1 //! # Type Coercion
2 //!
3 //! Under certain circumstances we will coerce from one type to another,
4 //! for example by auto-borrowing. This occurs in situations where the
5 //! compiler has a firm 'expected type' that was supplied from the user,
6 //! and where the actual type is similar to that expected type in purpose
7 //! but not in representation (so actual subtyping is inappropriate).
8 //!
9 //! ## Reborrowing
10 //!
11 //! Note that if we are expecting a reference, we will *reborrow*
12 //! even if the argument provided was already a reference. This is
13 //! useful for freezing mut things (that is, when the expected type is &T
14 //! but you have &mut T) and also for avoiding the linearity
15 //! of mut things (when the expected is &mut T and you have &mut T). See
16 //! the various `tests/ui/coerce/*.rs` tests for
17 //! examples of where this is useful.
18 //!
19 //! ## Subtle note
20 //!
21 //! When inferring the generic arguments of functions, the argument
22 //! order is relevant, which can lead to the following edge case:
23 //!
24 //! ```ignore (illustrative)
25 //! fn foo<T>(a: T, b: T) {
26 //! // ...
27 //! }
28 //!
29 //! foo(&7i32, &mut 7i32);
30 //! // This compiles, as we first infer `T` to be `&i32`,
31 //! // and then coerce `&mut 7i32` to `&7i32`.
32 //!
33 //! foo(&mut 7i32, &7i32);
34 //! // This does not compile, as we first infer `T` to be `&mut i32`
35 //! // and are then unable to coerce `&7i32` to `&mut i32`.
36 //! ```
37
38 use crate::FnCtxt;
39 use rustc_errors::{struct_span_err, Diagnostic, DiagnosticBuilder, ErrorGuaranteed, MultiSpan};
40 use rustc_hir as hir;
41 use rustc_hir::def_id::DefId;
42 use rustc_hir::intravisit::{self, Visitor};
43 use rustc_hir::Expr;
44 use rustc_hir_analysis::astconv::AstConv;
45 use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
46 use rustc_infer::infer::{Coercion, DefineOpaqueTypes, InferOk, InferResult};
47 use rustc_infer::traits::{Obligation, PredicateObligation};
48 use rustc_middle::lint::in_external_macro;
49 use rustc_middle::ty::adjustment::{
50 Adjust, Adjustment, AllowTwoPhase, AutoBorrow, AutoBorrowMutability, PointerCoercion,
51 };
52 use rustc_middle::ty::error::TypeError;
53 use rustc_middle::ty::relate::RelateResult;
54 use rustc_middle::ty::subst::SubstsRef;
55 use rustc_middle::ty::visit::TypeVisitableExt;
56 use rustc_middle::ty::{self, Ty, TypeAndMut};
57 use rustc_session::parse::feature_err;
58 use rustc_span::symbol::sym;
59 use rustc_span::{self, DesugaringKind};
60 use rustc_target::spec::abi::Abi;
61 use rustc_trait_selection::infer::InferCtxtExt as _;
62 use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
63 use rustc_trait_selection::traits::query::evaluate_obligation::InferCtxtExt;
64 use rustc_trait_selection::traits::{
65 self, NormalizeExt, ObligationCause, ObligationCauseCode, ObligationCtxt,
66 };
67
68 use smallvec::{smallvec, SmallVec};
69 use std::ops::Deref;
70
71 struct Coerce<'a, 'tcx> {
72 fcx: &'a FnCtxt<'a, 'tcx>,
73 cause: ObligationCause<'tcx>,
74 use_lub: bool,
75 /// Determines whether or not allow_two_phase_borrow is set on any
76 /// autoref adjustments we create while coercing. We don't want to
77 /// allow deref coercions to create two-phase borrows, at least initially,
78 /// but we do need two-phase borrows for function argument reborrows.
79 /// See #47489 and #48598
80 /// See docs on the "AllowTwoPhase" type for a more detailed discussion
81 allow_two_phase: AllowTwoPhase,
82 }
83
84 impl<'a, 'tcx> Deref for Coerce<'a, 'tcx> {
85 type Target = FnCtxt<'a, 'tcx>;
deref(&self) -> &Self::Target86 fn deref(&self) -> &Self::Target {
87 &self.fcx
88 }
89 }
90
91 type CoerceResult<'tcx> = InferResult<'tcx, (Vec<Adjustment<'tcx>>, Ty<'tcx>)>;
92
93 struct CollectRetsVisitor<'tcx> {
94 ret_exprs: Vec<&'tcx hir::Expr<'tcx>>,
95 }
96
97 impl<'tcx> Visitor<'tcx> for CollectRetsVisitor<'tcx> {
visit_expr(&mut self, expr: &'tcx Expr<'tcx>)98 fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
99 if let hir::ExprKind::Ret(_) = expr.kind {
100 self.ret_exprs.push(expr);
101 }
102 intravisit::walk_expr(self, expr);
103 }
104 }
105
106 /// Coercing a mutable reference to an immutable works, while
107 /// coercing `&T` to `&mut T` should be forbidden.
coerce_mutbls<'tcx>( from_mutbl: hir::Mutability, to_mutbl: hir::Mutability, ) -> RelateResult<'tcx, ()>108 fn coerce_mutbls<'tcx>(
109 from_mutbl: hir::Mutability,
110 to_mutbl: hir::Mutability,
111 ) -> RelateResult<'tcx, ()> {
112 if from_mutbl >= to_mutbl { Ok(()) } else { Err(TypeError::Mutability) }
113 }
114
115 /// Do not require any adjustments, i.e. coerce `x -> x`.
identity(_: Ty<'_>) -> Vec<Adjustment<'_>>116 fn identity(_: Ty<'_>) -> Vec<Adjustment<'_>> {
117 vec![]
118 }
119
simple<'tcx>(kind: Adjust<'tcx>) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'_>>120 fn simple<'tcx>(kind: Adjust<'tcx>) -> impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'_>> {
121 move |target| vec![Adjustment { kind, target }]
122 }
123
124 /// This always returns `Ok(...)`.
success<'tcx>( adj: Vec<Adjustment<'tcx>>, target: Ty<'tcx>, obligations: traits::PredicateObligations<'tcx>, ) -> CoerceResult<'tcx>125 fn success<'tcx>(
126 adj: Vec<Adjustment<'tcx>>,
127 target: Ty<'tcx>,
128 obligations: traits::PredicateObligations<'tcx>,
129 ) -> CoerceResult<'tcx> {
130 Ok(InferOk { value: (adj, target), obligations })
131 }
132
133 impl<'f, 'tcx> Coerce<'f, 'tcx> {
new( fcx: &'f FnCtxt<'f, 'tcx>, cause: ObligationCause<'tcx>, allow_two_phase: AllowTwoPhase, ) -> Self134 fn new(
135 fcx: &'f FnCtxt<'f, 'tcx>,
136 cause: ObligationCause<'tcx>,
137 allow_two_phase: AllowTwoPhase,
138 ) -> Self {
139 Coerce { fcx, cause, allow_two_phase, use_lub: false }
140 }
141
unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>>142 fn unify(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> InferResult<'tcx, Ty<'tcx>> {
143 debug!("unify(a: {:?}, b: {:?}, use_lub: {})", a, b, self.use_lub);
144 self.commit_if_ok(|_| {
145 let at = self.at(&self.cause, self.fcx.param_env);
146
147 let res = if self.use_lub {
148 at.lub(DefineOpaqueTypes::Yes, b, a)
149 } else {
150 at.sup(DefineOpaqueTypes::Yes, b, a)
151 .map(|InferOk { value: (), obligations }| InferOk { value: a, obligations })
152 };
153
154 // In the new solver, lazy norm may allow us to shallowly equate
155 // more types, but we emit possibly impossible-to-satisfy obligations.
156 // Filter these cases out to make sure our coercion is more accurate.
157 if self.next_trait_solver() {
158 if let Ok(res) = &res {
159 for obligation in &res.obligations {
160 if !self.predicate_may_hold(&obligation) {
161 return Err(TypeError::Mismatch);
162 }
163 }
164 }
165 }
166
167 res
168 })
169 }
170
171 /// Unify two types (using sub or lub) and produce a specific coercion.
unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx> where F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,172 fn unify_and<F>(&self, a: Ty<'tcx>, b: Ty<'tcx>, f: F) -> CoerceResult<'tcx>
173 where
174 F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
175 {
176 self.unify(a, b)
177 .and_then(|InferOk { value: ty, obligations }| success(f(ty), ty, obligations))
178 }
179
180 #[instrument(skip(self))]
coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx>181 fn coerce(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
182 // First, remove any resolved type variables (at the top level, at least):
183 let a = self.shallow_resolve(a);
184 let b = self.shallow_resolve(b);
185 debug!("Coerce.tys({:?} => {:?})", a, b);
186
187 // Just ignore error types.
188 if let Err(guar) = (a, b).error_reported() {
189 // Best-effort try to unify these types -- we're already on the error path,
190 // so this will have the side-effect of making sure we have no ambiguities
191 // due to `[type error]` and `_` not coercing together.
192 let _ = self.commit_if_ok(|_| {
193 self.at(&self.cause, self.param_env).eq(DefineOpaqueTypes::Yes, a, b)
194 });
195 return success(vec![], Ty::new_error(self.fcx.tcx, guar), vec![]);
196 }
197
198 // Coercing from `!` to any type is allowed:
199 if a.is_never() {
200 return success(simple(Adjust::NeverToAny)(b), b, vec![]);
201 }
202
203 // Coercing *from* an unresolved inference variable means that
204 // we have no information about the source type. This will always
205 // ultimately fall back to some form of subtyping.
206 if a.is_ty_var() {
207 return self.coerce_from_inference_variable(a, b, identity);
208 }
209
210 // Consider coercing the subtype to a DST
211 //
212 // NOTE: this is wrapped in a `commit_if_ok` because it creates
213 // a "spurious" type variable, and we don't want to have that
214 // type variable in memory if the coercion fails.
215 let unsize = self.commit_if_ok(|_| self.coerce_unsized(a, b));
216 match unsize {
217 Ok(_) => {
218 debug!("coerce: unsize successful");
219 return unsize;
220 }
221 Err(error) => {
222 debug!(?error, "coerce: unsize failed");
223 }
224 }
225
226 // Examine the supertype and consider auto-borrowing.
227 match *b.kind() {
228 ty::RawPtr(mt_b) => {
229 return self.coerce_unsafe_ptr(a, b, mt_b.mutbl);
230 }
231 ty::Ref(r_b, _, mutbl_b) => {
232 return self.coerce_borrowed_pointer(a, b, r_b, mutbl_b);
233 }
234 ty::Dynamic(predicates, region, ty::DynStar) if self.tcx.features().dyn_star => {
235 return self.coerce_dyn_star(a, b, predicates, region);
236 }
237 _ => {}
238 }
239
240 match *a.kind() {
241 ty::FnDef(..) => {
242 // Function items are coercible to any closure
243 // type; function pointers are not (that would
244 // require double indirection).
245 // Additionally, we permit coercion of function
246 // items to drop the unsafe qualifier.
247 self.coerce_from_fn_item(a, b)
248 }
249 ty::FnPtr(a_f) => {
250 // We permit coercion of fn pointers to drop the
251 // unsafe qualifier.
252 self.coerce_from_fn_pointer(a, a_f, b)
253 }
254 ty::Closure(closure_def_id_a, substs_a) => {
255 // Non-capturing closures are coercible to
256 // function pointers or unsafe function pointers.
257 // It cannot convert closures that require unsafe.
258 self.coerce_closure_to_fn(a, closure_def_id_a, substs_a, b)
259 }
260 _ => {
261 // Otherwise, just use unification rules.
262 self.unify_and(a, b, identity)
263 }
264 }
265 }
266
267 /// Coercing *from* an inference variable. In this case, we have no information
268 /// about the source type, so we can't really do a true coercion and we always
269 /// fall back to subtyping (`unify_and`).
coerce_from_inference_variable( &self, a: Ty<'tcx>, b: Ty<'tcx>, make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>, ) -> CoerceResult<'tcx>270 fn coerce_from_inference_variable(
271 &self,
272 a: Ty<'tcx>,
273 b: Ty<'tcx>,
274 make_adjustments: impl FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
275 ) -> CoerceResult<'tcx> {
276 debug!("coerce_from_inference_variable(a={:?}, b={:?})", a, b);
277 assert!(a.is_ty_var() && self.shallow_resolve(a) == a);
278 assert!(self.shallow_resolve(b) == b);
279
280 if b.is_ty_var() {
281 // Two unresolved type variables: create a `Coerce` predicate.
282 let target_ty = if self.use_lub {
283 self.next_ty_var(TypeVariableOrigin {
284 kind: TypeVariableOriginKind::LatticeVariable,
285 span: self.cause.span,
286 })
287 } else {
288 b
289 };
290
291 let mut obligations = Vec::with_capacity(2);
292 for &source_ty in &[a, b] {
293 if source_ty != target_ty {
294 obligations.push(Obligation::new(
295 self.tcx(),
296 self.cause.clone(),
297 self.param_env,
298 ty::Binder::dummy(ty::PredicateKind::Coerce(ty::CoercePredicate {
299 a: source_ty,
300 b: target_ty,
301 })),
302 ));
303 }
304 }
305
306 debug!(
307 "coerce_from_inference_variable: two inference variables, target_ty={:?}, obligations={:?}",
308 target_ty, obligations
309 );
310 let adjustments = make_adjustments(target_ty);
311 InferResult::Ok(InferOk { value: (adjustments, target_ty), obligations })
312 } else {
313 // One unresolved type variable: just apply subtyping, we may be able
314 // to do something useful.
315 self.unify_and(a, b, make_adjustments)
316 }
317 }
318
319 /// Reborrows `&mut A` to `&mut B` and `&(mut) A` to `&B`.
320 /// To match `A` with `B`, autoderef will be performed,
321 /// calling `deref`/`deref_mut` where necessary.
coerce_borrowed_pointer( &self, a: Ty<'tcx>, b: Ty<'tcx>, r_b: ty::Region<'tcx>, mutbl_b: hir::Mutability, ) -> CoerceResult<'tcx>322 fn coerce_borrowed_pointer(
323 &self,
324 a: Ty<'tcx>,
325 b: Ty<'tcx>,
326 r_b: ty::Region<'tcx>,
327 mutbl_b: hir::Mutability,
328 ) -> CoerceResult<'tcx> {
329 debug!("coerce_borrowed_pointer(a={:?}, b={:?})", a, b);
330
331 // If we have a parameter of type `&M T_a` and the value
332 // provided is `expr`, we will be adding an implicit borrow,
333 // meaning that we convert `f(expr)` to `f(&M *expr)`. Therefore,
334 // to type check, we will construct the type that `&M*expr` would
335 // yield.
336
337 let (r_a, mt_a) = match *a.kind() {
338 ty::Ref(r_a, ty, mutbl) => {
339 let mt_a = ty::TypeAndMut { ty, mutbl };
340 coerce_mutbls(mt_a.mutbl, mutbl_b)?;
341 (r_a, mt_a)
342 }
343 _ => return self.unify_and(a, b, identity),
344 };
345
346 let span = self.cause.span;
347
348 let mut first_error = None;
349 let mut r_borrow_var = None;
350 let mut autoderef = self.autoderef(span, a);
351 let mut found = None;
352
353 for (referent_ty, autoderefs) in autoderef.by_ref() {
354 if autoderefs == 0 {
355 // Don't let this pass, otherwise it would cause
356 // &T to autoref to &&T.
357 continue;
358 }
359
360 // At this point, we have deref'd `a` to `referent_ty`. So
361 // imagine we are coercing from `&'a mut Vec<T>` to `&'b mut [T]`.
362 // In the autoderef loop for `&'a mut Vec<T>`, we would get
363 // three callbacks:
364 //
365 // - `&'a mut Vec<T>` -- 0 derefs, just ignore it
366 // - `Vec<T>` -- 1 deref
367 // - `[T]` -- 2 deref
368 //
369 // At each point after the first callback, we want to
370 // check to see whether this would match out target type
371 // (`&'b mut [T]`) if we autoref'd it. We can't just
372 // compare the referent types, though, because we still
373 // have to consider the mutability. E.g., in the case
374 // we've been considering, we have an `&mut` reference, so
375 // the `T` in `[T]` needs to be unified with equality.
376 //
377 // Therefore, we construct reference types reflecting what
378 // the types will be after we do the final auto-ref and
379 // compare those. Note that this means we use the target
380 // mutability [1], since it may be that we are coercing
381 // from `&mut T` to `&U`.
382 //
383 // One fine point concerns the region that we use. We
384 // choose the region such that the region of the final
385 // type that results from `unify` will be the region we
386 // want for the autoref:
387 //
388 // - if in sub mode, that means we want to use `'b` (the
389 // region from the target reference) for both
390 // pointers [2]. This is because sub mode (somewhat
391 // arbitrarily) returns the subtype region. In the case
392 // where we are coercing to a target type, we know we
393 // want to use that target type region (`'b`) because --
394 // for the program to type-check -- it must be the
395 // smaller of the two.
396 // - One fine point. It may be surprising that we can
397 // use `'b` without relating `'a` and `'b`. The reason
398 // that this is ok is that what we produce is
399 // effectively a `&'b *x` expression (if you could
400 // annotate the region of a borrow), and regionck has
401 // code that adds edges from the region of a borrow
402 // (`'b`, here) into the regions in the borrowed
403 // expression (`*x`, here). (Search for "link".)
404 // - if in lub mode, things can get fairly complicated. The
405 // easiest thing is just to make a fresh
406 // region variable [4], which effectively means we defer
407 // the decision to region inference (and regionck, which will add
408 // some more edges to this variable). However, this can wind up
409 // creating a crippling number of variables in some cases --
410 // e.g., #32278 -- so we optimize one particular case [3].
411 // Let me try to explain with some examples:
412 // - The "running example" above represents the simple case,
413 // where we have one `&` reference at the outer level and
414 // ownership all the rest of the way down. In this case,
415 // we want `LUB('a, 'b)` as the resulting region.
416 // - However, if there are nested borrows, that region is
417 // too strong. Consider a coercion from `&'a &'x Rc<T>` to
418 // `&'b T`. In this case, `'a` is actually irrelevant.
419 // The pointer we want is `LUB('x, 'b`). If we choose `LUB('a,'b)`
420 // we get spurious errors (`ui/regions-lub-ref-ref-rc.rs`).
421 // (The errors actually show up in borrowck, typically, because
422 // this extra edge causes the region `'a` to be inferred to something
423 // too big, which then results in borrowck errors.)
424 // - We could track the innermost shared reference, but there is already
425 // code in regionck that has the job of creating links between
426 // the region of a borrow and the regions in the thing being
427 // borrowed (here, `'a` and `'x`), and it knows how to handle
428 // all the various cases. So instead we just make a region variable
429 // and let regionck figure it out.
430 let r = if !self.use_lub {
431 r_b // [2] above
432 } else if autoderefs == 1 {
433 r_a // [3] above
434 } else {
435 if r_borrow_var.is_none() {
436 // create var lazily, at most once
437 let coercion = Coercion(span);
438 let r = self.next_region_var(coercion);
439 r_borrow_var = Some(r); // [4] above
440 }
441 r_borrow_var.unwrap()
442 };
443 let derefd_ty_a = Ty::new_ref(
444 self.tcx,
445 r,
446 TypeAndMut {
447 ty: referent_ty,
448 mutbl: mutbl_b, // [1] above
449 },
450 );
451 match self.unify(derefd_ty_a, b) {
452 Ok(ok) => {
453 found = Some(ok);
454 break;
455 }
456 Err(err) => {
457 if first_error.is_none() {
458 first_error = Some(err);
459 }
460 }
461 }
462 }
463
464 // Extract type or return an error. We return the first error
465 // we got, which should be from relating the "base" type
466 // (e.g., in example above, the failure from relating `Vec<T>`
467 // to the target type), since that should be the least
468 // confusing.
469 let Some(InferOk { value: ty, mut obligations }) = found else {
470 let err = first_error.expect("coerce_borrowed_pointer had no error");
471 debug!("coerce_borrowed_pointer: failed with err = {:?}", err);
472 return Err(err);
473 };
474
475 if ty == a && mt_a.mutbl.is_not() && autoderef.step_count() == 1 {
476 // As a special case, if we would produce `&'a *x`, that's
477 // a total no-op. We end up with the type `&'a T` just as
478 // we started with. In that case, just skip it
479 // altogether. This is just an optimization.
480 //
481 // Note that for `&mut`, we DO want to reborrow --
482 // otherwise, this would be a move, which might be an
483 // error. For example `foo(self.x)` where `self` and
484 // `self.x` both have `&mut `type would be a move of
485 // `self.x`, but we auto-coerce it to `foo(&mut *self.x)`,
486 // which is a borrow.
487 assert!(mutbl_b.is_not()); // can only coerce &T -> &U
488 return success(vec![], ty, obligations);
489 }
490
491 let InferOk { value: mut adjustments, obligations: o } =
492 self.adjust_steps_as_infer_ok(&autoderef);
493 obligations.extend(o);
494 obligations.extend(autoderef.into_obligations());
495
496 // Now apply the autoref. We have to extract the region out of
497 // the final ref type we got.
498 let ty::Ref(r_borrow, _, _) = ty.kind() else {
499 span_bug!(span, "expected a ref type, got {:?}", ty);
500 };
501 let mutbl = AutoBorrowMutability::new(mutbl_b, self.allow_two_phase);
502 adjustments.push(Adjustment {
503 kind: Adjust::Borrow(AutoBorrow::Ref(*r_borrow, mutbl)),
504 target: ty,
505 });
506
507 debug!("coerce_borrowed_pointer: succeeded ty={:?} adjustments={:?}", ty, adjustments);
508
509 success(adjustments, ty, obligations)
510 }
511
512 // &[T; n] or &mut [T; n] -> &[T]
513 // or &mut [T; n] -> &mut [T]
514 // or &Concrete -> &Trait, etc.
515 #[instrument(skip(self), level = "debug")]
coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx>516 fn coerce_unsized(&self, mut source: Ty<'tcx>, mut target: Ty<'tcx>) -> CoerceResult<'tcx> {
517 source = self.shallow_resolve(source);
518 target = self.shallow_resolve(target);
519 debug!(?source, ?target);
520
521 // We don't apply any coercions incase either the source or target
522 // aren't sufficiently well known but tend to instead just equate
523 // them both.
524 if source.is_ty_var() {
525 debug!("coerce_unsized: source is a TyVar, bailing out");
526 return Err(TypeError::Mismatch);
527 }
528 if target.is_ty_var() {
529 debug!("coerce_unsized: target is a TyVar, bailing out");
530 return Err(TypeError::Mismatch);
531 }
532
533 let traits =
534 (self.tcx.lang_items().unsize_trait(), self.tcx.lang_items().coerce_unsized_trait());
535 let (Some(unsize_did), Some(coerce_unsized_did)) = traits else {
536 debug!("missing Unsize or CoerceUnsized traits");
537 return Err(TypeError::Mismatch);
538 };
539
540 // Note, we want to avoid unnecessary unsizing. We don't want to coerce to
541 // a DST unless we have to. This currently comes out in the wash since
542 // we can't unify [T] with U. But to properly support DST, we need to allow
543 // that, at which point we will need extra checks on the target here.
544
545 // Handle reborrows before selecting `Source: CoerceUnsized<Target>`.
546 let reborrow = match (source.kind(), target.kind()) {
547 (&ty::Ref(_, ty_a, mutbl_a), &ty::Ref(_, _, mutbl_b)) => {
548 coerce_mutbls(mutbl_a, mutbl_b)?;
549
550 let coercion = Coercion(self.cause.span);
551 let r_borrow = self.next_region_var(coercion);
552
553 // We don't allow two-phase borrows here, at least for initial
554 // implementation. If it happens that this coercion is a function argument,
555 // the reborrow in coerce_borrowed_ptr will pick it up.
556 let mutbl = AutoBorrowMutability::new(mutbl_b, AllowTwoPhase::No);
557
558 Some((
559 Adjustment { kind: Adjust::Deref(None), target: ty_a },
560 Adjustment {
561 kind: Adjust::Borrow(AutoBorrow::Ref(r_borrow, mutbl)),
562 target: Ty::new_ref(
563 self.tcx,
564 r_borrow,
565 ty::TypeAndMut { mutbl: mutbl_b, ty: ty_a },
566 ),
567 },
568 ))
569 }
570 (&ty::Ref(_, ty_a, mt_a), &ty::RawPtr(ty::TypeAndMut { mutbl: mt_b, .. })) => {
571 coerce_mutbls(mt_a, mt_b)?;
572
573 Some((
574 Adjustment { kind: Adjust::Deref(None), target: ty_a },
575 Adjustment {
576 kind: Adjust::Borrow(AutoBorrow::RawPtr(mt_b)),
577 target: Ty::new_ptr(self.tcx, ty::TypeAndMut { mutbl: mt_b, ty: ty_a }),
578 },
579 ))
580 }
581 _ => None,
582 };
583 let coerce_source = reborrow.as_ref().map_or(source, |(_, r)| r.target);
584
585 // Setup either a subtyping or a LUB relationship between
586 // the `CoerceUnsized` target type and the expected type.
587 // We only have the latter, so we use an inference variable
588 // for the former and let type inference do the rest.
589 let origin = TypeVariableOrigin {
590 kind: TypeVariableOriginKind::MiscVariable,
591 span: self.cause.span,
592 };
593 let coerce_target = self.next_ty_var(origin);
594 let mut coercion = self.unify_and(coerce_target, target, |target| {
595 let unsize = Adjustment { kind: Adjust::Pointer(PointerCoercion::Unsize), target };
596 match reborrow {
597 None => vec![unsize],
598 Some((ref deref, ref autoref)) => vec![deref.clone(), autoref.clone(), unsize],
599 }
600 })?;
601
602 let mut selcx = traits::SelectionContext::new(self);
603
604 // Create an obligation for `Source: CoerceUnsized<Target>`.
605 let cause = ObligationCause::new(
606 self.cause.span,
607 self.body_id,
608 ObligationCauseCode::Coercion { source, target },
609 );
610
611 // Use a FIFO queue for this custom fulfillment procedure.
612 //
613 // A Vec (or SmallVec) is not a natural choice for a queue. However,
614 // this code path is hot, and this queue usually has a max length of 1
615 // and almost never more than 3. By using a SmallVec we avoid an
616 // allocation, at the (very small) cost of (occasionally) having to
617 // shift subsequent elements down when removing the front element.
618 let mut queue: SmallVec<[PredicateObligation<'tcx>; 4]> = smallvec![Obligation::new(
619 self.tcx,
620 cause,
621 self.fcx.param_env,
622 ty::TraitRef::new(self.tcx, coerce_unsized_did, [coerce_source, coerce_target])
623 )];
624
625 let mut has_unsized_tuple_coercion = false;
626 let mut has_trait_upcasting_coercion = None;
627
628 // Keep resolving `CoerceUnsized` and `Unsize` predicates to avoid
629 // emitting a coercion in cases like `Foo<$1>` -> `Foo<$2>`, where
630 // inference might unify those two inner type variables later.
631 let traits = [coerce_unsized_did, unsize_did];
632 while !queue.is_empty() {
633 let obligation = queue.remove(0);
634 debug!("coerce_unsized resolve step: {:?}", obligation);
635 let trait_pred = match obligation.predicate.kind().no_bound_vars() {
636 Some(ty::PredicateKind::Clause(ty::ClauseKind::Trait(trait_pred)))
637 if traits.contains(&trait_pred.def_id()) =>
638 {
639 if unsize_did == trait_pred.def_id() {
640 let self_ty = trait_pred.self_ty();
641 let unsize_ty = trait_pred.trait_ref.substs[1].expect_ty();
642 if let (ty::Dynamic(ref data_a, ..), ty::Dynamic(ref data_b, ..)) =
643 (self_ty.kind(), unsize_ty.kind())
644 && data_a.principal_def_id() != data_b.principal_def_id()
645 {
646 debug!("coerce_unsized: found trait upcasting coercion");
647 has_trait_upcasting_coercion = Some((self_ty, unsize_ty));
648 }
649 if let ty::Tuple(..) = unsize_ty.kind() {
650 debug!("coerce_unsized: found unsized tuple coercion");
651 has_unsized_tuple_coercion = true;
652 }
653 }
654 trait_pred
655 }
656 _ => {
657 coercion.obligations.push(obligation);
658 continue;
659 }
660 };
661 match selcx.select(&obligation.with(selcx.tcx(), trait_pred)) {
662 // Uncertain or unimplemented.
663 Ok(None) => {
664 if trait_pred.def_id() == unsize_did {
665 let trait_pred = self.resolve_vars_if_possible(trait_pred);
666 let self_ty = trait_pred.self_ty();
667 let unsize_ty = trait_pred.trait_ref.substs[1].expect_ty();
668 debug!("coerce_unsized: ambiguous unsize case for {:?}", trait_pred);
669 match (self_ty.kind(), unsize_ty.kind()) {
670 (&ty::Infer(ty::TyVar(v)), ty::Dynamic(..))
671 if self.type_var_is_sized(v) =>
672 {
673 debug!("coerce_unsized: have sized infer {:?}", v);
674 coercion.obligations.push(obligation);
675 // `$0: Unsize<dyn Trait>` where we know that `$0: Sized`, try going
676 // for unsizing.
677 }
678 _ => {
679 // Some other case for `$0: Unsize<Something>`. Note that we
680 // hit this case even if `Something` is a sized type, so just
681 // don't do the coercion.
682 debug!("coerce_unsized: ambiguous unsize");
683 return Err(TypeError::Mismatch);
684 }
685 }
686 } else {
687 debug!("coerce_unsized: early return - ambiguous");
688 return Err(TypeError::Mismatch);
689 }
690 }
691 Err(traits::Unimplemented) => {
692 debug!("coerce_unsized: early return - can't prove obligation");
693 return Err(TypeError::Mismatch);
694 }
695
696 // Object safety violations or miscellaneous.
697 Err(err) => {
698 self.err_ctxt().report_selection_error(obligation.clone(), &obligation, &err);
699 // Treat this like an obligation and follow through
700 // with the unsizing - the lack of a coercion should
701 // be silent, as it causes a type mismatch later.
702 }
703
704 Ok(Some(impl_source)) => queue.extend(impl_source.nested_obligations()),
705 }
706 }
707
708 if has_unsized_tuple_coercion && !self.tcx.features().unsized_tuple_coercion {
709 feature_err(
710 &self.tcx.sess.parse_sess,
711 sym::unsized_tuple_coercion,
712 self.cause.span,
713 "unsized tuple coercion is not stable enough for use and is subject to change",
714 )
715 .emit();
716 }
717
718 if let Some((sub, sup)) = has_trait_upcasting_coercion
719 && !self.tcx().features().trait_upcasting
720 {
721 // Renders better when we erase regions, since they're not really the point here.
722 let (sub, sup) = self.tcx.erase_regions((sub, sup));
723 let mut err = feature_err(
724 &self.tcx.sess.parse_sess,
725 sym::trait_upcasting,
726 self.cause.span,
727 format!("cannot cast `{sub}` to `{sup}`, trait upcasting coercion is experimental"),
728 );
729 err.note(format!("required when coercing `{source}` into `{target}`"));
730 err.emit();
731 }
732
733 Ok(coercion)
734 }
735
coerce_dyn_star( &self, a: Ty<'tcx>, b: Ty<'tcx>, predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>, b_region: ty::Region<'tcx>, ) -> CoerceResult<'tcx>736 fn coerce_dyn_star(
737 &self,
738 a: Ty<'tcx>,
739 b: Ty<'tcx>,
740 predicates: &'tcx ty::List<ty::PolyExistentialPredicate<'tcx>>,
741 b_region: ty::Region<'tcx>,
742 ) -> CoerceResult<'tcx> {
743 if !self.tcx.features().dyn_star {
744 return Err(TypeError::Mismatch);
745 }
746
747 if let ty::Dynamic(a_data, _, _) = a.kind()
748 && let ty::Dynamic(b_data, _, _) = b.kind()
749 && a_data.principal_def_id() == b_data.principal_def_id()
750 {
751 return self.unify_and(a, b, |_| vec![]);
752 }
753
754 // Check the obligations of the cast -- for example, when casting
755 // `usize` to `dyn* Clone + 'static`:
756 let mut obligations: Vec<_> = predicates
757 .iter()
758 .map(|predicate| {
759 // For each existential predicate (e.g., `?Self: Clone`) substitute
760 // the type of the expression (e.g., `usize` in our example above)
761 // and then require that the resulting predicate (e.g., `usize: Clone`)
762 // holds (it does).
763 let predicate = predicate.with_self_ty(self.tcx, a);
764 Obligation::new(self.tcx, self.cause.clone(), self.param_env, predicate)
765 })
766 .chain([
767 // Enforce the region bound (e.g., `usize: 'static`, in our example).
768 Obligation::new(
769 self.tcx,
770 self.cause.clone(),
771 self.param_env,
772 ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::TypeOutlives(
773 ty::OutlivesPredicate(a, b_region),
774 ))),
775 ),
776 ])
777 .collect();
778
779 // Enforce that the type is `usize`/pointer-sized.
780 obligations.push(Obligation::new(
781 self.tcx,
782 self.cause.clone(),
783 self.param_env,
784 ty::TraitRef::from_lang_item(
785 self.tcx,
786 hir::LangItem::PointerLike,
787 self.cause.span,
788 [a],
789 ),
790 ));
791
792 Ok(InferOk {
793 value: (vec![Adjustment { kind: Adjust::DynStar, target: b }], b),
794 obligations,
795 })
796 }
797
coerce_from_safe_fn<F, G>( &self, a: Ty<'tcx>, fn_ty_a: ty::PolyFnSig<'tcx>, b: Ty<'tcx>, to_unsafe: F, normal: G, ) -> CoerceResult<'tcx> where F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>, G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,798 fn coerce_from_safe_fn<F, G>(
799 &self,
800 a: Ty<'tcx>,
801 fn_ty_a: ty::PolyFnSig<'tcx>,
802 b: Ty<'tcx>,
803 to_unsafe: F,
804 normal: G,
805 ) -> CoerceResult<'tcx>
806 where
807 F: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
808 G: FnOnce(Ty<'tcx>) -> Vec<Adjustment<'tcx>>,
809 {
810 self.commit_if_ok(|snapshot| {
811 let outer_universe = self.infcx.universe();
812
813 let result = if let ty::FnPtr(fn_ty_b) = b.kind()
814 && let (hir::Unsafety::Normal, hir::Unsafety::Unsafe) =
815 (fn_ty_a.unsafety(), fn_ty_b.unsafety())
816 {
817 let unsafe_a = self.tcx.safe_to_unsafe_fn_ty(fn_ty_a);
818 self.unify_and(unsafe_a, b, to_unsafe)
819 } else {
820 self.unify_and(a, b, normal)
821 };
822
823 // FIXME(#73154): This is a hack. Currently LUB can generate
824 // unsolvable constraints. Additionally, it returns `a`
825 // unconditionally, even when the "LUB" is `b`. In the future, we
826 // want the coerced type to be the actual supertype of these two,
827 // but for now, we want to just error to ensure we don't lock
828 // ourselves into a specific behavior with NLL.
829 self.leak_check(outer_universe, Some(snapshot))?;
830
831 result
832 })
833 }
834
coerce_from_fn_pointer( &self, a: Ty<'tcx>, fn_ty_a: ty::PolyFnSig<'tcx>, b: Ty<'tcx>, ) -> CoerceResult<'tcx>835 fn coerce_from_fn_pointer(
836 &self,
837 a: Ty<'tcx>,
838 fn_ty_a: ty::PolyFnSig<'tcx>,
839 b: Ty<'tcx>,
840 ) -> CoerceResult<'tcx> {
841 //! Attempts to coerce from the type of a Rust function item
842 //! into a closure or a `proc`.
843 //!
844
845 let b = self.shallow_resolve(b);
846 debug!("coerce_from_fn_pointer(a={:?}, b={:?})", a, b);
847
848 self.coerce_from_safe_fn(
849 a,
850 fn_ty_a,
851 b,
852 simple(Adjust::Pointer(PointerCoercion::UnsafeFnPointer)),
853 identity,
854 )
855 }
856
coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx>857 fn coerce_from_fn_item(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> CoerceResult<'tcx> {
858 //! Attempts to coerce from the type of a Rust function item
859 //! into a closure or a `proc`.
860
861 let b = self.shallow_resolve(b);
862 let InferOk { value: b, mut obligations } =
863 self.at(&self.cause, self.param_env).normalize(b);
864 debug!("coerce_from_fn_item(a={:?}, b={:?})", a, b);
865
866 match b.kind() {
867 ty::FnPtr(b_sig) => {
868 let a_sig = a.fn_sig(self.tcx);
869 if let ty::FnDef(def_id, _) = *a.kind() {
870 // Intrinsics are not coercible to function pointers
871 if self.tcx.is_intrinsic(def_id) {
872 return Err(TypeError::IntrinsicCast);
873 }
874
875 // Safe `#[target_feature]` functions are not assignable to safe fn pointers (RFC 2396).
876
877 if b_sig.unsafety() == hir::Unsafety::Normal
878 && !self.tcx.codegen_fn_attrs(def_id).target_features.is_empty()
879 {
880 return Err(TypeError::TargetFeatureCast(def_id));
881 }
882 }
883
884 let InferOk { value: a_sig, obligations: o1 } =
885 self.at(&self.cause, self.param_env).normalize(a_sig);
886 obligations.extend(o1);
887
888 let a_fn_pointer = Ty::new_fn_ptr(self.tcx, a_sig);
889 let InferOk { value, obligations: o2 } = self.coerce_from_safe_fn(
890 a_fn_pointer,
891 a_sig,
892 b,
893 |unsafe_ty| {
894 vec![
895 Adjustment {
896 kind: Adjust::Pointer(PointerCoercion::ReifyFnPointer),
897 target: a_fn_pointer,
898 },
899 Adjustment {
900 kind: Adjust::Pointer(PointerCoercion::UnsafeFnPointer),
901 target: unsafe_ty,
902 },
903 ]
904 },
905 simple(Adjust::Pointer(PointerCoercion::ReifyFnPointer)),
906 )?;
907
908 obligations.extend(o2);
909 Ok(InferOk { value, obligations })
910 }
911 _ => self.unify_and(a, b, identity),
912 }
913 }
914
coerce_closure_to_fn( &self, a: Ty<'tcx>, closure_def_id_a: DefId, substs_a: SubstsRef<'tcx>, b: Ty<'tcx>, ) -> CoerceResult<'tcx>915 fn coerce_closure_to_fn(
916 &self,
917 a: Ty<'tcx>,
918 closure_def_id_a: DefId,
919 substs_a: SubstsRef<'tcx>,
920 b: Ty<'tcx>,
921 ) -> CoerceResult<'tcx> {
922 //! Attempts to coerce from the type of a non-capturing closure
923 //! into a function pointer.
924 //!
925
926 let b = self.shallow_resolve(b);
927
928 match b.kind() {
929 // At this point we haven't done capture analysis, which means
930 // that the ClosureSubsts just contains an inference variable instead
931 // of tuple of captured types.
932 //
933 // All we care here is if any variable is being captured and not the exact paths,
934 // so we check `upvars_mentioned` for root variables being captured.
935 ty::FnPtr(fn_ty)
936 if self
937 .tcx
938 .upvars_mentioned(closure_def_id_a.expect_local())
939 .map_or(true, |u| u.is_empty()) =>
940 {
941 // We coerce the closure, which has fn type
942 // `extern "rust-call" fn((arg0,arg1,...)) -> _`
943 // to
944 // `fn(arg0,arg1,...) -> _`
945 // or
946 // `unsafe fn(arg0,arg1,...) -> _`
947 let closure_sig = substs_a.as_closure().sig();
948 let unsafety = fn_ty.unsafety();
949 let pointer_ty =
950 Ty::new_fn_ptr(self.tcx, self.tcx.signature_unclosure(closure_sig, unsafety));
951 debug!("coerce_closure_to_fn(a={:?}, b={:?}, pty={:?})", a, b, pointer_ty);
952 self.unify_and(
953 pointer_ty,
954 b,
955 simple(Adjust::Pointer(PointerCoercion::ClosureFnPointer(unsafety))),
956 )
957 }
958 _ => self.unify_and(a, b, identity),
959 }
960 }
961
coerce_unsafe_ptr( &self, a: Ty<'tcx>, b: Ty<'tcx>, mutbl_b: hir::Mutability, ) -> CoerceResult<'tcx>962 fn coerce_unsafe_ptr(
963 &self,
964 a: Ty<'tcx>,
965 b: Ty<'tcx>,
966 mutbl_b: hir::Mutability,
967 ) -> CoerceResult<'tcx> {
968 debug!("coerce_unsafe_ptr(a={:?}, b={:?})", a, b);
969
970 let (is_ref, mt_a) = match *a.kind() {
971 ty::Ref(_, ty, mutbl) => (true, ty::TypeAndMut { ty, mutbl }),
972 ty::RawPtr(mt) => (false, mt),
973 _ => return self.unify_and(a, b, identity),
974 };
975 coerce_mutbls(mt_a.mutbl, mutbl_b)?;
976
977 // Check that the types which they point at are compatible.
978 let a_unsafe = Ty::new_ptr(self.tcx, ty::TypeAndMut { mutbl: mutbl_b, ty: mt_a.ty });
979 // Although references and unsafe ptrs have the same
980 // representation, we still register an Adjust::DerefRef so that
981 // regionck knows that the region for `a` must be valid here.
982 if is_ref {
983 self.unify_and(a_unsafe, b, |target| {
984 vec![
985 Adjustment { kind: Adjust::Deref(None), target: mt_a.ty },
986 Adjustment { kind: Adjust::Borrow(AutoBorrow::RawPtr(mutbl_b)), target },
987 ]
988 })
989 } else if mt_a.mutbl != mutbl_b {
990 self.unify_and(a_unsafe, b, simple(Adjust::Pointer(PointerCoercion::MutToConstPointer)))
991 } else {
992 self.unify_and(a_unsafe, b, identity)
993 }
994 }
995 }
996
997 impl<'a, 'tcx> FnCtxt<'a, 'tcx> {
998 /// Attempt to coerce an expression to a type, and return the
999 /// adjusted type of the expression, if successful.
1000 /// Adjustments are only recorded if the coercion succeeded.
1001 /// The expressions *must not* have any preexisting adjustments.
try_coerce( &self, expr: &hir::Expr<'_>, expr_ty: Ty<'tcx>, target: Ty<'tcx>, allow_two_phase: AllowTwoPhase, cause: Option<ObligationCause<'tcx>>, ) -> RelateResult<'tcx, Ty<'tcx>>1002 pub fn try_coerce(
1003 &self,
1004 expr: &hir::Expr<'_>,
1005 expr_ty: Ty<'tcx>,
1006 target: Ty<'tcx>,
1007 allow_two_phase: AllowTwoPhase,
1008 cause: Option<ObligationCause<'tcx>>,
1009 ) -> RelateResult<'tcx, Ty<'tcx>> {
1010 let source = self.try_structurally_resolve_type(expr.span, expr_ty);
1011 debug!("coercion::try({:?}: {:?} -> {:?})", expr, source, target);
1012
1013 let cause =
1014 cause.unwrap_or_else(|| self.cause(expr.span, ObligationCauseCode::ExprAssignable));
1015 let coerce = Coerce::new(self, cause, allow_two_phase);
1016 let ok = self.commit_if_ok(|_| coerce.coerce(source, target))?;
1017
1018 let (adjustments, _) = self.register_infer_ok_obligations(ok);
1019 self.apply_adjustments(expr, adjustments);
1020 Ok(if let Err(guar) = expr_ty.error_reported() {
1021 Ty::new_error(self.tcx, guar)
1022 } else {
1023 target
1024 })
1025 }
1026
1027 /// Same as `try_coerce()`, but without side-effects.
1028 ///
1029 /// Returns false if the coercion creates any obligations that result in
1030 /// errors.
can_coerce(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> bool1031 pub fn can_coerce(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> bool {
1032 let source = self.resolve_vars_with_obligations(expr_ty);
1033 debug!("coercion::can_with_predicates({:?} -> {:?})", source, target);
1034
1035 let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
1036 // We don't ever need two-phase here since we throw out the result of the coercion
1037 let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
1038 self.probe(|_| {
1039 let Ok(ok) = coerce.coerce(source, target) else {
1040 return false;
1041 };
1042 let ocx = ObligationCtxt::new(self);
1043 ocx.register_obligations(ok.obligations);
1044 ocx.select_where_possible().is_empty()
1045 })
1046 }
1047
1048 /// Given a type and a target type, this function will calculate and return
1049 /// how many dereference steps needed to achieve `expr_ty <: target`. If
1050 /// it's not possible, return `None`.
deref_steps(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> Option<usize>1051 pub fn deref_steps(&self, expr_ty: Ty<'tcx>, target: Ty<'tcx>) -> Option<usize> {
1052 let cause = self.cause(rustc_span::DUMMY_SP, ObligationCauseCode::ExprAssignable);
1053 // We don't ever need two-phase here since we throw out the result of the coercion
1054 let coerce = Coerce::new(self, cause, AllowTwoPhase::No);
1055 coerce
1056 .autoderef(rustc_span::DUMMY_SP, expr_ty)
1057 .find_map(|(ty, steps)| self.probe(|_| coerce.unify(ty, target)).ok().map(|_| steps))
1058 }
1059
1060 /// Given a type, this function will calculate and return the type given
1061 /// for `<Ty as Deref>::Target` only if `Ty` also implements `DerefMut`.
1062 ///
1063 /// This function is for diagnostics only, since it does not register
1064 /// trait or region sub-obligations. (presumably we could, but it's not
1065 /// particularly important for diagnostics...)
deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>>1066 pub fn deref_once_mutably_for_diagnostic(&self, expr_ty: Ty<'tcx>) -> Option<Ty<'tcx>> {
1067 self.autoderef(rustc_span::DUMMY_SP, expr_ty).nth(1).and_then(|(deref_ty, _)| {
1068 self.infcx
1069 .type_implements_trait(
1070 self.tcx.lang_items().deref_mut_trait()?,
1071 [expr_ty],
1072 self.param_env,
1073 )
1074 .may_apply()
1075 .then_some(deref_ty)
1076 })
1077 }
1078
1079 /// Given some expressions, their known unified type and another expression,
1080 /// tries to unify the types, potentially inserting coercions on any of the
1081 /// provided expressions and returns their LUB (aka "common supertype").
1082 ///
1083 /// This is really an internal helper. From outside the coercion
1084 /// module, you should instantiate a `CoerceMany` instance.
try_find_coercion_lub<E>( &self, cause: &ObligationCause<'tcx>, exprs: &[E], prev_ty: Ty<'tcx>, new: &hir::Expr<'_>, new_ty: Ty<'tcx>, ) -> RelateResult<'tcx, Ty<'tcx>> where E: AsCoercionSite,1085 fn try_find_coercion_lub<E>(
1086 &self,
1087 cause: &ObligationCause<'tcx>,
1088 exprs: &[E],
1089 prev_ty: Ty<'tcx>,
1090 new: &hir::Expr<'_>,
1091 new_ty: Ty<'tcx>,
1092 ) -> RelateResult<'tcx, Ty<'tcx>>
1093 where
1094 E: AsCoercionSite,
1095 {
1096 let prev_ty = self.resolve_vars_with_obligations(prev_ty);
1097 let new_ty = self.resolve_vars_with_obligations(new_ty);
1098 debug!(
1099 "coercion::try_find_coercion_lub({:?}, {:?}, exprs={:?} exprs)",
1100 prev_ty,
1101 new_ty,
1102 exprs.len()
1103 );
1104
1105 // The following check fixes #88097, where the compiler erroneously
1106 // attempted to coerce a closure type to itself via a function pointer.
1107 if prev_ty == new_ty {
1108 return Ok(prev_ty);
1109 }
1110
1111 // Special-case that coercion alone cannot handle:
1112 // Function items or non-capturing closures of differing IDs or InternalSubsts.
1113 let (a_sig, b_sig) = {
1114 let is_capturing_closure = |ty: Ty<'tcx>| {
1115 if let &ty::Closure(closure_def_id, _substs) = ty.kind() {
1116 self.tcx.upvars_mentioned(closure_def_id.expect_local()).is_some()
1117 } else {
1118 false
1119 }
1120 };
1121 if is_capturing_closure(prev_ty) || is_capturing_closure(new_ty) {
1122 (None, None)
1123 } else {
1124 match (prev_ty.kind(), new_ty.kind()) {
1125 (ty::FnDef(..), ty::FnDef(..)) => {
1126 // Don't reify if the function types have a LUB, i.e., they
1127 // are the same function and their parameters have a LUB.
1128 match self.commit_if_ok(|_| {
1129 self.at(cause, self.param_env).lub(
1130 DefineOpaqueTypes::No,
1131 prev_ty,
1132 new_ty,
1133 )
1134 }) {
1135 // We have a LUB of prev_ty and new_ty, just return it.
1136 Ok(ok) => return Ok(self.register_infer_ok_obligations(ok)),
1137 Err(_) => {
1138 (Some(prev_ty.fn_sig(self.tcx)), Some(new_ty.fn_sig(self.tcx)))
1139 }
1140 }
1141 }
1142 (ty::Closure(_, substs), ty::FnDef(..)) => {
1143 let b_sig = new_ty.fn_sig(self.tcx);
1144 let a_sig = self
1145 .tcx
1146 .signature_unclosure(substs.as_closure().sig(), b_sig.unsafety());
1147 (Some(a_sig), Some(b_sig))
1148 }
1149 (ty::FnDef(..), ty::Closure(_, substs)) => {
1150 let a_sig = prev_ty.fn_sig(self.tcx);
1151 let b_sig = self
1152 .tcx
1153 .signature_unclosure(substs.as_closure().sig(), a_sig.unsafety());
1154 (Some(a_sig), Some(b_sig))
1155 }
1156 (ty::Closure(_, substs_a), ty::Closure(_, substs_b)) => (
1157 Some(self.tcx.signature_unclosure(
1158 substs_a.as_closure().sig(),
1159 hir::Unsafety::Normal,
1160 )),
1161 Some(self.tcx.signature_unclosure(
1162 substs_b.as_closure().sig(),
1163 hir::Unsafety::Normal,
1164 )),
1165 ),
1166 _ => (None, None),
1167 }
1168 }
1169 };
1170 if let (Some(a_sig), Some(b_sig)) = (a_sig, b_sig) {
1171 // Intrinsics are not coercible to function pointers.
1172 if a_sig.abi() == Abi::RustIntrinsic
1173 || a_sig.abi() == Abi::PlatformIntrinsic
1174 || b_sig.abi() == Abi::RustIntrinsic
1175 || b_sig.abi() == Abi::PlatformIntrinsic
1176 {
1177 return Err(TypeError::IntrinsicCast);
1178 }
1179 // The signature must match.
1180 let (a_sig, b_sig) = self.normalize(new.span, (a_sig, b_sig));
1181 let sig = self
1182 .at(cause, self.param_env)
1183 .trace(prev_ty, new_ty)
1184 .lub(DefineOpaqueTypes::No, a_sig, b_sig)
1185 .map(|ok| self.register_infer_ok_obligations(ok))?;
1186
1187 // Reify both sides and return the reified fn pointer type.
1188 let fn_ptr = Ty::new_fn_ptr(self.tcx, sig);
1189 let prev_adjustment = match prev_ty.kind() {
1190 ty::Closure(..) => {
1191 Adjust::Pointer(PointerCoercion::ClosureFnPointer(a_sig.unsafety()))
1192 }
1193 ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1194 _ => unreachable!(),
1195 };
1196 let next_adjustment = match new_ty.kind() {
1197 ty::Closure(..) => {
1198 Adjust::Pointer(PointerCoercion::ClosureFnPointer(b_sig.unsafety()))
1199 }
1200 ty::FnDef(..) => Adjust::Pointer(PointerCoercion::ReifyFnPointer),
1201 _ => unreachable!(),
1202 };
1203 for expr in exprs.iter().map(|e| e.as_coercion_site()) {
1204 self.apply_adjustments(
1205 expr,
1206 vec![Adjustment { kind: prev_adjustment.clone(), target: fn_ptr }],
1207 );
1208 }
1209 self.apply_adjustments(new, vec![Adjustment { kind: next_adjustment, target: fn_ptr }]);
1210 return Ok(fn_ptr);
1211 }
1212
1213 // Configure a Coerce instance to compute the LUB.
1214 // We don't allow two-phase borrows on any autorefs this creates since we
1215 // probably aren't processing function arguments here and even if we were,
1216 // they're going to get autorefed again anyway and we can apply 2-phase borrows
1217 // at that time.
1218 let mut coerce = Coerce::new(self, cause.clone(), AllowTwoPhase::No);
1219 coerce.use_lub = true;
1220
1221 // First try to coerce the new expression to the type of the previous ones,
1222 // but only if the new expression has no coercion already applied to it.
1223 let mut first_error = None;
1224 if !self.typeck_results.borrow().adjustments().contains_key(new.hir_id) {
1225 let result = self.commit_if_ok(|_| coerce.coerce(new_ty, prev_ty));
1226 match result {
1227 Ok(ok) => {
1228 let (adjustments, target) = self.register_infer_ok_obligations(ok);
1229 self.apply_adjustments(new, adjustments);
1230 debug!(
1231 "coercion::try_find_coercion_lub: was able to coerce from new type {:?} to previous type {:?} ({:?})",
1232 new_ty, prev_ty, target
1233 );
1234 return Ok(target);
1235 }
1236 Err(e) => first_error = Some(e),
1237 }
1238 }
1239
1240 // Then try to coerce the previous expressions to the type of the new one.
1241 // This requires ensuring there are no coercions applied to *any* of the
1242 // previous expressions, other than noop reborrows (ignoring lifetimes).
1243 for expr in exprs {
1244 let expr = expr.as_coercion_site();
1245 let noop = match self.typeck_results.borrow().expr_adjustments(expr) {
1246 &[
1247 Adjustment { kind: Adjust::Deref(_), .. },
1248 Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(_, mutbl_adj)), .. },
1249 ] => {
1250 match *self.node_ty(expr.hir_id).kind() {
1251 ty::Ref(_, _, mt_orig) => {
1252 let mutbl_adj: hir::Mutability = mutbl_adj.into();
1253 // Reborrow that we can safely ignore, because
1254 // the next adjustment can only be a Deref
1255 // which will be merged into it.
1256 mutbl_adj == mt_orig
1257 }
1258 _ => false,
1259 }
1260 }
1261 &[Adjustment { kind: Adjust::NeverToAny, .. }] | &[] => true,
1262 _ => false,
1263 };
1264
1265 if !noop {
1266 debug!(
1267 "coercion::try_find_coercion_lub: older expression {:?} had adjustments, requiring LUB",
1268 expr,
1269 );
1270
1271 return self
1272 .commit_if_ok(|_| {
1273 self.at(cause, self.param_env).lub(DefineOpaqueTypes::No, prev_ty, new_ty)
1274 })
1275 .map(|ok| self.register_infer_ok_obligations(ok));
1276 }
1277 }
1278
1279 match self.commit_if_ok(|_| coerce.coerce(prev_ty, new_ty)) {
1280 Err(_) => {
1281 // Avoid giving strange errors on failed attempts.
1282 if let Some(e) = first_error {
1283 Err(e)
1284 } else {
1285 self.commit_if_ok(|_| {
1286 self.at(cause, self.param_env).lub(DefineOpaqueTypes::No, prev_ty, new_ty)
1287 })
1288 .map(|ok| self.register_infer_ok_obligations(ok))
1289 }
1290 }
1291 Ok(ok) => {
1292 let (adjustments, target) = self.register_infer_ok_obligations(ok);
1293 for expr in exprs {
1294 let expr = expr.as_coercion_site();
1295 self.apply_adjustments(expr, adjustments.clone());
1296 }
1297 debug!(
1298 "coercion::try_find_coercion_lub: was able to coerce previous type {:?} to new type {:?} ({:?})",
1299 prev_ty, new_ty, target
1300 );
1301 Ok(target)
1302 }
1303 }
1304 }
1305 }
1306
1307 /// CoerceMany encapsulates the pattern you should use when you have
1308 /// many expressions that are all getting coerced to a common
1309 /// type. This arises, for example, when you have a match (the result
1310 /// of each arm is coerced to a common type). It also arises in less
1311 /// obvious places, such as when you have many `break foo` expressions
1312 /// that target the same loop, or the various `return` expressions in
1313 /// a function.
1314 ///
1315 /// The basic protocol is as follows:
1316 ///
1317 /// - Instantiate the `CoerceMany` with an initial `expected_ty`.
1318 /// This will also serve as the "starting LUB". The expectation is
1319 /// that this type is something which all of the expressions *must*
1320 /// be coercible to. Use a fresh type variable if needed.
1321 /// - For each expression whose result is to be coerced, invoke `coerce()` with.
1322 /// - In some cases we wish to coerce "non-expressions" whose types are implicitly
1323 /// unit. This happens for example if you have a `break` with no expression,
1324 /// or an `if` with no `else`. In that case, invoke `coerce_forced_unit()`.
1325 /// - `coerce()` and `coerce_forced_unit()` may report errors. They hide this
1326 /// from you so that you don't have to worry your pretty head about it.
1327 /// But if an error is reported, the final type will be `err`.
1328 /// - Invoking `coerce()` may cause us to go and adjust the "adjustments" on
1329 /// previously coerced expressions.
1330 /// - When all done, invoke `complete()`. This will return the LUB of
1331 /// all your expressions.
1332 /// - WARNING: I don't believe this final type is guaranteed to be
1333 /// related to your initial `expected_ty` in any particular way,
1334 /// although it will typically be a subtype, so you should check it.
1335 /// - Invoking `complete()` may cause us to go and adjust the "adjustments" on
1336 /// previously coerced expressions.
1337 ///
1338 /// Example:
1339 ///
1340 /// ```ignore (illustrative)
1341 /// let mut coerce = CoerceMany::new(expected_ty);
1342 /// for expr in exprs {
1343 /// let expr_ty = fcx.check_expr_with_expectation(expr, expected);
1344 /// coerce.coerce(fcx, &cause, expr, expr_ty);
1345 /// }
1346 /// let final_ty = coerce.complete(fcx);
1347 /// ```
1348 pub struct CoerceMany<'tcx, 'exprs, E: AsCoercionSite> {
1349 expected_ty: Ty<'tcx>,
1350 final_ty: Option<Ty<'tcx>>,
1351 expressions: Expressions<'tcx, 'exprs, E>,
1352 pushed: usize,
1353 }
1354
1355 /// The type of a `CoerceMany` that is storing up the expressions into
1356 /// a buffer. We use this in `check/mod.rs` for things like `break`.
1357 pub type DynamicCoerceMany<'tcx> = CoerceMany<'tcx, 'tcx, &'tcx hir::Expr<'tcx>>;
1358
1359 enum Expressions<'tcx, 'exprs, E: AsCoercionSite> {
1360 Dynamic(Vec<&'tcx hir::Expr<'tcx>>),
1361 UpFront(&'exprs [E]),
1362 }
1363
1364 impl<'tcx, 'exprs, E: AsCoercionSite> CoerceMany<'tcx, 'exprs, E> {
1365 /// The usual case; collect the set of expressions dynamically.
1366 /// If the full set of coercion sites is known before hand,
1367 /// consider `with_coercion_sites()` instead to avoid allocation.
new(expected_ty: Ty<'tcx>) -> Self1368 pub fn new(expected_ty: Ty<'tcx>) -> Self {
1369 Self::make(expected_ty, Expressions::Dynamic(vec![]))
1370 }
1371
1372 /// As an optimization, you can create a `CoerceMany` with a
1373 /// preexisting slice of expressions. In this case, you are
1374 /// expected to pass each element in the slice to `coerce(...)` in
1375 /// order. This is used with arrays in particular to avoid
1376 /// needlessly cloning the slice.
with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self1377 pub fn with_coercion_sites(expected_ty: Ty<'tcx>, coercion_sites: &'exprs [E]) -> Self {
1378 Self::make(expected_ty, Expressions::UpFront(coercion_sites))
1379 }
1380
make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self1381 fn make(expected_ty: Ty<'tcx>, expressions: Expressions<'tcx, 'exprs, E>) -> Self {
1382 CoerceMany { expected_ty, final_ty: None, expressions, pushed: 0 }
1383 }
1384
1385 /// Returns the "expected type" with which this coercion was
1386 /// constructed. This represents the "downward propagated" type
1387 /// that was given to us at the start of typing whatever construct
1388 /// we are typing (e.g., the match expression).
1389 ///
1390 /// Typically, this is used as the expected type when
1391 /// type-checking each of the alternative expressions whose types
1392 /// we are trying to merge.
expected_ty(&self) -> Ty<'tcx>1393 pub fn expected_ty(&self) -> Ty<'tcx> {
1394 self.expected_ty
1395 }
1396
1397 /// Returns the current "merged type", representing our best-guess
1398 /// at the LUB of the expressions we've seen so far (if any). This
1399 /// isn't *final* until you call `self.complete()`, which will return
1400 /// the merged type.
merged_ty(&self) -> Ty<'tcx>1401 pub fn merged_ty(&self) -> Ty<'tcx> {
1402 self.final_ty.unwrap_or(self.expected_ty)
1403 }
1404
1405 /// Indicates that the value generated by `expression`, which is
1406 /// of type `expression_ty`, is one of the possibilities that we
1407 /// could coerce from. This will record `expression`, and later
1408 /// calls to `coerce` may come back and add adjustments and things
1409 /// if necessary.
coerce<'a>( &mut self, fcx: &FnCtxt<'a, 'tcx>, cause: &ObligationCause<'tcx>, expression: &'tcx hir::Expr<'tcx>, expression_ty: Ty<'tcx>, )1410 pub fn coerce<'a>(
1411 &mut self,
1412 fcx: &FnCtxt<'a, 'tcx>,
1413 cause: &ObligationCause<'tcx>,
1414 expression: &'tcx hir::Expr<'tcx>,
1415 expression_ty: Ty<'tcx>,
1416 ) {
1417 self.coerce_inner(fcx, cause, Some(expression), expression_ty, None, false)
1418 }
1419
1420 /// Indicates that one of the inputs is a "forced unit". This
1421 /// occurs in a case like `if foo { ... };`, where the missing else
1422 /// generates a "forced unit". Another example is a `loop { break;
1423 /// }`, where the `break` has no argument expression. We treat
1424 /// these cases slightly differently for error-reporting
1425 /// purposes. Note that these tend to correspond to cases where
1426 /// the `()` expression is implicit in the source, and hence we do
1427 /// not take an expression argument.
1428 ///
1429 /// The `augment_error` gives you a chance to extend the error
1430 /// message, in case any results (e.g., we use this to suggest
1431 /// removing a `;`).
coerce_forced_unit<'a>( &mut self, fcx: &FnCtxt<'a, 'tcx>, cause: &ObligationCause<'tcx>, augment_error: &mut dyn FnMut(&mut Diagnostic), label_unit_as_expected: bool, )1432 pub fn coerce_forced_unit<'a>(
1433 &mut self,
1434 fcx: &FnCtxt<'a, 'tcx>,
1435 cause: &ObligationCause<'tcx>,
1436 augment_error: &mut dyn FnMut(&mut Diagnostic),
1437 label_unit_as_expected: bool,
1438 ) {
1439 self.coerce_inner(
1440 fcx,
1441 cause,
1442 None,
1443 Ty::new_unit(fcx.tcx),
1444 Some(augment_error),
1445 label_unit_as_expected,
1446 )
1447 }
1448
1449 /// The inner coercion "engine". If `expression` is `None`, this
1450 /// is a forced-unit case, and hence `expression_ty` must be
1451 /// `Nil`.
1452 #[instrument(skip(self, fcx, augment_error, label_expression_as_expected), level = "debug")]
coerce_inner<'a>( &mut self, fcx: &FnCtxt<'a, 'tcx>, cause: &ObligationCause<'tcx>, expression: Option<&'tcx hir::Expr<'tcx>>, mut expression_ty: Ty<'tcx>, augment_error: Option<&mut dyn FnMut(&mut Diagnostic)>, label_expression_as_expected: bool, )1453 pub(crate) fn coerce_inner<'a>(
1454 &mut self,
1455 fcx: &FnCtxt<'a, 'tcx>,
1456 cause: &ObligationCause<'tcx>,
1457 expression: Option<&'tcx hir::Expr<'tcx>>,
1458 mut expression_ty: Ty<'tcx>,
1459 augment_error: Option<&mut dyn FnMut(&mut Diagnostic)>,
1460 label_expression_as_expected: bool,
1461 ) {
1462 // Incorporate whatever type inference information we have
1463 // until now; in principle we might also want to process
1464 // pending obligations, but doing so should only improve
1465 // compatibility (hopefully that is true) by helping us
1466 // uncover never types better.
1467 if expression_ty.is_ty_var() {
1468 expression_ty = fcx.infcx.shallow_resolve(expression_ty);
1469 }
1470
1471 // If we see any error types, just propagate that error
1472 // upwards.
1473 if let Err(guar) = (expression_ty, self.merged_ty()).error_reported() {
1474 self.final_ty = Some(Ty::new_error(fcx.tcx, guar));
1475 return;
1476 }
1477
1478 // Handle the actual type unification etc.
1479 let result = if let Some(expression) = expression {
1480 if self.pushed == 0 {
1481 // Special-case the first expression we are coercing.
1482 // To be honest, I'm not entirely sure why we do this.
1483 // We don't allow two-phase borrows, see comment in try_find_coercion_lub for why
1484 fcx.try_coerce(
1485 expression,
1486 expression_ty,
1487 self.expected_ty,
1488 AllowTwoPhase::No,
1489 Some(cause.clone()),
1490 )
1491 } else {
1492 match self.expressions {
1493 Expressions::Dynamic(ref exprs) => fcx.try_find_coercion_lub(
1494 cause,
1495 exprs,
1496 self.merged_ty(),
1497 expression,
1498 expression_ty,
1499 ),
1500 Expressions::UpFront(ref coercion_sites) => fcx.try_find_coercion_lub(
1501 cause,
1502 &coercion_sites[0..self.pushed],
1503 self.merged_ty(),
1504 expression,
1505 expression_ty,
1506 ),
1507 }
1508 }
1509 } else {
1510 // this is a hack for cases where we default to `()` because
1511 // the expression etc has been omitted from the source. An
1512 // example is an `if let` without an else:
1513 //
1514 // if let Some(x) = ... { }
1515 //
1516 // we wind up with a second match arm that is like `_ =>
1517 // ()`. That is the case we are considering here. We take
1518 // a different path to get the right "expected, found"
1519 // message and so forth (and because we know that
1520 // `expression_ty` will be unit).
1521 //
1522 // Another example is `break` with no argument expression.
1523 assert!(expression_ty.is_unit(), "if let hack without unit type");
1524 fcx.at(cause, fcx.param_env)
1525 // needed for tests/ui/type-alias-impl-trait/issue-65679-inst-opaque-ty-from-val-twice.rs
1526 .eq_exp(
1527 DefineOpaqueTypes::Yes,
1528 label_expression_as_expected,
1529 expression_ty,
1530 self.merged_ty(),
1531 )
1532 .map(|infer_ok| {
1533 fcx.register_infer_ok_obligations(infer_ok);
1534 expression_ty
1535 })
1536 };
1537
1538 debug!(?result);
1539 match result {
1540 Ok(v) => {
1541 self.final_ty = Some(v);
1542 if let Some(e) = expression {
1543 match self.expressions {
1544 Expressions::Dynamic(ref mut buffer) => buffer.push(e),
1545 Expressions::UpFront(coercion_sites) => {
1546 // if the user gave us an array to validate, check that we got
1547 // the next expression in the list, as expected
1548 assert_eq!(
1549 coercion_sites[self.pushed].as_coercion_site().hir_id,
1550 e.hir_id
1551 );
1552 }
1553 }
1554 self.pushed += 1;
1555 }
1556 }
1557 Err(coercion_error) => {
1558 // Mark that we've failed to coerce the types here to suppress
1559 // any superfluous errors we might encounter while trying to
1560 // emit or provide suggestions on how to fix the initial error.
1561 fcx.set_tainted_by_errors(
1562 fcx.tcx.sess.delay_span_bug(cause.span, "coercion error but no error emitted"),
1563 );
1564 let (expected, found) = if label_expression_as_expected {
1565 // In the case where this is a "forced unit", like
1566 // `break`, we want to call the `()` "expected"
1567 // since it is implied by the syntax.
1568 // (Note: not all force-units work this way.)"
1569 (expression_ty, self.merged_ty())
1570 } else {
1571 // Otherwise, the "expected" type for error
1572 // reporting is the current unification type,
1573 // which is basically the LUB of the expressions
1574 // we've seen so far (combined with the expected
1575 // type)
1576 (self.merged_ty(), expression_ty)
1577 };
1578 let (expected, found) = fcx.resolve_vars_if_possible((expected, found));
1579
1580 let mut err;
1581 let mut unsized_return = false;
1582 let mut visitor = CollectRetsVisitor { ret_exprs: vec![] };
1583 match *cause.code() {
1584 ObligationCauseCode::ReturnNoExpression => {
1585 err = struct_span_err!(
1586 fcx.tcx.sess,
1587 cause.span,
1588 E0069,
1589 "`return;` in a function whose return type is not `()`"
1590 );
1591 err.span_label(cause.span, "return type is not `()`");
1592 }
1593 ObligationCauseCode::BlockTailExpression(blk_id) => {
1594 let parent_id = fcx.tcx.hir().parent_id(blk_id);
1595 err = self.report_return_mismatched_types(
1596 cause,
1597 expected,
1598 found,
1599 coercion_error,
1600 fcx,
1601 parent_id,
1602 expression,
1603 Some(blk_id),
1604 );
1605 if !fcx.tcx.features().unsized_locals {
1606 unsized_return = self.is_return_ty_definitely_unsized(fcx);
1607 }
1608 if let Some(expression) = expression
1609 && let hir::ExprKind::Loop(loop_blk, ..) = expression.kind {
1610 intravisit::walk_block(& mut visitor, loop_blk);
1611 }
1612 }
1613 ObligationCauseCode::ReturnValue(id) => {
1614 err = self.report_return_mismatched_types(
1615 cause,
1616 expected,
1617 found,
1618 coercion_error,
1619 fcx,
1620 id,
1621 expression,
1622 None,
1623 );
1624 if !fcx.tcx.features().unsized_locals {
1625 unsized_return = self.is_return_ty_definitely_unsized(fcx);
1626 }
1627 }
1628 _ => {
1629 err = fcx.err_ctxt().report_mismatched_types(
1630 cause,
1631 expected,
1632 found,
1633 coercion_error,
1634 );
1635 }
1636 }
1637
1638 if let Some(augment_error) = augment_error {
1639 augment_error(&mut err);
1640 }
1641
1642 let is_insufficiently_polymorphic =
1643 matches!(coercion_error, TypeError::RegionsInsufficientlyPolymorphic(..));
1644
1645 if !is_insufficiently_polymorphic && let Some(expr) = expression {
1646 fcx.emit_coerce_suggestions(
1647 &mut err,
1648 expr,
1649 found,
1650 expected,
1651 None,
1652 Some(coercion_error),
1653 );
1654 }
1655
1656 if visitor.ret_exprs.len() > 0 && let Some(expr) = expression {
1657 self.note_unreachable_loop_return(&mut err, &expr, &visitor.ret_exprs);
1658 }
1659
1660 let reported = err.emit_unless(unsized_return);
1661
1662 self.final_ty = Some(Ty::new_error(fcx.tcx, reported));
1663 }
1664 }
1665 }
1666
note_unreachable_loop_return( &self, err: &mut Diagnostic, expr: &hir::Expr<'tcx>, ret_exprs: &Vec<&'tcx hir::Expr<'tcx>>, )1667 fn note_unreachable_loop_return(
1668 &self,
1669 err: &mut Diagnostic,
1670 expr: &hir::Expr<'tcx>,
1671 ret_exprs: &Vec<&'tcx hir::Expr<'tcx>>,
1672 ) {
1673 let hir::ExprKind::Loop(_, _, _, loop_span) = expr.kind else { return;};
1674 let mut span: MultiSpan = vec![loop_span].into();
1675 span.push_span_label(loop_span, "this might have zero elements to iterate on");
1676 const MAXITER: usize = 3;
1677 let iter = ret_exprs.iter().take(MAXITER);
1678 for ret_expr in iter {
1679 span.push_span_label(
1680 ret_expr.span,
1681 "if the loop doesn't execute, this value would never get returned",
1682 );
1683 }
1684 err.span_note(
1685 span,
1686 "the function expects a value to always be returned, but loops might run zero times",
1687 );
1688 if MAXITER < ret_exprs.len() {
1689 err.note(format!(
1690 "if the loop doesn't execute, {} other values would never get returned",
1691 ret_exprs.len() - MAXITER
1692 ));
1693 }
1694 err.help(
1695 "return a value for the case when the loop has zero elements to iterate on, or \
1696 consider changing the return type to account for that possibility",
1697 );
1698 }
1699
report_return_mismatched_types<'a>( &self, cause: &ObligationCause<'tcx>, expected: Ty<'tcx>, found: Ty<'tcx>, ty_err: TypeError<'tcx>, fcx: &FnCtxt<'a, 'tcx>, id: hir::HirId, expression: Option<&'tcx hir::Expr<'tcx>>, blk_id: Option<hir::HirId>, ) -> DiagnosticBuilder<'a, ErrorGuaranteed>1700 fn report_return_mismatched_types<'a>(
1701 &self,
1702 cause: &ObligationCause<'tcx>,
1703 expected: Ty<'tcx>,
1704 found: Ty<'tcx>,
1705 ty_err: TypeError<'tcx>,
1706 fcx: &FnCtxt<'a, 'tcx>,
1707 id: hir::HirId,
1708 expression: Option<&'tcx hir::Expr<'tcx>>,
1709 blk_id: Option<hir::HirId>,
1710 ) -> DiagnosticBuilder<'a, ErrorGuaranteed> {
1711 let mut err = fcx.err_ctxt().report_mismatched_types(cause, expected, found, ty_err);
1712
1713 let parent_id = fcx.tcx.hir().parent_id(id);
1714 let parent = fcx.tcx.hir().get(parent_id);
1715 if let Some(expr) = expression
1716 && let hir::Node::Expr(hir::Expr { kind: hir::ExprKind::Closure(&hir::Closure { body, .. }), .. }) = parent
1717 && !matches!(fcx.tcx.hir().body(body).value.kind, hir::ExprKind::Block(..))
1718 {
1719 fcx.suggest_missing_semicolon(&mut err, expr, expected, true);
1720 }
1721 // Verify that this is a tail expression of a function, otherwise the
1722 // label pointing out the cause for the type coercion will be wrong
1723 // as prior return coercions would not be relevant (#57664).
1724 let fn_decl = if let (Some(expr), Some(blk_id)) = (expression, blk_id) {
1725 let pointing_at_return_type =
1726 fcx.suggest_mismatched_types_on_tail(&mut err, expr, expected, found, blk_id);
1727 if let (Some(cond_expr), true, false) = (
1728 fcx.tcx.hir().get_if_cause(expr.hir_id),
1729 expected.is_unit(),
1730 pointing_at_return_type,
1731 )
1732 // If the block is from an external macro or try (`?`) desugaring, then
1733 // do not suggest adding a semicolon, because there's nowhere to put it.
1734 // See issues #81943 and #87051.
1735 && matches!(
1736 cond_expr.span.desugaring_kind(),
1737 None | Some(DesugaringKind::WhileLoop)
1738 ) && !in_external_macro(fcx.tcx.sess, cond_expr.span)
1739 && !matches!(
1740 cond_expr.kind,
1741 hir::ExprKind::Match(.., hir::MatchSource::TryDesugar)
1742 )
1743 {
1744 err.span_label(cond_expr.span, "expected this to be `()`");
1745 if expr.can_have_side_effects() {
1746 fcx.suggest_semicolon_at_end(cond_expr.span, &mut err);
1747 }
1748 }
1749 fcx.get_node_fn_decl(parent)
1750 .map(|(fn_id, fn_decl, _, is_main)| (fn_id, fn_decl, is_main))
1751 } else {
1752 fcx.get_fn_decl(parent_id)
1753 };
1754
1755 if let Some((fn_id, fn_decl, can_suggest)) = fn_decl {
1756 if blk_id.is_none() {
1757 fcx.suggest_missing_return_type(
1758 &mut err,
1759 &fn_decl,
1760 expected,
1761 found,
1762 can_suggest,
1763 fn_id,
1764 );
1765 }
1766 }
1767
1768 let parent_id = fcx.tcx.hir().get_parent_item(id);
1769 let parent_item = fcx.tcx.hir().get_by_def_id(parent_id.def_id);
1770
1771 if let (Some(expr), Some(_), Some((fn_id, fn_decl, _, _))) =
1772 (expression, blk_id, fcx.get_node_fn_decl(parent_item))
1773 {
1774 fcx.suggest_missing_break_or_return_expr(
1775 &mut err, expr, fn_decl, expected, found, id, fn_id,
1776 );
1777 }
1778
1779 let ret_coercion_span = fcx.ret_coercion_span.get();
1780
1781 if let Some(sp) = ret_coercion_span
1782 // If the closure has an explicit return type annotation, or if
1783 // the closure's return type has been inferred from outside
1784 // requirements (such as an Fn* trait bound), then a type error
1785 // may occur at the first return expression we see in the closure
1786 // (if it conflicts with the declared return type). Skip adding a
1787 // note in this case, since it would be incorrect.
1788 && let Some(fn_sig) = fcx.body_fn_sig()
1789 && fn_sig.output().is_ty_var()
1790 {
1791 err.span_note(
1792 sp,
1793 format!(
1794 "return type inferred to be `{}` here",
1795 expected
1796 ),
1797 );
1798 }
1799
1800 err
1801 }
1802
1803 /// Checks whether the return type is unsized via an obligation, which makes
1804 /// sure we consider `dyn Trait: Sized` where clauses, which are trivially
1805 /// false but technically valid for typeck.
is_return_ty_definitely_unsized(&self, fcx: &FnCtxt<'_, 'tcx>) -> bool1806 fn is_return_ty_definitely_unsized(&self, fcx: &FnCtxt<'_, 'tcx>) -> bool {
1807 if let Some(sig) = fcx.body_fn_sig() {
1808 !fcx.predicate_may_hold(&Obligation::new(
1809 fcx.tcx,
1810 ObligationCause::dummy(),
1811 fcx.param_env,
1812 ty::TraitRef::new(
1813 fcx.tcx,
1814 fcx.tcx.require_lang_item(hir::LangItem::Sized, None),
1815 [sig.output()],
1816 ),
1817 ))
1818 } else {
1819 false
1820 }
1821 }
1822
complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx>1823 pub fn complete<'a>(self, fcx: &FnCtxt<'a, 'tcx>) -> Ty<'tcx> {
1824 if let Some(final_ty) = self.final_ty {
1825 final_ty
1826 } else {
1827 // If we only had inputs that were of type `!` (or no
1828 // inputs at all), then the final type is `!`.
1829 assert_eq!(self.pushed, 0);
1830 fcx.tcx.types.never
1831 }
1832 }
1833 }
1834
1835 /// Something that can be converted into an expression to which we can
1836 /// apply a coercion.
1837 pub trait AsCoercionSite {
as_coercion_site(&self) -> &hir::Expr<'_>1838 fn as_coercion_site(&self) -> &hir::Expr<'_>;
1839 }
1840
1841 impl AsCoercionSite for hir::Expr<'_> {
as_coercion_site(&self) -> &hir::Expr<'_>1842 fn as_coercion_site(&self) -> &hir::Expr<'_> {
1843 self
1844 }
1845 }
1846
1847 impl<'a, T> AsCoercionSite for &'a T
1848 where
1849 T: AsCoercionSite,
1850 {
as_coercion_site(&self) -> &hir::Expr<'_>1851 fn as_coercion_site(&self) -> &hir::Expr<'_> {
1852 (**self).as_coercion_site()
1853 }
1854 }
1855
1856 impl AsCoercionSite for ! {
as_coercion_site(&self) -> &hir::Expr<'_>1857 fn as_coercion_site(&self) -> &hir::Expr<'_> {
1858 unreachable!()
1859 }
1860 }
1861
1862 impl AsCoercionSite for hir::Arm<'_> {
as_coercion_site(&self) -> &hir::Expr<'_>1863 fn as_coercion_site(&self) -> &hir::Expr<'_> {
1864 &self.body
1865 }
1866 }
1867