
mm_counter(struct page * page)2616 static inline int mm_counter(struct page *page)
2617 {
2618 if (PageAnon(page))
2619 return MM_ANONPAGES;
2620 return mm_counter_file(page);
2621 }
2622
get_mm_rss(struct mm_struct * mm)2623 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2624 {
2625 return get_mm_counter(mm, MM_FILEPAGES) +
2626 get_mm_counter(mm, MM_ANONPAGES) +
2627 get_mm_counter(mm, MM_SHMEMPAGES);
2628 }
2629
get_mm_hiwater_rss(struct mm_struct * mm)2630 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2631 {
2632 return max(mm->hiwater_rss, get_mm_rss(mm));
2633 }
2634
get_mm_hiwater_vm(struct mm_struct * mm)2635 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2636 {
2637 return max(mm->hiwater_vm, mm->total_vm);
2638 }
2639
update_hiwater_rss(struct mm_struct * mm)2640 static inline void update_hiwater_rss(struct mm_struct *mm)
2641 {
2642 unsigned long _rss = get_mm_rss(mm);
2643
2644 if ((mm)->hiwater_rss < _rss)
2645 (mm)->hiwater_rss = _rss;
2646 }
2647
update_hiwater_vm(struct mm_struct * mm)2648 static inline void update_hiwater_vm(struct mm_struct *mm)
2649 {
2650 if (mm->hiwater_vm < mm->total_vm)
2651 mm->hiwater_vm = mm->total_vm;
2652 }
2653
reset_mm_hiwater_rss(struct mm_struct * mm)2654 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2655 {
2656 mm->hiwater_rss = get_mm_rss(mm);
2657 }
2658
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2659 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2660 struct mm_struct *mm)
2661 {
2662 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2663
2664 if (*maxrss < hiwater_rss)
2665 *maxrss = hiwater_rss;
2666 }
2667
2668 #if defined(SPLIT_RSS_COUNTING)
2669 void sync_mm_rss(struct mm_struct *mm);
2670 #else
sync_mm_rss(struct mm_struct * mm)2671 static inline void sync_mm_rss(struct mm_struct *mm)
2672 {
2673 }
2674 #endif
2675
2676 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2677 static inline int pte_special(pte_t pte)
2678 {
2679 return 0;
2680 }
2681
pte_mkspecial(pte_t pte)2682 static inline pte_t pte_mkspecial(pte_t pte)
2683 {
2684 return pte;
2685 }
2686 #endif
2687
2688 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2689 static inline int pte_devmap(pte_t pte)
2690 {
2691 return 0;
2692 }
2693 #endif
2694
2695 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2696 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2697 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2698 spinlock_t **ptl)
2699 {
2700 pte_t *ptep;
2701 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2702 return ptep;
2703 }
2704
2705 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2706 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2707 unsigned long address)
2708 {
2709 return 0;
2710 }
2711 #else
2712 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2713 #endif
2714
2715 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2716 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2717 unsigned long address)
2718 {
2719 return 0;
2720 }
mm_inc_nr_puds(struct mm_struct * mm)2721 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2722 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2723
2724 #else
2725 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2726
mm_inc_nr_puds(struct mm_struct * mm)2727 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2728 {
2729 if (mm_pud_folded(mm))
2730 return;
2731 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2732 }
2733
mm_dec_nr_puds(struct mm_struct * mm)2734 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2735 {
2736 if (mm_pud_folded(mm))
2737 return;
2738 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2739 }
2740 #endif
2741
2742 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2743 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2744 unsigned long address)
2745 {
2746 return 0;
2747 }
2748
mm_inc_nr_pmds(struct mm_struct * mm)2749 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2750 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2751
2752 #else
2753 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2754
mm_inc_nr_pmds(struct mm_struct * mm)2755 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2756 {
2757 if (mm_pmd_folded(mm))
2758 return;
2759 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2760 }
2761
mm_dec_nr_pmds(struct mm_struct * mm)2762 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2763 {
2764 if (mm_pmd_folded(mm))
2765 return;
2766 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2767 }
2768 #endif
2769
2770 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2771 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2772 {
2773 atomic_long_set(&mm->pgtables_bytes, 0);
2774 }
2775
mm_pgtables_bytes(const struct mm_struct * mm)2776 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2777 {
2778 return atomic_long_read(&mm->pgtables_bytes);
2779 }
2780
mm_inc_nr_ptes(struct mm_struct * mm)2781 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2782 {
2783 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2784 }
2785
mm_dec_nr_ptes(struct mm_struct * mm)2786 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2787 {
2788 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2789 }
2790 #else
2791
mm_pgtables_bytes_init(struct mm_struct * mm)2792 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2793 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2794 {
2795 return 0;
2796 }
2797
mm_inc_nr_ptes(struct mm_struct * mm)2798 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2799 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2800 #endif
2801
2802 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2803 int __pte_alloc_kernel(pmd_t *pmd);
2804
2805 #if defined(CONFIG_MMU)
2806
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2807 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2808 unsigned long address)
2809 {
2810 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2811 NULL : p4d_offset(pgd, address);
2812 }
2813
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2814 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2815 unsigned long address)
2816 {
2817 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2818 NULL : pud_offset(p4d, address);
2819 }
2820
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2821 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2822 {
2823 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2824 NULL: pmd_offset(pud, address);
2825 }
2826 #endif /* CONFIG_MMU */
2827
virt_to_ptdesc(const void * x)2828 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2829 {
2830 return page_ptdesc(virt_to_page(x));
2831 }
2832
ptdesc_to_virt(const struct ptdesc * pt)2833 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2834 {
2835 return page_to_virt(ptdesc_page(pt));
2836 }
2837
ptdesc_address(const struct ptdesc * pt)2838 static inline void *ptdesc_address(const struct ptdesc *pt)
2839 {
2840 return folio_address(ptdesc_folio(pt));
2841 }
2842
pagetable_is_reserved(struct ptdesc * pt)2843 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2844 {
2845 return folio_test_reserved(ptdesc_folio(pt));
2846 }
2847
2848 /**
2849 * pagetable_alloc - Allocate pagetables
2850 * @gfp: GFP flags
2851 * @order: desired pagetable order
2852 *
2853 * pagetable_alloc allocates memory for page tables as well as a page table
2854 * descriptor to describe that memory.
2855 *
2856 * Return: The ptdesc describing the allocated page tables.
2857 */
pagetable_alloc(gfp_t gfp,unsigned int order)2858 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2859 {
2860 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2861
2862 return page_ptdesc(page);
2863 }
2864
2865 /**
2866 * pagetable_free - Free pagetables
2867 * @pt: The page table descriptor
2868 *
2869 * pagetable_free frees the memory of all page tables described by a page
2870 * table descriptor and the memory for the descriptor itself.
2871 */
pagetable_free(struct ptdesc * pt)2872 static inline void pagetable_free(struct ptdesc *pt)
2873 {
2874 struct page *page = ptdesc_page(pt);
2875
2876 __free_pages(page, compound_order(page));
2877 }
2878
2879 #if USE_SPLIT_PTE_PTLOCKS
2880 #if ALLOC_SPLIT_PTLOCKS
2881 void __init ptlock_cache_init(void);
2882 bool ptlock_alloc(struct ptdesc *ptdesc);
2883 void ptlock_free(struct ptdesc *ptdesc);
2884
ptlock_ptr(struct ptdesc * ptdesc)2885 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2886 {
2887 return ptdesc->ptl;
2888 }
2889 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2890 static inline void ptlock_cache_init(void)
2891 {
2892 }
2893
ptlock_alloc(struct ptdesc * ptdesc)2894 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2895 {
2896 return true;
2897 }
2898
ptlock_free(struct ptdesc * ptdesc)2899 static inline void ptlock_free(struct ptdesc *ptdesc)
2900 {
2901 }
2902
ptlock_ptr(struct ptdesc * ptdesc)2903 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2904 {
2905 return &ptdesc->ptl;
2906 }
2907 #endif /* ALLOC_SPLIT_PTLOCKS */
2908
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2909 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2910 {
2911 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2912 }
2913
ptlock_init(struct ptdesc * ptdesc)2914 static inline bool ptlock_init(struct ptdesc *ptdesc)
2915 {
2916 /*
2917 * prep_new_page() initialize page->private (and therefore page->ptl)
2918 * with 0. Make sure nobody took it in use in between.
2919 *
2920 * It can happen if arch try to use slab for page table allocation:
2921 * slab code uses page->slab_cache, which share storage with page->ptl.
2922 */
2923 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2924 if (!ptlock_alloc(ptdesc))
2925 return false;
2926 spin_lock_init(ptlock_ptr(ptdesc));
2927 return true;
2928 }
2929
2930 #else /* !USE_SPLIT_PTE_PTLOCKS */
2931 /*
2932 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2933 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2934 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2935 {
2936 return &mm->page_table_lock;
2937 }
ptlock_cache_init(void)2938 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)2939 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)2940 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2941 #endif /* USE_SPLIT_PTE_PTLOCKS */
2942
pagetable_pte_ctor(struct ptdesc * ptdesc)2943 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2944 {
2945 struct folio *folio = ptdesc_folio(ptdesc);
2946
2947 if (!ptlock_init(ptdesc))
2948 return false;
2949 __folio_set_pgtable(folio);
2950 lruvec_stat_add_folio(folio, NR_PAGETABLE);
2951 return true;
2952 }
2953
pagetable_pte_dtor(struct ptdesc * ptdesc)2954 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2955 {
2956 struct folio *folio = ptdesc_folio(ptdesc);
2957
2958 ptlock_free(ptdesc);
2959 __folio_clear_pgtable(folio);
2960 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2961 }
2962
2963 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
pte_offset_map(pmd_t * pmd,unsigned long addr)2964 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2965 {
2966 return __pte_offset_map(pmd, addr, NULL);
2967 }
2968
2969 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2970 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)2971 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2972 unsigned long addr, spinlock_t **ptlp)
2973 {
2974 pte_t *pte;
2975
2976 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2977 return pte;
2978 }
2979
2980 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2981 unsigned long addr, spinlock_t **ptlp);
2982
2983 #define pte_unmap_unlock(pte, ptl) do { \
2984 spin_unlock(ptl); \
2985 pte_unmap(pte); \
2986 } while (0)
2987
2988 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2989
2990 #define pte_alloc_map(mm, pmd, address) \
2991 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2992
2993 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2994 (pte_alloc(mm, pmd) ? \
2995 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2996
2997 #define pte_alloc_kernel(pmd, address) \
2998 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2999 NULL: pte_offset_kernel(pmd, address))
3000
3001 #if USE_SPLIT_PMD_PTLOCKS
3002
pmd_pgtable_page(pmd_t * pmd)3003 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3004 {
3005 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3006 return virt_to_page((void *)((unsigned long) pmd & mask));
3007 }
3008
pmd_ptdesc(pmd_t * pmd)3009 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3010 {
3011 return page_ptdesc(pmd_pgtable_page(pmd));
3012 }
3013
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3014 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3015 {
3016 return ptlock_ptr(pmd_ptdesc(pmd));
3017 }
3018
pmd_ptlock_init(struct ptdesc * ptdesc)3019 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3020 {
3021 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3022 ptdesc->pmd_huge_pte = NULL;
3023 #endif
3024 return ptlock_init(ptdesc);
3025 }
3026
pmd_ptlock_free(struct ptdesc * ptdesc)3027 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3028 {
3029 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3030 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3031 #endif
3032 ptlock_free(ptdesc);
3033 }
3034
3035 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3036
3037 #else
3038
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3039 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3040 {
3041 return &mm->page_table_lock;
3042 }
3043
pmd_ptlock_init(struct ptdesc * ptdesc)3044 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
pmd_ptlock_free(struct ptdesc * ptdesc)3045 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3046
3047 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3048
3049 #endif
3050
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3051 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3052 {
3053 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3054 spin_lock(ptl);
3055 return ptl;
3056 }
3057
pagetable_pmd_ctor(struct ptdesc * ptdesc)3058 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3059 {
3060 struct folio *folio = ptdesc_folio(ptdesc);
3061
3062 if (!pmd_ptlock_init(ptdesc))
3063 return false;
3064 __folio_set_pgtable(folio);
3065 ptdesc_pmd_pts_init(ptdesc);
3066 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3067 return true;
3068 }
3069
pagetable_pmd_dtor(struct ptdesc * ptdesc)3070 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3071 {
3072 struct folio *folio = ptdesc_folio(ptdesc);
3073
3074 pmd_ptlock_free(ptdesc);
3075 __folio_clear_pgtable(folio);
3076 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3077 }
3078
3079 /*
3080 * No scalability reason to split PUD locks yet, but follow the same pattern
3081 * as the PMD locks to make it easier if we decide to. The VM should not be
3082 * considered ready to switch to split PUD locks yet; there may be places
3083 * which need to be converted from page_table_lock.
3084 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3085 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3086 {
3087 return &mm->page_table_lock;
3088 }
3089
pud_lock(struct mm_struct * mm,pud_t * pud)3090 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3091 {
3092 spinlock_t *ptl = pud_lockptr(mm, pud);
3093
3094 spin_lock(ptl);
3095 return ptl;
3096 }
3097
3098 extern void __init pagecache_init(void);
3099 extern void free_initmem(void);
3100
3101 /*
3102 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3103 * into the buddy system. The freed pages will be poisoned with pattern
3104 * "poison" if it's within range [0, UCHAR_MAX].
3105 * Return pages freed into the buddy system.
3106 */
3107 extern unsigned long free_reserved_area(void *start, void *end,
3108 int poison, const char *s);
3109
3110 extern void adjust_managed_page_count(struct page *page, long count);
3111
3112 extern void reserve_bootmem_region(phys_addr_t start,
3113 phys_addr_t end, int nid);
3114
3115 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)3116 static inline void free_reserved_page(struct page *page)
3117 {
3118 ClearPageReserved(page);
3119 init_page_count(page);
3120 __free_page(page);
3121 adjust_managed_page_count(page, 1);
3122 }
3123 #define free_highmem_page(page) free_reserved_page(page)
3124
mark_page_reserved(struct page * page)3125 static inline void mark_page_reserved(struct page *page)
3126 {
3127 SetPageReserved(page);
3128 adjust_managed_page_count(page, -1);
3129 }
3130
free_reserved_ptdesc(struct ptdesc * pt)3131 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3132 {
3133 free_reserved_page(ptdesc_page(pt));
3134 }
3135
3136 /*
3137 * Default method to free all the __init memory into the buddy system.
3138 * The freed pages will be poisoned with pattern "poison" if it's within
3139 * range [0, UCHAR_MAX].
3140 * Return pages freed into the buddy system.
3141 */
free_initmem_default(int poison)3142 static inline unsigned long free_initmem_default(int poison)
3143 {
3144 extern char __init_begin[], __init_end[];
3145
3146 return free_reserved_area(&__init_begin, &__init_end,
3147 poison, "unused kernel image (initmem)");
3148 }
3149
get_num_physpages(void)3150 static inline unsigned long get_num_physpages(void)
3151 {
3152 int nid;
3153 unsigned long phys_pages = 0;
3154
3155 for_each_online_node(nid)
3156 phys_pages += node_present_pages(nid);
3157
3158 return phys_pages;
3159 }
3160
3161 /*
3162 * Using memblock node mappings, an architecture may initialise its
3163 * zones, allocate the backing mem_map and account for memory holes in an
3164 * architecture independent manner.
3165 *
3166 * An architecture is expected to register range of page frames backed by
3167 * physical memory with memblock_add[_node]() before calling
3168 * free_area_init() passing in the PFN each zone ends at. At a basic
3169 * usage, an architecture is expected to do something like
3170 *
3171 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3172 * max_highmem_pfn};
3173 * for_each_valid_physical_page_range()
3174 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3175 * free_area_init(max_zone_pfns);
3176 */
3177 void free_area_init(unsigned long *max_zone_pfn);
3178 unsigned long node_map_pfn_alignment(void);
3179 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3180 unsigned long end_pfn);
3181 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3182 unsigned long end_pfn);
3183 extern void get_pfn_range_for_nid(unsigned int nid,
3184 unsigned long *start_pfn, unsigned long *end_pfn);
3185
3186 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3187 static inline int early_pfn_to_nid(unsigned long pfn)
3188 {
3189 return 0;
3190 }
3191 #else
3192 /* please see mm/page_alloc.c */
3193 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3194 #endif
3195
3196 extern void set_dma_reserve(unsigned long new_dma_reserve);
3197 extern void mem_init(void);
3198 extern void __init mmap_init(void);
3199
3200 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3201 static inline void show_mem(void)
3202 {
3203 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3204 }
3205 extern long si_mem_available(void);
3206 extern void si_meminfo(struct sysinfo * val);
3207 extern void si_meminfo_node(struct sysinfo *val, int nid);
3208 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3209 extern unsigned long arch_reserved_kernel_pages(void);
3210 #endif
3211
3212 extern __printf(3, 4)
3213 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3214
3215 extern void setup_per_cpu_pageset(void);
3216
3217 /* nommu.c */
3218 extern atomic_long_t mmap_pages_allocated;
3219 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3220
3221 /* interval_tree.c */
3222 void vma_interval_tree_insert(struct vm_area_struct *node,
3223 struct rb_root_cached *root);
3224 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3225 struct vm_area_struct *prev,
3226 struct rb_root_cached *root);
3227 void vma_interval_tree_remove(struct vm_area_struct *node,
3228 struct rb_root_cached *root);
3229 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3230 unsigned long start, unsigned long last);
3231 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3232 unsigned long start, unsigned long last);
3233
3234 #define vma_interval_tree_foreach(vma, root, start, last) \
3235 for (vma = vma_interval_tree_iter_first(root, start, last); \
3236 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3237
3238 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3239 struct rb_root_cached *root);
3240 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3241 struct rb_root_cached *root);
3242 struct anon_vma_chain *
3243 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3244 unsigned long start, unsigned long last);
3245 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3246 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3247 #ifdef CONFIG_DEBUG_VM_RB
3248 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3249 #endif
3250
3251 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3252 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3253 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3254
3255 /* mmap.c */
3256 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3257 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3258 unsigned long start, unsigned long end, pgoff_t pgoff,
3259 struct vm_area_struct *next);
3260 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3261 unsigned long start, unsigned long end, pgoff_t pgoff);
3262 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3263 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3264 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3265 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3266 struct anon_vma_name *);
3267 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3268 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3269 unsigned long addr, int new_below);
3270 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3271 unsigned long addr, int new_below);
3272 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3273 extern void unlink_file_vma(struct vm_area_struct *);
3274 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3275 unsigned long addr, unsigned long len, pgoff_t pgoff,
3276 bool *need_rmap_locks);
3277 extern void exit_mmap(struct mm_struct *);
3278
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3279 static inline int check_data_rlimit(unsigned long rlim,
3280 unsigned long new,
3281 unsigned long start,
3282 unsigned long end_data,
3283 unsigned long start_data)
3284 {
3285 if (rlim < RLIM_INFINITY) {
3286 if (((new - start) + (end_data - start_data)) > rlim)
3287 return -ENOSPC;
3288 }
3289
3290 return 0;
3291 }
3292
3293 extern int mm_take_all_locks(struct mm_struct *mm);
3294 extern void mm_drop_all_locks(struct mm_struct *mm);
3295
3296 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3297 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3298 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3299 extern struct file *get_task_exe_file(struct task_struct *task);
3300
3301 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3302 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3303
3304 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3305 const struct vm_special_mapping *sm);
3306 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3307 unsigned long addr, unsigned long len,
3308 unsigned long flags,
3309 const struct vm_special_mapping *spec);
3310 /* This is an obsolete alternative to _install_special_mapping. */
3311 extern int install_special_mapping(struct mm_struct *mm,
3312 unsigned long addr, unsigned long len,
3313 unsigned long flags, struct page **pages);
3314
3315 unsigned long randomize_stack_top(unsigned long stack_top);
3316 unsigned long randomize_page(unsigned long start, unsigned long range);
3317
3318 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3319
3320 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3321 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3322 struct list_head *uf);
3323 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3324 unsigned long len, unsigned long prot, unsigned long flags,
3325 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3326 struct list_head *uf);
3327 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3328 unsigned long start, size_t len, struct list_head *uf,
3329 bool unlock);
3330 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3331 struct list_head *uf);
3332 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3333
3334 #ifdef CONFIG_MMU
3335 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3336 unsigned long start, unsigned long end,
3337 struct list_head *uf, bool unlock);
3338 extern int __mm_populate(unsigned long addr, unsigned long len,
3339 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3340 static inline void mm_populate(unsigned long addr, unsigned long len)
3341 {
3342 /* Ignore errors */
3343 (void) __mm_populate(addr, len, 1);
3344 }
3345 #else
mm_populate(unsigned long addr,unsigned long len)3346 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3347 #endif
3348
3349 /* These take the mm semaphore themselves */
3350 extern int __must_check vm_brk(unsigned long, unsigned long);
3351 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3352 extern int vm_munmap(unsigned long, size_t);
3353 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3354 unsigned long, unsigned long,
3355 unsigned long, unsigned long);
3356
3357 struct vm_unmapped_area_info {
3358 #define VM_UNMAPPED_AREA_TOPDOWN 1
3359 #define VM_UNMAPPED_AREA_XPM 2
3360 unsigned long flags;
3361 unsigned long length;
3362 unsigned long low_limit;
3363 unsigned long high_limit;
3364 unsigned long align_mask;
3365 unsigned long align_offset;
3366 };
3367
3368 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3369
3370 /* truncate.c */
3371 extern void truncate_inode_pages(struct address_space *, loff_t);
3372 extern void truncate_inode_pages_range(struct address_space *,
3373 loff_t lstart, loff_t lend);
3374 extern void truncate_inode_pages_final(struct address_space *);
3375
3376 /* generic vm_area_ops exported for stackable file systems */
3377 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3378 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3379 pgoff_t start_pgoff, pgoff_t end_pgoff);
3380 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3381
3382 extern unsigned long stack_guard_gap;
3383 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3384 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3385 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3386
3387 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3388 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3389
3390 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3391 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3392 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3393 struct vm_area_struct **pprev);
3394
3395 /*
3396 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3397 * NULL if none. Assume start_addr < end_addr.
3398 */
3399 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3400 unsigned long start_addr, unsigned long end_addr);
3401
3402 /**
3403 * vma_lookup() - Find a VMA at a specific address
3404 * @mm: The process address space.
3405 * @addr: The user address.
3406 *
3407 * Return: The vm_area_struct at the given address, %NULL otherwise.
3408 */
3409 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3410 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3411 {
3412 return mtree_load(&mm->mm_mt, addr);
3413 }
3414
stack_guard_start_gap(struct vm_area_struct * vma)3415 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3416 {
3417 if (vma->vm_flags & VM_GROWSDOWN)
3418 return stack_guard_gap;
3419
3420 /* See reasoning around the VM_SHADOW_STACK definition */
3421 if (vma->vm_flags & VM_SHADOW_STACK)
3422 return PAGE_SIZE;
3423
3424 return 0;
3425 }
3426
vm_start_gap(struct vm_area_struct * vma)3427 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3428 {
3429 unsigned long gap = stack_guard_start_gap(vma);
3430 unsigned long vm_start = vma->vm_start;
3431
3432 vm_start -= gap;
3433 if (vm_start > vma->vm_start)
3434 vm_start = 0;
3435 return vm_start;
3436 }
3437
vm_end_gap(struct vm_area_struct * vma)3438 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3439 {
3440 unsigned long vm_end = vma->vm_end;
3441
3442 if (vma->vm_flags & VM_GROWSUP) {
3443 vm_end += stack_guard_gap;
3444 if (vm_end < vma->vm_end)
3445 vm_end = -PAGE_SIZE;
3446 }
3447 return vm_end;
3448 }
3449
vma_pages(struct vm_area_struct * vma)3450 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3451 {
3452 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3453 }
3454
3455 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3456 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3457 unsigned long vm_start, unsigned long vm_end)
3458 {
3459 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3460
3461 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3462 vma = NULL;
3463
3464 return vma;
3465 }
3466
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3467 static inline bool range_in_vma(struct vm_area_struct *vma,
3468 unsigned long start, unsigned long end)
3469 {
3470 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3471 }
3472
3473 #ifdef CONFIG_MMU
3474 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3475 void vma_set_page_prot(struct vm_area_struct *vma);
3476 #else
vm_get_page_prot(unsigned long vm_flags)3477 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3478 {
3479 return __pgprot(0);
3480 }
vma_set_page_prot(struct vm_area_struct * vma)3481 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3482 {
3483 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3484 }
3485 #endif
3486
3487 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3488
3489 #ifdef CONFIG_NUMA_BALANCING
3490 unsigned long change_prot_numa(struct vm_area_struct *vma,
3491 unsigned long start, unsigned long end);
3492 #endif
3493
3494 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3495 unsigned long addr);
3496 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3497 unsigned long pfn, unsigned long size, pgprot_t);
3498 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3499 unsigned long pfn, unsigned long size, pgprot_t prot);
3500 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3501 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3502 struct page **pages, unsigned long *num);
3503 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3504 unsigned long num);
3505 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3506 unsigned long num);
3507 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3508 unsigned long pfn);
3509 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3510 unsigned long pfn, pgprot_t pgprot);
3511 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3512 pfn_t pfn);
3513 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3514 unsigned long addr, pfn_t pfn);
3515 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3516
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3517 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3518 unsigned long addr, struct page *page)
3519 {
3520 int err = vm_insert_page(vma, addr, page);
3521
3522 if (err == -ENOMEM)
3523 return VM_FAULT_OOM;
3524 if (err < 0 && err != -EBUSY)
3525 return VM_FAULT_SIGBUS;
3526
3527 return VM_FAULT_NOPAGE;
3528 }
3529
3530 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3531 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3532 unsigned long addr, unsigned long pfn,
3533 unsigned long size, pgprot_t prot)
3534 {
3535 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3536 }
3537 #endif
3538
vmf_error(int err)3539 static inline vm_fault_t vmf_error(int err)
3540 {
3541 if (err == -ENOMEM)
3542 return VM_FAULT_OOM;
3543 else if (err == -EHWPOISON)
3544 return VM_FAULT_HWPOISON;
3545 return VM_FAULT_SIGBUS;
3546 }
3547
3548 /*
3549 * Convert errno to return value for ->page_mkwrite() calls.
3550 *
3551 * This should eventually be merged with vmf_error() above, but will need a
3552 * careful audit of all vmf_error() callers.
3553 */
vmf_fs_error(int err)3554 static inline vm_fault_t vmf_fs_error(int err)
3555 {
3556 if (err == 0)
3557 return VM_FAULT_LOCKED;
3558 if (err == -EFAULT || err == -EAGAIN)
3559 return VM_FAULT_NOPAGE;
3560 if (err == -ENOMEM)
3561 return VM_FAULT_OOM;
3562 /* -ENOSPC, -EDQUOT, -EIO ... */
3563 return VM_FAULT_SIGBUS;
3564 }
3565
3566 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3567 unsigned int foll_flags);
3568
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3569 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3570 {
3571 if (vm_fault & VM_FAULT_OOM)
3572 return -ENOMEM;
3573 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3574 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3575 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3576 return -EFAULT;
3577 return 0;
3578 }
3579
3580 /*
3581 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3582 * a (NUMA hinting) fault is required.
3583 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3584 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3585 unsigned int flags)
3586 {
3587 /*
3588 * If callers don't want to honor NUMA hinting faults, no need to
3589 * determine if we would actually have to trigger a NUMA hinting fault.
3590 */
3591 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3592 return true;
3593
3594 /*
3595 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3596 *
3597 * Requiring a fault here even for inaccessible VMAs would mean that
3598 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3599 * refuses to process NUMA hinting faults in inaccessible VMAs.
3600 */
3601 return !vma_is_accessible(vma);
3602 }
3603
3604 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3605 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3606 unsigned long size, pte_fn_t fn, void *data);
3607 extern int apply_to_existing_page_range(struct mm_struct *mm,
3608 unsigned long address, unsigned long size,
3609 pte_fn_t fn, void *data);
3610
3611 #ifdef CONFIG_PAGE_POISONING
3612 extern void __kernel_poison_pages(struct page *page, int numpages);
3613 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3614 extern bool _page_poisoning_enabled_early;
3615 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3616 static inline bool page_poisoning_enabled(void)
3617 {
3618 return _page_poisoning_enabled_early;
3619 }
3620 /*
3621 * For use in fast paths after init_mem_debugging() has run, or when a
3622 * false negative result is not harmful when called too early.
3623 */
page_poisoning_enabled_static(void)3624 static inline bool page_poisoning_enabled_static(void)
3625 {
3626 return static_branch_unlikely(&_page_poisoning_enabled);
3627 }
kernel_poison_pages(struct page * page,int numpages)3628 static inline void kernel_poison_pages(struct page *page, int numpages)
3629 {
3630 if (page_poisoning_enabled_static())
3631 __kernel_poison_pages(page, numpages);
3632 }
kernel_unpoison_pages(struct page * page,int numpages)3633 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3634 {
3635 if (page_poisoning_enabled_static())
3636 __kernel_unpoison_pages(page, numpages);
3637 }
3638 #else
page_poisoning_enabled(void)3639 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3640 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3641 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3642 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3643 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3644 #endif
3645
3646 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3647 static inline bool want_init_on_alloc(gfp_t flags)
3648 {
3649 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3650 &init_on_alloc))
3651 return true;
3652 return flags & __GFP_ZERO;
3653 }
3654
3655 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3656 static inline bool want_init_on_free(void)
3657 {
3658 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3659 &init_on_free);
3660 }
3661
3662 extern bool _debug_pagealloc_enabled_early;
3663 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3664
debug_pagealloc_enabled(void)3665 static inline bool debug_pagealloc_enabled(void)
3666 {
3667 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3668 _debug_pagealloc_enabled_early;
3669 }
3670
3671 /*
3672 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3673 * or when a false negative result is not harmful when called too early.
3674 */
debug_pagealloc_enabled_static(void)3675 static inline bool debug_pagealloc_enabled_static(void)
3676 {
3677 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3678 return false;
3679
3680 return static_branch_unlikely(&_debug_pagealloc_enabled);
3681 }
3682
3683 /*
3684 * To support DEBUG_PAGEALLOC architecture must ensure that
3685 * __kernel_map_pages() never fails
3686 */
3687 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3688 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3689 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3690 {
3691 if (debug_pagealloc_enabled_static())
3692 __kernel_map_pages(page, numpages, 1);
3693 }
3694
debug_pagealloc_unmap_pages(struct page * page,int numpages)3695 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3696 {
3697 if (debug_pagealloc_enabled_static())
3698 __kernel_map_pages(page, numpages, 0);
3699 }
3700
3701 extern unsigned int _debug_guardpage_minorder;
3702 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3703
debug_guardpage_minorder(void)3704 static inline unsigned int debug_guardpage_minorder(void)
3705 {
3706 return _debug_guardpage_minorder;
3707 }
3708
debug_guardpage_enabled(void)3709 static inline bool debug_guardpage_enabled(void)
3710 {
3711 return static_branch_unlikely(&_debug_guardpage_enabled);
3712 }
3713
page_is_guard(struct page * page)3714 static inline bool page_is_guard(struct page *page)
3715 {
3716 if (!debug_guardpage_enabled())
3717 return false;
3718
3719 return PageGuard(page);
3720 }
3721
3722 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3723 int migratetype);
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3724 static inline bool set_page_guard(struct zone *zone, struct page *page,
3725 unsigned int order, int migratetype)
3726 {
3727 if (!debug_guardpage_enabled())
3728 return false;
3729 return __set_page_guard(zone, page, order, migratetype);
3730 }
3731
3732 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3733 int migratetype);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3734 static inline void clear_page_guard(struct zone *zone, struct page *page,
3735 unsigned int order, int migratetype)
3736 {
3737 if (!debug_guardpage_enabled())
3738 return;
3739 __clear_page_guard(zone, page, order, migratetype);
3740 }
3741
3742 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3743 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3744 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3745 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3746 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3747 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3748 static inline bool set_page_guard(struct zone *zone, struct page *page,
3749 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)3750 static inline void clear_page_guard(struct zone *zone, struct page *page,
3751 unsigned int order, int migratetype) {}
3752 #endif /* CONFIG_DEBUG_PAGEALLOC */
3753
3754 #ifdef __HAVE_ARCH_GATE_AREA
3755 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3756 extern int in_gate_area_no_mm(unsigned long addr);
3757 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3758 #else
get_gate_vma(struct mm_struct * mm)3759 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3760 {
3761 return NULL;
3762 }
in_gate_area_no_mm(unsigned long addr)3763 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3764 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3765 {
3766 return 0;
3767 }
3768 #endif /* __HAVE_ARCH_GATE_AREA */
3769
3770 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3771
3772 #ifdef CONFIG_SYSCTL
3773 extern int sysctl_drop_caches;
3774 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3775 loff_t *);
3776 #endif
3777
3778 void drop_slab(void);
3779
3780 #ifndef CONFIG_MMU
3781 #define randomize_va_space 0
3782 #else
3783 extern int randomize_va_space;
3784 #endif
3785
3786 const char * arch_vma_name(struct vm_area_struct *vma);
3787 #ifdef CONFIG_MMU
3788 void print_vma_addr(char *prefix, unsigned long rip);
3789 #else
print_vma_addr(char * prefix,unsigned long rip)3790 static inline void print_vma_addr(char *prefix, unsigned long rip)
3791 {
3792 }
3793 #endif
3794
3795 void *sparse_buffer_alloc(unsigned long size);
3796 struct page * __populate_section_memmap(unsigned long pfn,
3797 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3798 struct dev_pagemap *pgmap);
3799 void pmd_init(void *addr);
3800 void pud_init(void *addr);
3801 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3802 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3803 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3804 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3805 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3806 struct vmem_altmap *altmap, struct page *reuse);
3807 void *vmemmap_alloc_block(unsigned long size, int node);
3808 struct vmem_altmap;
3809 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3810 struct vmem_altmap *altmap);
3811 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3812 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3813 unsigned long addr, unsigned long next);
3814 int vmemmap_check_pmd(pmd_t *pmd, int node,
3815 unsigned long addr, unsigned long next);
3816 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3817 int node, struct vmem_altmap *altmap);
3818 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3819 int node, struct vmem_altmap *altmap);
3820 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3821 struct vmem_altmap *altmap);
3822 void vmemmap_populate_print_last(void);
3823 #ifdef CONFIG_MEMORY_HOTPLUG
3824 void vmemmap_free(unsigned long start, unsigned long end,
3825 struct vmem_altmap *altmap);
3826 #endif
3827
3828 #define VMEMMAP_RESERVE_NR 2
3829 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3830 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3831 struct dev_pagemap *pgmap)
3832 {
3833 unsigned long nr_pages;
3834 unsigned long nr_vmemmap_pages;
3835
3836 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3837 return false;
3838
3839 nr_pages = pgmap_vmemmap_nr(pgmap);
3840 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3841 /*
3842 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3843 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3844 */
3845 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3846 }
3847 /*
3848 * If we don't have an architecture override, use the generic rule
3849 */
3850 #ifndef vmemmap_can_optimize
3851 #define vmemmap_can_optimize __vmemmap_can_optimize
3852 #endif
3853
3854 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3855 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3856 struct dev_pagemap *pgmap)
3857 {
3858 return false;
3859 }
3860 #endif
3861
3862 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3863 unsigned long nr_pages);
3864
3865 enum mf_flags {
3866 MF_COUNT_INCREASED = 1 << 0,
3867 MF_ACTION_REQUIRED = 1 << 1,
3868 MF_MUST_KILL = 1 << 2,
3869 MF_SOFT_OFFLINE = 1 << 3,
3870 MF_UNPOISON = 1 << 4,
3871 MF_SW_SIMULATED = 1 << 5,
3872 MF_NO_RETRY = 1 << 6,
3873 };
3874 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3875 unsigned long count, int mf_flags);
3876 extern int memory_failure(unsigned long pfn, int flags);
3877 extern void memory_failure_queue_kick(int cpu);
3878 extern int unpoison_memory(unsigned long pfn);
3879 extern void shake_page(struct page *p);
3880 extern atomic_long_t num_poisoned_pages __read_mostly;
3881 extern int soft_offline_page(unsigned long pfn, int flags);
3882 #ifdef CONFIG_MEMORY_FAILURE
3883 /*
3884 * Sysfs entries for memory failure handling statistics.
3885 */
3886 extern const struct attribute_group memory_failure_attr_group;
3887 extern void memory_failure_queue(unsigned long pfn, int flags);
3888 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3889 bool *migratable_cleared);
3890 void num_poisoned_pages_inc(unsigned long pfn);
3891 void num_poisoned_pages_sub(unsigned long pfn, long i);
3892 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3893 #else
memory_failure_queue(unsigned long pfn,int flags)3894 static inline void memory_failure_queue(unsigned long pfn, int flags)
3895 {
3896 }
3897
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)3898 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3899 bool *migratable_cleared)
3900 {
3901 return 0;
3902 }
3903
num_poisoned_pages_inc(unsigned long pfn)3904 static inline void num_poisoned_pages_inc(unsigned long pfn)
3905 {
3906 }
3907
num_poisoned_pages_sub(unsigned long pfn,long i)3908 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3909 {
3910 }
3911 #endif
3912
3913 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3914 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3915 struct vm_area_struct *vma, struct list_head *to_kill,
3916 unsigned long ksm_addr);
3917 #endif
3918
3919 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3920 extern void memblk_nr_poison_inc(unsigned long pfn);
3921 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3922 #else
memblk_nr_poison_inc(unsigned long pfn)3923 static inline void memblk_nr_poison_inc(unsigned long pfn)
3924 {
3925 }
3926
memblk_nr_poison_sub(unsigned long pfn,long i)3927 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3928 {
3929 }
3930 #endif
3931
3932 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3933 static inline int arch_memory_failure(unsigned long pfn, int flags)
3934 {
3935 return -ENXIO;
3936 }
3937 #endif
3938
3939 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3940 static inline bool arch_is_platform_page(u64 paddr)
3941 {
3942 return false;
3943 }
3944 #endif
3945
3946 /*
3947 * Error handlers for various types of pages.
3948 */
3949 enum mf_result {
3950 MF_IGNORED, /* Error: cannot be handled */
3951 MF_FAILED, /* Error: handling failed */
3952 MF_DELAYED, /* Will be handled later */
3953 MF_RECOVERED, /* Successfully recovered */
3954 };
3955
3956 enum mf_action_page_type {
3957 MF_MSG_KERNEL,
3958 MF_MSG_KERNEL_HIGH_ORDER,
3959 MF_MSG_SLAB,
3960 MF_MSG_DIFFERENT_COMPOUND,
3961 MF_MSG_HUGE,
3962 MF_MSG_FREE_HUGE,
3963 MF_MSG_UNMAP_FAILED,
3964 MF_MSG_DIRTY_SWAPCACHE,
3965 MF_MSG_CLEAN_SWAPCACHE,
3966 MF_MSG_DIRTY_MLOCKED_LRU,
3967 MF_MSG_CLEAN_MLOCKED_LRU,
3968 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3969 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3970 MF_MSG_DIRTY_LRU,
3971 MF_MSG_CLEAN_LRU,
3972 MF_MSG_TRUNCATED_LRU,
3973 MF_MSG_BUDDY,
3974 MF_MSG_DAX,
3975 MF_MSG_UNSPLIT_THP,
3976 MF_MSG_UNKNOWN,
3977 };
3978
3979 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3980 extern void clear_huge_page(struct page *page,
3981 unsigned long addr_hint,
3982 unsigned int pages_per_huge_page);
3983 int copy_user_large_folio(struct folio *dst, struct folio *src,
3984 unsigned long addr_hint,
3985 struct vm_area_struct *vma);
3986 long copy_folio_from_user(struct folio *dst_folio,
3987 const void __user *usr_src,
3988 bool allow_pagefault);
3989
3990 /**
3991 * vma_is_special_huge - Are transhuge page-table entries considered special?
3992 * @vma: Pointer to the struct vm_area_struct to consider
3993 *
3994 * Whether transhuge page-table entries are considered "special" following
3995 * the definition in vm_normal_page().
3996 *
3997 * Return: true if transhuge page-table entries should be considered special,
3998 * false otherwise.
3999 */
vma_is_special_huge(const struct vm_area_struct * vma)4000 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4001 {
4002 return vma_is_dax(vma) || (vma->vm_file &&
4003 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4004 }
4005
4006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4007
4008 #if MAX_NUMNODES > 1
4009 void __init setup_nr_node_ids(void);
4010 #else
setup_nr_node_ids(void)4011 static inline void setup_nr_node_ids(void) {}
4012 #endif
4013
4014 extern int memcmp_pages(struct page *page1, struct page *page2);
4015
pages_identical(struct page * page1,struct page * page2)4016 static inline int pages_identical(struct page *page1, struct page *page2)
4017 {
4018 return !memcmp_pages(page1, page2);
4019 }
4020
4021 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4022 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4023 pgoff_t first_index, pgoff_t nr,
4024 pgoff_t bitmap_pgoff,
4025 unsigned long *bitmap,
4026 pgoff_t *start,
4027 pgoff_t *end);
4028
4029 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4030 pgoff_t first_index, pgoff_t nr);
4031 #endif
4032
4033 extern int sysctl_nr_trim_pages;
4034
4035 #ifdef CONFIG_PRINTK
4036 void mem_dump_obj(void *object);
4037 #else
mem_dump_obj(void * object)4038 static inline void mem_dump_obj(void *object) {}
4039 #endif
4040
4041 /**
4042 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
4043 * @seals: the seals to check
4044 * @vma: the vma to operate on
4045 *
4046 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
4047 * the vma flags. Return 0 if check pass, or <0 for errors.
4048 */
seal_check_future_write(int seals,struct vm_area_struct * vma)4049 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
4050 {
4051 if (seals & F_SEAL_FUTURE_WRITE) {
4052 /*
4053 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4054 * "future write" seal active.
4055 */
4056 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4057 return -EPERM;
4058
4059 /*
4060 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
4061 * MAP_SHARED and read-only, take care to not allow mprotect to
4062 * revert protections on such mappings. Do this only for shared
4063 * mappings. For private mappings, don't need to mask
4064 * VM_MAYWRITE as we still want them to be COW-writable.
4065 */
4066 if (vma->vm_flags & VM_SHARED)
4067 vm_flags_clear(vma, VM_MAYWRITE);
4068 }
4069
4070 return 0;
4071 }
4072
4073 #ifdef CONFIG_ANON_VMA_NAME
4074 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4075 unsigned long len_in,
4076 struct anon_vma_name *anon_name);
4077 #else
4078 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4079 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4080 unsigned long len_in, struct anon_vma_name *anon_name) {
4081 return 0;
4082 }
4083 #endif
4084
4085 #ifdef CONFIG_UNACCEPTED_MEMORY
4086
4087 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4088 void accept_memory(phys_addr_t start, phys_addr_t end);
4089
4090 #else
4091
range_contains_unaccepted_memory(phys_addr_t start,phys_addr_t end)4092 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4093 phys_addr_t end)
4094 {
4095 return false;
4096 }
4097
accept_memory(phys_addr_t start,phys_addr_t end)4098 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4099 {
4100 }
4101
4102 #endif
4103
4104 #endif /* _LINUX_MM_H */
4105