1 use crate::back::link::are_upstream_rust_objects_already_included;
2 use crate::back::metadata::create_compressed_metadata_file;
3 use crate::back::write::{
4 compute_per_cgu_lto_type, start_async_codegen, submit_codegened_module_to_llvm,
5 submit_post_lto_module_to_llvm, submit_pre_lto_module_to_llvm, ComputedLtoType, OngoingCodegen,
6 };
7 use crate::common::{IntPredicate, RealPredicate, TypeKind};
8 use crate::errors;
9 use crate::meth;
10 use crate::mir;
11 use crate::mir::operand::OperandValue;
12 use crate::mir::place::PlaceRef;
13 use crate::traits::*;
14 use crate::{CachedModuleCodegen, CompiledModule, CrateInfo, MemFlags, ModuleCodegen, ModuleKind};
15
16 use rustc_ast::expand::allocator::{global_fn_name, AllocatorKind, ALLOCATOR_METHODS};
17 use rustc_attr as attr;
18 use rustc_data_structures::fx::{FxHashMap, FxHashSet};
19 use rustc_data_structures::profiling::{get_resident_set_size, print_time_passes_entry};
20 use rustc_data_structures::sync::par_map;
21 use rustc_hir as hir;
22 use rustc_hir::def_id::{DefId, LOCAL_CRATE};
23 use rustc_hir::lang_items::LangItem;
24 use rustc_metadata::EncodedMetadata;
25 use rustc_middle::middle::codegen_fn_attrs::CodegenFnAttrs;
26 use rustc_middle::middle::debugger_visualizer::{DebuggerVisualizerFile, DebuggerVisualizerType};
27 use rustc_middle::middle::exported_symbols;
28 use rustc_middle::middle::exported_symbols::SymbolExportKind;
29 use rustc_middle::middle::lang_items;
30 use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder, MonoItem};
31 use rustc_middle::query::Providers;
32 use rustc_middle::ty::layout::{HasTyCtxt, LayoutOf, TyAndLayout};
33 use rustc_middle::ty::{self, Instance, Ty, TyCtxt};
34 use rustc_session::cgu_reuse_tracker::CguReuse;
35 use rustc_session::config::{self, CrateType, EntryFnType, OutputType};
36 use rustc_session::Session;
37 use rustc_span::symbol::sym;
38 use rustc_span::Symbol;
39 use rustc_target::abi::{Align, FIRST_VARIANT};
40
41 use std::collections::BTreeSet;
42 use std::time::{Duration, Instant};
43
44 use itertools::Itertools;
45
bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate46 pub fn bin_op_to_icmp_predicate(op: hir::BinOpKind, signed: bool) -> IntPredicate {
47 match op {
48 hir::BinOpKind::Eq => IntPredicate::IntEQ,
49 hir::BinOpKind::Ne => IntPredicate::IntNE,
50 hir::BinOpKind::Lt => {
51 if signed {
52 IntPredicate::IntSLT
53 } else {
54 IntPredicate::IntULT
55 }
56 }
57 hir::BinOpKind::Le => {
58 if signed {
59 IntPredicate::IntSLE
60 } else {
61 IntPredicate::IntULE
62 }
63 }
64 hir::BinOpKind::Gt => {
65 if signed {
66 IntPredicate::IntSGT
67 } else {
68 IntPredicate::IntUGT
69 }
70 }
71 hir::BinOpKind::Ge => {
72 if signed {
73 IntPredicate::IntSGE
74 } else {
75 IntPredicate::IntUGE
76 }
77 }
78 op => bug!(
79 "comparison_op_to_icmp_predicate: expected comparison operator, \
80 found {:?}",
81 op
82 ),
83 }
84 }
85
bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate86 pub fn bin_op_to_fcmp_predicate(op: hir::BinOpKind) -> RealPredicate {
87 match op {
88 hir::BinOpKind::Eq => RealPredicate::RealOEQ,
89 hir::BinOpKind::Ne => RealPredicate::RealUNE,
90 hir::BinOpKind::Lt => RealPredicate::RealOLT,
91 hir::BinOpKind::Le => RealPredicate::RealOLE,
92 hir::BinOpKind::Gt => RealPredicate::RealOGT,
93 hir::BinOpKind::Ge => RealPredicate::RealOGE,
94 op => {
95 bug!(
96 "comparison_op_to_fcmp_predicate: expected comparison operator, \
97 found {:?}",
98 op
99 );
100 }
101 }
102 }
103
compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, lhs: Bx::Value, rhs: Bx::Value, t: Ty<'tcx>, ret_ty: Bx::Type, op: hir::BinOpKind, ) -> Bx::Value104 pub fn compare_simd_types<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
105 bx: &mut Bx,
106 lhs: Bx::Value,
107 rhs: Bx::Value,
108 t: Ty<'tcx>,
109 ret_ty: Bx::Type,
110 op: hir::BinOpKind,
111 ) -> Bx::Value {
112 let signed = match t.kind() {
113 ty::Float(_) => {
114 let cmp = bin_op_to_fcmp_predicate(op);
115 let cmp = bx.fcmp(cmp, lhs, rhs);
116 return bx.sext(cmp, ret_ty);
117 }
118 ty::Uint(_) => false,
119 ty::Int(_) => true,
120 _ => bug!("compare_simd_types: invalid SIMD type"),
121 };
122
123 let cmp = bin_op_to_icmp_predicate(op, signed);
124 let cmp = bx.icmp(cmp, lhs, rhs);
125 // LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
126 // to get the correctly sized type. This will compile to a single instruction
127 // once the IR is converted to assembly if the SIMD instruction is supported
128 // by the target architecture.
129 bx.sext(cmp, ret_ty)
130 }
131
132 /// Retrieves the information we are losing (making dynamic) in an unsizing
133 /// adjustment.
134 ///
135 /// The `old_info` argument is a bit odd. It is intended for use in an upcast,
136 /// where the new vtable for an object will be derived from the old one.
unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, source: Ty<'tcx>, target: Ty<'tcx>, old_info: Option<Bx::Value>, ) -> Bx::Value137 pub fn unsized_info<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
138 bx: &mut Bx,
139 source: Ty<'tcx>,
140 target: Ty<'tcx>,
141 old_info: Option<Bx::Value>,
142 ) -> Bx::Value {
143 let cx = bx.cx();
144 let (source, target) =
145 cx.tcx().struct_lockstep_tails_erasing_lifetimes(source, target, bx.param_env());
146 match (source.kind(), target.kind()) {
147 (&ty::Array(_, len), &ty::Slice(_)) => {
148 cx.const_usize(len.eval_target_usize(cx.tcx(), ty::ParamEnv::reveal_all()))
149 }
150 (
151 &ty::Dynamic(ref data_a, _, src_dyn_kind),
152 &ty::Dynamic(ref data_b, _, target_dyn_kind),
153 ) if src_dyn_kind == target_dyn_kind => {
154 let old_info =
155 old_info.expect("unsized_info: missing old info for trait upcasting coercion");
156 if data_a.principal_def_id() == data_b.principal_def_id() {
157 // A NOP cast that doesn't actually change anything, should be allowed even with invalid vtables.
158 return old_info;
159 }
160
161 // trait upcasting coercion
162
163 let vptr_entry_idx =
164 cx.tcx().vtable_trait_upcasting_coercion_new_vptr_slot((source, target));
165
166 if let Some(entry_idx) = vptr_entry_idx {
167 let ptr_ty = cx.type_i8p();
168 let ptr_align = cx.tcx().data_layout.pointer_align.abi;
169 let vtable_ptr_ty = vtable_ptr_ty(cx, target, target_dyn_kind);
170 let llvtable = bx.pointercast(old_info, bx.type_ptr_to(ptr_ty));
171 let gep = bx.inbounds_gep(
172 ptr_ty,
173 llvtable,
174 &[bx.const_usize(u64::try_from(entry_idx).unwrap())],
175 );
176 let new_vptr = bx.load(ptr_ty, gep, ptr_align);
177 bx.nonnull_metadata(new_vptr);
178 // VTable loads are invariant.
179 bx.set_invariant_load(new_vptr);
180 bx.pointercast(new_vptr, vtable_ptr_ty)
181 } else {
182 old_info
183 }
184 }
185 (_, &ty::Dynamic(ref data, _, target_dyn_kind)) => {
186 let vtable_ptr_ty = vtable_ptr_ty(cx, target, target_dyn_kind);
187 cx.const_ptrcast(meth::get_vtable(cx, source, data.principal()), vtable_ptr_ty)
188 }
189 _ => bug!("unsized_info: invalid unsizing {:?} -> {:?}", source, target),
190 }
191 }
192
193 // Returns the vtable pointer type of a `dyn` or `dyn*` type
vtable_ptr_ty<'tcx, Cx: CodegenMethods<'tcx>>( cx: &Cx, target: Ty<'tcx>, kind: ty::DynKind, ) -> <Cx as BackendTypes>::Type194 fn vtable_ptr_ty<'tcx, Cx: CodegenMethods<'tcx>>(
195 cx: &Cx,
196 target: Ty<'tcx>,
197 kind: ty::DynKind,
198 ) -> <Cx as BackendTypes>::Type {
199 cx.scalar_pair_element_backend_type(
200 cx.layout_of(match kind {
201 // vtable is the second field of `*mut dyn Trait`
202 ty::Dyn => Ty::new_mut_ptr(cx.tcx(), target),
203 // vtable is the second field of `dyn* Trait`
204 ty::DynStar => target,
205 }),
206 1,
207 true,
208 )
209 }
210
211 /// Coerces `src` to `dst_ty`. `src_ty` must be a pointer.
unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, src: Bx::Value, src_ty: Ty<'tcx>, dst_ty: Ty<'tcx>, old_info: Option<Bx::Value>, ) -> (Bx::Value, Bx::Value)212 pub fn unsize_ptr<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
213 bx: &mut Bx,
214 src: Bx::Value,
215 src_ty: Ty<'tcx>,
216 dst_ty: Ty<'tcx>,
217 old_info: Option<Bx::Value>,
218 ) -> (Bx::Value, Bx::Value) {
219 debug!("unsize_ptr: {:?} => {:?}", src_ty, dst_ty);
220 match (src_ty.kind(), dst_ty.kind()) {
221 (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. }))
222 | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => {
223 assert_eq!(bx.cx().type_is_sized(a), old_info.is_none());
224 let ptr_ty = bx.cx().type_ptr_to(bx.cx().backend_type(bx.cx().layout_of(b)));
225 (bx.pointercast(src, ptr_ty), unsized_info(bx, a, b, old_info))
226 }
227 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
228 assert_eq!(def_a, def_b);
229 let src_layout = bx.cx().layout_of(src_ty);
230 let dst_layout = bx.cx().layout_of(dst_ty);
231 if src_ty == dst_ty {
232 return (src, old_info.unwrap());
233 }
234 let mut result = None;
235 for i in 0..src_layout.fields.count() {
236 let src_f = src_layout.field(bx.cx(), i);
237 if src_f.is_zst() {
238 continue;
239 }
240
241 assert_eq!(src_layout.fields.offset(i).bytes(), 0);
242 assert_eq!(dst_layout.fields.offset(i).bytes(), 0);
243 assert_eq!(src_layout.size, src_f.size);
244
245 let dst_f = dst_layout.field(bx.cx(), i);
246 assert_ne!(src_f.ty, dst_f.ty);
247 assert_eq!(result, None);
248 result = Some(unsize_ptr(bx, src, src_f.ty, dst_f.ty, old_info));
249 }
250 let (lldata, llextra) = result.unwrap();
251 let lldata_ty = bx.cx().scalar_pair_element_backend_type(dst_layout, 0, true);
252 let llextra_ty = bx.cx().scalar_pair_element_backend_type(dst_layout, 1, true);
253 // HACK(eddyb) have to bitcast pointers until LLVM removes pointee types.
254 (bx.bitcast(lldata, lldata_ty), bx.bitcast(llextra, llextra_ty))
255 }
256 _ => bug!("unsize_ptr: called on bad types"),
257 }
258 }
259
260 /// Coerces `src` to `dst_ty` which is guaranteed to be a `dyn*` type.
cast_to_dyn_star<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, src: Bx::Value, src_ty_and_layout: TyAndLayout<'tcx>, dst_ty: Ty<'tcx>, old_info: Option<Bx::Value>, ) -> (Bx::Value, Bx::Value)261 pub fn cast_to_dyn_star<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
262 bx: &mut Bx,
263 src: Bx::Value,
264 src_ty_and_layout: TyAndLayout<'tcx>,
265 dst_ty: Ty<'tcx>,
266 old_info: Option<Bx::Value>,
267 ) -> (Bx::Value, Bx::Value) {
268 debug!("cast_to_dyn_star: {:?} => {:?}", src_ty_and_layout.ty, dst_ty);
269 assert!(
270 matches!(dst_ty.kind(), ty::Dynamic(_, _, ty::DynStar)),
271 "destination type must be a dyn*"
272 );
273 // FIXME(dyn-star): We can remove this when all supported LLVMs use opaque ptrs only.
274 let unit_ptr = bx.cx().type_ptr_to(bx.cx().type_struct(&[], false));
275 let src = match bx.cx().type_kind(bx.cx().backend_type(src_ty_and_layout)) {
276 TypeKind::Pointer => bx.pointercast(src, unit_ptr),
277 TypeKind::Integer => bx.inttoptr(src, unit_ptr),
278 // FIXME(dyn-star): We probably have to do a bitcast first, then inttoptr.
279 kind => bug!("unexpected TypeKind for left-hand side of `dyn*` cast: {kind:?}"),
280 };
281 (src, unsized_info(bx, src_ty_and_layout.ty, dst_ty, old_info))
282 }
283
284 /// Coerces `src`, which is a reference to a value of type `src_ty`,
285 /// to a value of type `dst_ty`, and stores the result in `dst`.
coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, src: PlaceRef<'tcx, Bx::Value>, dst: PlaceRef<'tcx, Bx::Value>, )286 pub fn coerce_unsized_into<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
287 bx: &mut Bx,
288 src: PlaceRef<'tcx, Bx::Value>,
289 dst: PlaceRef<'tcx, Bx::Value>,
290 ) {
291 let src_ty = src.layout.ty;
292 let dst_ty = dst.layout.ty;
293 match (src_ty.kind(), dst_ty.kind()) {
294 (&ty::Ref(..), &ty::Ref(..) | &ty::RawPtr(..)) | (&ty::RawPtr(..), &ty::RawPtr(..)) => {
295 let (base, info) = match bx.load_operand(src).val {
296 OperandValue::Pair(base, info) => unsize_ptr(bx, base, src_ty, dst_ty, Some(info)),
297 OperandValue::Immediate(base) => unsize_ptr(bx, base, src_ty, dst_ty, None),
298 OperandValue::Ref(..) | OperandValue::ZeroSized => bug!(),
299 };
300 OperandValue::Pair(base, info).store(bx, dst);
301 }
302
303 (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) => {
304 assert_eq!(def_a, def_b);
305
306 for i in def_a.variant(FIRST_VARIANT).fields.indices() {
307 let src_f = src.project_field(bx, i.as_usize());
308 let dst_f = dst.project_field(bx, i.as_usize());
309
310 if dst_f.layout.is_zst() {
311 continue;
312 }
313
314 if src_f.layout.ty == dst_f.layout.ty {
315 memcpy_ty(
316 bx,
317 dst_f.llval,
318 dst_f.align,
319 src_f.llval,
320 src_f.align,
321 src_f.layout,
322 MemFlags::empty(),
323 );
324 } else {
325 coerce_unsized_into(bx, src_f, dst_f);
326 }
327 }
328 }
329 _ => bug!("coerce_unsized_into: invalid coercion {:?} -> {:?}", src_ty, dst_ty,),
330 }
331 }
332
cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, lhs: Bx::Value, rhs: Bx::Value, ) -> Bx::Value333 pub fn cast_shift_expr_rhs<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
334 bx: &mut Bx,
335 lhs: Bx::Value,
336 rhs: Bx::Value,
337 ) -> Bx::Value {
338 // Shifts may have any size int on the rhs
339 let mut rhs_llty = bx.cx().val_ty(rhs);
340 let mut lhs_llty = bx.cx().val_ty(lhs);
341 if bx.cx().type_kind(rhs_llty) == TypeKind::Vector {
342 rhs_llty = bx.cx().element_type(rhs_llty)
343 }
344 if bx.cx().type_kind(lhs_llty) == TypeKind::Vector {
345 lhs_llty = bx.cx().element_type(lhs_llty)
346 }
347 let rhs_sz = bx.cx().int_width(rhs_llty);
348 let lhs_sz = bx.cx().int_width(lhs_llty);
349 if lhs_sz < rhs_sz {
350 bx.trunc(rhs, lhs_llty)
351 } else if lhs_sz > rhs_sz {
352 // FIXME (#1877: If in the future shifting by negative
353 // values is no longer undefined then this is wrong.
354 bx.zext(rhs, lhs_llty)
355 } else {
356 rhs
357 }
358 }
359
360 // Returns `true` if this session's target will use native wasm
361 // exceptions. This means that the VM does the unwinding for
362 // us
wants_wasm_eh(sess: &Session) -> bool363 pub fn wants_wasm_eh(sess: &Session) -> bool {
364 sess.target.is_like_wasm && sess.target.os != "emscripten"
365 }
366
367 /// Returns `true` if this session's target will use SEH-based unwinding.
368 ///
369 /// This is only true for MSVC targets, and even then the 64-bit MSVC target
370 /// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
371 /// 64-bit MinGW) instead of "full SEH".
wants_msvc_seh(sess: &Session) -> bool372 pub fn wants_msvc_seh(sess: &Session) -> bool {
373 sess.target.is_like_msvc
374 }
375
376 /// Returns `true` if this session's target requires the new exception
377 /// handling LLVM IR instructions (catchpad / cleanuppad / ... instead
378 /// of landingpad)
wants_new_eh_instructions(sess: &Session) -> bool379 pub fn wants_new_eh_instructions(sess: &Session) -> bool {
380 wants_wasm_eh(sess) || wants_msvc_seh(sess)
381 }
382
memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( bx: &mut Bx, dst: Bx::Value, dst_align: Align, src: Bx::Value, src_align: Align, layout: TyAndLayout<'tcx>, flags: MemFlags, )383 pub fn memcpy_ty<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
384 bx: &mut Bx,
385 dst: Bx::Value,
386 dst_align: Align,
387 src: Bx::Value,
388 src_align: Align,
389 layout: TyAndLayout<'tcx>,
390 flags: MemFlags,
391 ) {
392 let size = layout.size.bytes();
393 if size == 0 {
394 return;
395 }
396
397 if flags == MemFlags::empty()
398 && let Some(bty) = bx.cx().scalar_copy_backend_type(layout)
399 {
400 // I look forward to only supporting opaque pointers
401 let pty = bx.type_ptr_to(bty);
402 let src = bx.pointercast(src, pty);
403 let dst = bx.pointercast(dst, pty);
404
405 let temp = bx.load(bty, src, src_align);
406 bx.store(temp, dst, dst_align);
407 } else {
408 bx.memcpy(dst, dst_align, src, src_align, bx.cx().const_usize(size), flags);
409 }
410 }
411
codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>( cx: &'a Bx::CodegenCx, instance: Instance<'tcx>, )412 pub fn codegen_instance<'a, 'tcx: 'a, Bx: BuilderMethods<'a, 'tcx>>(
413 cx: &'a Bx::CodegenCx,
414 instance: Instance<'tcx>,
415 ) {
416 // this is an info! to allow collecting monomorphization statistics
417 // and to allow finding the last function before LLVM aborts from
418 // release builds.
419 info!("codegen_instance({})", instance);
420
421 mir::codegen_mir::<Bx>(cx, instance);
422 }
423
424 /// Creates the `main` function which will initialize the rust runtime and call
425 /// users main function.
maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( cx: &'a Bx::CodegenCx, ) -> Option<Bx::Function>426 pub fn maybe_create_entry_wrapper<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
427 cx: &'a Bx::CodegenCx,
428 ) -> Option<Bx::Function> {
429 let (main_def_id, entry_type) = cx.tcx().entry_fn(())?;
430 let main_is_local = main_def_id.is_local();
431 let instance = Instance::mono(cx.tcx(), main_def_id);
432
433 if main_is_local {
434 // We want to create the wrapper in the same codegen unit as Rust's main
435 // function.
436 if !cx.codegen_unit().contains_item(&MonoItem::Fn(instance)) {
437 return None;
438 }
439 } else if !cx.codegen_unit().is_primary() {
440 // We want to create the wrapper only when the codegen unit is the primary one
441 return None;
442 }
443
444 let main_llfn = cx.get_fn_addr(instance);
445
446 let entry_fn = create_entry_fn::<Bx>(cx, main_llfn, main_def_id, entry_type);
447 return Some(entry_fn);
448
449 fn create_entry_fn<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
450 cx: &'a Bx::CodegenCx,
451 rust_main: Bx::Value,
452 rust_main_def_id: DefId,
453 entry_type: EntryFnType,
454 ) -> Bx::Function {
455 // The entry function is either `int main(void)` or `int main(int argc, char **argv)`,
456 // depending on whether the target needs `argc` and `argv` to be passed in.
457 let llfty = if cx.sess().target.main_needs_argc_argv {
458 cx.type_func(&[cx.type_int(), cx.type_ptr_to(cx.type_i8p())], cx.type_int())
459 } else {
460 cx.type_func(&[], cx.type_int())
461 };
462
463 let main_ret_ty = cx.tcx().fn_sig(rust_main_def_id).no_bound_vars().unwrap().output();
464 // Given that `main()` has no arguments,
465 // then its return type cannot have
466 // late-bound regions, since late-bound
467 // regions must appear in the argument
468 // listing.
469 let main_ret_ty = cx.tcx().normalize_erasing_regions(
470 ty::ParamEnv::reveal_all(),
471 main_ret_ty.no_bound_vars().unwrap(),
472 );
473
474 let Some(llfn) = cx.declare_c_main(llfty) else {
475 // FIXME: We should be smart and show a better diagnostic here.
476 let span = cx.tcx().def_span(rust_main_def_id);
477 cx.sess().emit_err(errors::MultipleMainFunctions { span });
478 cx.sess().abort_if_errors();
479 bug!();
480 };
481
482 // `main` should respect same config for frame pointer elimination as rest of code
483 cx.set_frame_pointer_type(llfn);
484 cx.apply_target_cpu_attr(llfn);
485
486 let llbb = Bx::append_block(&cx, llfn, "top");
487 let mut bx = Bx::build(&cx, llbb);
488
489 bx.insert_reference_to_gdb_debug_scripts_section_global();
490
491 let isize_ty = cx.type_isize();
492 let i8pp_ty = cx.type_ptr_to(cx.type_i8p());
493 let (arg_argc, arg_argv) = get_argc_argv(cx, &mut bx);
494
495 let (start_fn, start_ty, args) = if let EntryFnType::Main { sigpipe } = entry_type {
496 let start_def_id = cx.tcx().require_lang_item(LangItem::Start, None);
497 let start_fn = cx.get_fn_addr(
498 ty::Instance::resolve(
499 cx.tcx(),
500 ty::ParamEnv::reveal_all(),
501 start_def_id,
502 cx.tcx().mk_substs(&[main_ret_ty.into()]),
503 )
504 .unwrap()
505 .unwrap(),
506 );
507
508 let i8_ty = cx.type_i8();
509 let arg_sigpipe = bx.const_u8(sigpipe);
510
511 let start_ty =
512 cx.type_func(&[cx.val_ty(rust_main), isize_ty, i8pp_ty, i8_ty], isize_ty);
513 (start_fn, start_ty, vec![rust_main, arg_argc, arg_argv, arg_sigpipe])
514 } else {
515 debug!("using user-defined start fn");
516 let start_ty = cx.type_func(&[isize_ty, i8pp_ty], isize_ty);
517 (rust_main, start_ty, vec![arg_argc, arg_argv])
518 };
519
520 let result = bx.call(start_ty, None, None, start_fn, &args, None);
521 let cast = bx.intcast(result, cx.type_int(), true);
522 bx.ret(cast);
523
524 llfn
525 }
526 }
527
528 /// Obtain the `argc` and `argv` values to pass to the rust start function.
get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>( cx: &'a Bx::CodegenCx, bx: &mut Bx, ) -> (Bx::Value, Bx::Value)529 fn get_argc_argv<'a, 'tcx, Bx: BuilderMethods<'a, 'tcx>>(
530 cx: &'a Bx::CodegenCx,
531 bx: &mut Bx,
532 ) -> (Bx::Value, Bx::Value) {
533 if cx.sess().target.main_needs_argc_argv {
534 // Params from native `main()` used as args for rust start function
535 let param_argc = bx.get_param(0);
536 let param_argv = bx.get_param(1);
537 let arg_argc = bx.intcast(param_argc, cx.type_isize(), true);
538 let arg_argv = param_argv;
539 (arg_argc, arg_argv)
540 } else {
541 // The Rust start function doesn't need `argc` and `argv`, so just pass zeros.
542 let arg_argc = bx.const_int(cx.type_int(), 0);
543 let arg_argv = bx.const_null(cx.type_ptr_to(cx.type_i8p()));
544 (arg_argc, arg_argv)
545 }
546 }
547
548 /// This function returns all of the debugger visualizers specified for the
549 /// current crate as well as all upstream crates transitively that match the
550 /// `visualizer_type` specified.
collect_debugger_visualizers_transitive( tcx: TyCtxt<'_>, visualizer_type: DebuggerVisualizerType, ) -> BTreeSet<DebuggerVisualizerFile>551 pub fn collect_debugger_visualizers_transitive(
552 tcx: TyCtxt<'_>,
553 visualizer_type: DebuggerVisualizerType,
554 ) -> BTreeSet<DebuggerVisualizerFile> {
555 tcx.debugger_visualizers(LOCAL_CRATE)
556 .iter()
557 .chain(
558 tcx.crates(())
559 .iter()
560 .filter(|&cnum| {
561 let used_crate_source = tcx.used_crate_source(*cnum);
562 used_crate_source.rlib.is_some() || used_crate_source.rmeta.is_some()
563 })
564 .flat_map(|&cnum| tcx.debugger_visualizers(cnum)),
565 )
566 .filter(|visualizer| visualizer.visualizer_type == visualizer_type)
567 .cloned()
568 .collect::<BTreeSet<_>>()
569 }
570
571 /// Decide allocator kind to codegen. If `Some(_)` this will be the same as
572 /// `tcx.allocator_kind`, but it may be `None` in more cases (e.g. if using
573 /// allocator definitions from a dylib dependency).
allocator_kind_for_codegen(tcx: TyCtxt<'_>) -> Option<AllocatorKind>574 pub fn allocator_kind_for_codegen(tcx: TyCtxt<'_>) -> Option<AllocatorKind> {
575 // If the crate doesn't have an `allocator_kind` set then there's definitely
576 // no shim to generate. Otherwise we also check our dependency graph for all
577 // our output crate types. If anything there looks like its a `Dynamic`
578 // linkage, then it's already got an allocator shim and we'll be using that
579 // one instead. If nothing exists then it's our job to generate the
580 // allocator!
581 let any_dynamic_crate = tcx.dependency_formats(()).iter().any(|(_, list)| {
582 use rustc_middle::middle::dependency_format::Linkage;
583 list.iter().any(|&linkage| linkage == Linkage::Dynamic)
584 });
585 if any_dynamic_crate { None } else { tcx.allocator_kind(()) }
586 }
587
codegen_crate<B: ExtraBackendMethods>( backend: B, tcx: TyCtxt<'_>, target_cpu: String, metadata: EncodedMetadata, need_metadata_module: bool, ) -> OngoingCodegen<B>588 pub fn codegen_crate<B: ExtraBackendMethods>(
589 backend: B,
590 tcx: TyCtxt<'_>,
591 target_cpu: String,
592 metadata: EncodedMetadata,
593 need_metadata_module: bool,
594 ) -> OngoingCodegen<B> {
595 // Skip crate items and just output metadata in -Z no-codegen mode.
596 if tcx.sess.opts.unstable_opts.no_codegen || !tcx.sess.opts.output_types.should_codegen() {
597 let ongoing_codegen = start_async_codegen(backend, tcx, target_cpu, metadata, None);
598
599 ongoing_codegen.codegen_finished(tcx);
600
601 ongoing_codegen.check_for_errors(tcx.sess);
602
603 return ongoing_codegen;
604 }
605
606 let cgu_name_builder = &mut CodegenUnitNameBuilder::new(tcx);
607
608 // Run the monomorphization collector and partition the collected items into
609 // codegen units.
610 let codegen_units = tcx.collect_and_partition_mono_items(()).1;
611
612 // Force all codegen_unit queries so they are already either red or green
613 // when compile_codegen_unit accesses them. We are not able to re-execute
614 // the codegen_unit query from just the DepNode, so an unknown color would
615 // lead to having to re-execute compile_codegen_unit, possibly
616 // unnecessarily.
617 if tcx.dep_graph.is_fully_enabled() {
618 for cgu in codegen_units {
619 tcx.ensure().codegen_unit(cgu.name());
620 }
621 }
622
623 let metadata_module = need_metadata_module.then(|| {
624 // Emit compressed metadata object.
625 let metadata_cgu_name =
626 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("metadata")).to_string();
627 tcx.sess.time("write_compressed_metadata", || {
628 let file_name =
629 tcx.output_filenames(()).temp_path(OutputType::Metadata, Some(&metadata_cgu_name));
630 let data = create_compressed_metadata_file(
631 tcx.sess,
632 &metadata,
633 &exported_symbols::metadata_symbol_name(tcx),
634 );
635 if let Err(error) = std::fs::write(&file_name, data) {
636 tcx.sess.emit_fatal(errors::MetadataObjectFileWrite { error });
637 }
638 CompiledModule {
639 name: metadata_cgu_name,
640 kind: ModuleKind::Metadata,
641 object: Some(file_name),
642 dwarf_object: None,
643 bytecode: None,
644 }
645 })
646 });
647
648 let ongoing_codegen =
649 start_async_codegen(backend.clone(), tcx, target_cpu, metadata, metadata_module);
650
651 // Codegen an allocator shim, if necessary.
652 if let Some(kind) = allocator_kind_for_codegen(tcx) {
653 let llmod_id =
654 cgu_name_builder.build_cgu_name(LOCAL_CRATE, &["crate"], Some("allocator")).to_string();
655 let module_llvm = tcx.sess.time("write_allocator_module", || {
656 backend.codegen_allocator(
657 tcx,
658 &llmod_id,
659 kind,
660 // If allocator_kind is Some then alloc_error_handler_kind must
661 // also be Some.
662 tcx.alloc_error_handler_kind(()).unwrap(),
663 )
664 });
665
666 ongoing_codegen.submit_pre_codegened_module_to_llvm(
667 tcx,
668 ModuleCodegen { name: llmod_id, module_llvm, kind: ModuleKind::Allocator },
669 );
670 }
671
672 // For better throughput during parallel processing by LLVM, we used to sort
673 // CGUs largest to smallest. This would lead to better thread utilization
674 // by, for example, preventing a large CGU from being processed last and
675 // having only one LLVM thread working while the rest remained idle.
676 //
677 // However, this strategy would lead to high memory usage, as it meant the
678 // LLVM-IR for all of the largest CGUs would be resident in memory at once.
679 //
680 // Instead, we can compromise by ordering CGUs such that the largest and
681 // smallest are first, second largest and smallest are next, etc. If there
682 // are large size variations, this can reduce memory usage significantly.
683 let codegen_units: Vec<_> = {
684 let mut sorted_cgus = codegen_units.iter().collect::<Vec<_>>();
685 sorted_cgus.sort_by_cached_key(|cgu| cgu.size_estimate());
686
687 let (first_half, second_half) = sorted_cgus.split_at(sorted_cgus.len() / 2);
688 second_half.iter().rev().interleave(first_half).copied().collect()
689 };
690
691 // Calculate the CGU reuse
692 let cgu_reuse = tcx.sess.time("find_cgu_reuse", || {
693 codegen_units.iter().map(|cgu| determine_cgu_reuse(tcx, &cgu)).collect::<Vec<_>>()
694 });
695
696 let mut total_codegen_time = Duration::new(0, 0);
697 let start_rss = tcx.sess.opts.unstable_opts.time_passes.then(|| get_resident_set_size());
698
699 // The non-parallel compiler can only translate codegen units to LLVM IR
700 // on a single thread, leading to a staircase effect where the N LLVM
701 // threads have to wait on the single codegen threads to generate work
702 // for them. The parallel compiler does not have this restriction, so
703 // we can pre-load the LLVM queue in parallel before handing off
704 // coordination to the OnGoingCodegen scheduler.
705 //
706 // This likely is a temporary measure. Once we don't have to support the
707 // non-parallel compiler anymore, we can compile CGUs end-to-end in
708 // parallel and get rid of the complicated scheduling logic.
709 let mut pre_compiled_cgus = if tcx.sess.threads() > 1 {
710 tcx.sess.time("compile_first_CGU_batch", || {
711 // Try to find one CGU to compile per thread.
712 let cgus: Vec<_> = cgu_reuse
713 .iter()
714 .enumerate()
715 .filter(|&(_, reuse)| reuse == &CguReuse::No)
716 .take(tcx.sess.threads())
717 .collect();
718
719 // Compile the found CGUs in parallel.
720 let start_time = Instant::now();
721
722 let pre_compiled_cgus = par_map(cgus, |(i, _)| {
723 let module = backend.compile_codegen_unit(tcx, codegen_units[i].name());
724 (i, module)
725 });
726
727 total_codegen_time += start_time.elapsed();
728
729 pre_compiled_cgus
730 })
731 } else {
732 FxHashMap::default()
733 };
734
735 for (i, cgu) in codegen_units.iter().enumerate() {
736 ongoing_codegen.wait_for_signal_to_codegen_item();
737 ongoing_codegen.check_for_errors(tcx.sess);
738
739 let cgu_reuse = cgu_reuse[i];
740 tcx.sess.cgu_reuse_tracker.set_actual_reuse(cgu.name().as_str(), cgu_reuse);
741
742 match cgu_reuse {
743 CguReuse::No => {
744 let (module, cost) = if let Some(cgu) = pre_compiled_cgus.remove(&i) {
745 cgu
746 } else {
747 let start_time = Instant::now();
748 let module = backend.compile_codegen_unit(tcx, cgu.name());
749 total_codegen_time += start_time.elapsed();
750 module
751 };
752 // This will unwind if there are errors, which triggers our `AbortCodegenOnDrop`
753 // guard. Unfortunately, just skipping the `submit_codegened_module_to_llvm` makes
754 // compilation hang on post-monomorphization errors.
755 tcx.sess.abort_if_errors();
756
757 submit_codegened_module_to_llvm(
758 &backend,
759 &ongoing_codegen.coordinator.sender,
760 module,
761 cost,
762 );
763 false
764 }
765 CguReuse::PreLto => {
766 submit_pre_lto_module_to_llvm(
767 &backend,
768 tcx,
769 &ongoing_codegen.coordinator.sender,
770 CachedModuleCodegen {
771 name: cgu.name().to_string(),
772 source: cgu.previous_work_product(tcx),
773 },
774 );
775 true
776 }
777 CguReuse::PostLto => {
778 submit_post_lto_module_to_llvm(
779 &backend,
780 &ongoing_codegen.coordinator.sender,
781 CachedModuleCodegen {
782 name: cgu.name().to_string(),
783 source: cgu.previous_work_product(tcx),
784 },
785 );
786 true
787 }
788 };
789 }
790
791 ongoing_codegen.codegen_finished(tcx);
792
793 // Since the main thread is sometimes blocked during codegen, we keep track
794 // -Ztime-passes output manually.
795 if tcx.sess.opts.unstable_opts.time_passes {
796 let end_rss = get_resident_set_size();
797
798 print_time_passes_entry(
799 "codegen_to_LLVM_IR",
800 total_codegen_time,
801 start_rss.unwrap(),
802 end_rss,
803 tcx.sess.opts.unstable_opts.time_passes_format,
804 );
805 }
806
807 ongoing_codegen.check_for_errors(tcx.sess);
808 ongoing_codegen
809 }
810
811 impl CrateInfo {
new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo812 pub fn new(tcx: TyCtxt<'_>, target_cpu: String) -> CrateInfo {
813 let exported_symbols = tcx
814 .sess
815 .crate_types()
816 .iter()
817 .map(|&c| (c, crate::back::linker::exported_symbols(tcx, c)))
818 .collect();
819 let linked_symbols = tcx
820 .sess
821 .crate_types()
822 .iter()
823 .map(|&c| (c, crate::back::linker::linked_symbols(tcx, c)))
824 .collect();
825 let local_crate_name = tcx.crate_name(LOCAL_CRATE);
826 let crate_attrs = tcx.hir().attrs(rustc_hir::CRATE_HIR_ID);
827 let subsystem = attr::first_attr_value_str_by_name(crate_attrs, sym::windows_subsystem);
828 let windows_subsystem = subsystem.map(|subsystem| {
829 if subsystem != sym::windows && subsystem != sym::console {
830 tcx.sess.emit_fatal(errors::InvalidWindowsSubsystem { subsystem });
831 }
832 subsystem.to_string()
833 });
834
835 // This list is used when generating the command line to pass through to
836 // system linker. The linker expects undefined symbols on the left of the
837 // command line to be defined in libraries on the right, not the other way
838 // around. For more info, see some comments in the add_used_library function
839 // below.
840 //
841 // In order to get this left-to-right dependency ordering, we use the reverse
842 // postorder of all crates putting the leaves at the right-most positions.
843 let mut compiler_builtins = None;
844 let mut used_crates: Vec<_> = tcx
845 .postorder_cnums(())
846 .iter()
847 .rev()
848 .copied()
849 .filter(|&cnum| {
850 let link = !tcx.dep_kind(cnum).macros_only();
851 if link && tcx.is_compiler_builtins(cnum) {
852 compiler_builtins = Some(cnum);
853 return false;
854 }
855 link
856 })
857 .collect();
858 // `compiler_builtins` are always placed last to ensure that they're linked correctly.
859 used_crates.extend(compiler_builtins);
860
861 let mut info = CrateInfo {
862 target_cpu,
863 exported_symbols,
864 linked_symbols,
865 local_crate_name,
866 compiler_builtins,
867 profiler_runtime: None,
868 is_no_builtins: Default::default(),
869 native_libraries: Default::default(),
870 used_libraries: tcx.native_libraries(LOCAL_CRATE).iter().map(Into::into).collect(),
871 crate_name: Default::default(),
872 used_crates,
873 used_crate_source: Default::default(),
874 dependency_formats: tcx.dependency_formats(()).clone(),
875 windows_subsystem,
876 natvis_debugger_visualizers: Default::default(),
877 feature_packed_bundled_libs: tcx.features().packed_bundled_libs,
878 };
879 let crates = tcx.crates(());
880
881 let n_crates = crates.len();
882 info.native_libraries.reserve(n_crates);
883 info.crate_name.reserve(n_crates);
884 info.used_crate_source.reserve(n_crates);
885
886 for &cnum in crates.iter() {
887 info.native_libraries
888 .insert(cnum, tcx.native_libraries(cnum).iter().map(Into::into).collect());
889 info.crate_name.insert(cnum, tcx.crate_name(cnum));
890
891 let used_crate_source = tcx.used_crate_source(cnum);
892 info.used_crate_source.insert(cnum, used_crate_source.clone());
893 if tcx.is_profiler_runtime(cnum) {
894 info.profiler_runtime = Some(cnum);
895 }
896 if tcx.is_no_builtins(cnum) {
897 info.is_no_builtins.insert(cnum);
898 }
899 }
900
901 // Handle circular dependencies in the standard library.
902 // See comment before `add_linked_symbol_object` function for the details.
903 // If global LTO is enabled then almost everything (*) is glued into a single object file,
904 // so this logic is not necessary and can cause issues on some targets (due to weak lang
905 // item symbols being "privatized" to that object file), so we disable it.
906 // (*) Native libs, and `#[compiler_builtins]` and `#[no_builtins]` crates are not glued,
907 // and we assume that they cannot define weak lang items. This is not currently enforced
908 // by the compiler, but that's ok because all this stuff is unstable anyway.
909 let target = &tcx.sess.target;
910 if !are_upstream_rust_objects_already_included(tcx.sess) {
911 let missing_weak_lang_items: FxHashSet<Symbol> = info
912 .used_crates
913 .iter()
914 .flat_map(|&cnum| tcx.missing_lang_items(cnum))
915 .filter(|l| l.is_weak())
916 .filter_map(|&l| {
917 let name = l.link_name()?;
918 lang_items::required(tcx, l).then_some(name)
919 })
920 .collect();
921 let prefix = if target.is_like_windows && target.arch == "x86" { "_" } else { "" };
922 info.linked_symbols
923 .iter_mut()
924 .filter(|(crate_type, _)| {
925 !matches!(crate_type, CrateType::Rlib | CrateType::Staticlib)
926 })
927 .for_each(|(_, linked_symbols)| {
928 linked_symbols.extend(
929 missing_weak_lang_items
930 .iter()
931 .map(|item| (format!("{prefix}{item}"), SymbolExportKind::Text)),
932 );
933 if tcx.allocator_kind(()).is_some() {
934 // At least one crate needs a global allocator. This crate may be placed
935 // after the crate that defines it in the linker order, in which case some
936 // linkers return an error. By adding the global allocator shim methods to
937 // the linked_symbols list, linking the generated symbols.o will ensure that
938 // circular dependencies involving the global allocator don't lead to linker
939 // errors.
940 linked_symbols.extend(ALLOCATOR_METHODS.iter().map(|method| {
941 (
942 format!("{prefix}{}", global_fn_name(method.name).as_str()),
943 SymbolExportKind::Text,
944 )
945 }));
946 }
947 });
948 }
949
950 let embed_visualizers = tcx.sess.crate_types().iter().any(|&crate_type| match crate_type {
951 CrateType::Executable | CrateType::Dylib | CrateType::Cdylib => {
952 // These are crate types for which we invoke the linker and can embed
953 // NatVis visualizers.
954 true
955 }
956 CrateType::ProcMacro => {
957 // We could embed NatVis for proc macro crates too (to improve the debugging
958 // experience for them) but it does not seem like a good default, since
959 // this is a rare use case and we don't want to slow down the common case.
960 false
961 }
962 CrateType::Staticlib | CrateType::Rlib => {
963 // We don't invoke the linker for these, so we don't need to collect the NatVis for them.
964 false
965 }
966 });
967
968 if target.is_like_msvc && embed_visualizers {
969 info.natvis_debugger_visualizers =
970 collect_debugger_visualizers_transitive(tcx, DebuggerVisualizerType::Natvis);
971 }
972
973 info
974 }
975 }
976
provide(providers: &mut Providers)977 pub fn provide(providers: &mut Providers) {
978 providers.backend_optimization_level = |tcx, cratenum| {
979 let for_speed = match tcx.sess.opts.optimize {
980 // If globally no optimisation is done, #[optimize] has no effect.
981 //
982 // This is done because if we ended up "upgrading" to `-O2` here, we’d populate the
983 // pass manager and it is likely that some module-wide passes (such as inliner or
984 // cross-function constant propagation) would ignore the `optnone` annotation we put
985 // on the functions, thus necessarily involving these functions into optimisations.
986 config::OptLevel::No => return config::OptLevel::No,
987 // If globally optimise-speed is already specified, just use that level.
988 config::OptLevel::Less => return config::OptLevel::Less,
989 config::OptLevel::Default => return config::OptLevel::Default,
990 config::OptLevel::Aggressive => return config::OptLevel::Aggressive,
991 // If globally optimize-for-size has been requested, use -O2 instead (if optimize(size)
992 // are present).
993 config::OptLevel::Size => config::OptLevel::Default,
994 config::OptLevel::SizeMin => config::OptLevel::Default,
995 };
996
997 let (defids, _) = tcx.collect_and_partition_mono_items(cratenum);
998
999 let any_for_speed = defids.items().any(|id| {
1000 let CodegenFnAttrs { optimize, .. } = tcx.codegen_fn_attrs(*id);
1001 match optimize {
1002 attr::OptimizeAttr::None | attr::OptimizeAttr::Size => false,
1003 attr::OptimizeAttr::Speed => true,
1004 }
1005 });
1006
1007 if any_for_speed {
1008 return for_speed;
1009 }
1010
1011 tcx.sess.opts.optimize
1012 };
1013 }
1014
determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse1015 fn determine_cgu_reuse<'tcx>(tcx: TyCtxt<'tcx>, cgu: &CodegenUnit<'tcx>) -> CguReuse {
1016 if !tcx.dep_graph.is_fully_enabled() {
1017 return CguReuse::No;
1018 }
1019
1020 let work_product_id = &cgu.work_product_id();
1021 if tcx.dep_graph.previous_work_product(work_product_id).is_none() {
1022 // We don't have anything cached for this CGU. This can happen
1023 // if the CGU did not exist in the previous session.
1024 return CguReuse::No;
1025 }
1026
1027 // Try to mark the CGU as green. If it we can do so, it means that nothing
1028 // affecting the LLVM module has changed and we can re-use a cached version.
1029 // If we compile with any kind of LTO, this means we can re-use the bitcode
1030 // of the Pre-LTO stage (possibly also the Post-LTO version but we'll only
1031 // know that later). If we are not doing LTO, there is only one optimized
1032 // version of each module, so we re-use that.
1033 let dep_node = cgu.codegen_dep_node(tcx);
1034 assert!(
1035 !tcx.dep_graph.dep_node_exists(&dep_node),
1036 "CompileCodegenUnit dep-node for CGU `{}` already exists before marking.",
1037 cgu.name()
1038 );
1039
1040 if tcx.try_mark_green(&dep_node) {
1041 // We can re-use either the pre- or the post-thinlto state. If no LTO is
1042 // being performed then we can use post-LTO artifacts, otherwise we must
1043 // reuse pre-LTO artifacts
1044 match compute_per_cgu_lto_type(
1045 &tcx.sess.lto(),
1046 &tcx.sess.opts,
1047 &tcx.sess.crate_types(),
1048 ModuleKind::Regular,
1049 ) {
1050 ComputedLtoType::No => CguReuse::PostLto,
1051 _ => CguReuse::PreLto,
1052 }
1053 } else {
1054 CguReuse::No
1055 }
1056 }
1057