• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Slice management and manipulation.
2 //!
3 //! For more details see [`std::slice`].
4 //!
5 //! [`std::slice`]: ../../std/slice/index.html
6 
7 #![stable(feature = "rust1", since = "1.0.0")]
8 
9 use crate::cmp::Ordering::{self, Greater, Less};
10 use crate::fmt;
11 use crate::intrinsics::{assert_unsafe_precondition, exact_div};
12 use crate::marker::Copy;
13 use crate::mem::{self, SizedTypeProperties};
14 use crate::num::NonZeroUsize;
15 use crate::ops::{Bound, FnMut, OneSidedRange, Range, RangeBounds};
16 use crate::option::Option;
17 use crate::option::Option::{None, Some};
18 use crate::ptr;
19 use crate::result::Result;
20 use crate::result::Result::{Err, Ok};
21 use crate::simd::{self, Simd};
22 use crate::slice;
23 
24 #[unstable(
25     feature = "slice_internals",
26     issue = "none",
27     reason = "exposed from core to be reused in std; use the memchr crate"
28 )]
29 /// Pure rust memchr implementation, taken from rust-memchr
30 pub mod memchr;
31 
32 #[unstable(
33     feature = "slice_internals",
34     issue = "none",
35     reason = "exposed from core to be reused in std;"
36 )]
37 pub mod sort;
38 
39 mod ascii;
40 mod cmp;
41 mod index;
42 mod iter;
43 mod raw;
44 mod rotate;
45 mod select;
46 mod specialize;
47 
48 #[unstable(feature = "str_internals", issue = "none")]
49 #[doc(hidden)]
50 pub use ascii::is_ascii_simple;
51 
52 #[stable(feature = "rust1", since = "1.0.0")]
53 pub use iter::{Chunks, ChunksMut, Windows};
54 #[stable(feature = "rust1", since = "1.0.0")]
55 pub use iter::{Iter, IterMut};
56 #[stable(feature = "rust1", since = "1.0.0")]
57 pub use iter::{RSplitN, RSplitNMut, Split, SplitMut, SplitN, SplitNMut};
58 
59 #[stable(feature = "slice_rsplit", since = "1.27.0")]
60 pub use iter::{RSplit, RSplitMut};
61 
62 #[stable(feature = "chunks_exact", since = "1.31.0")]
63 pub use iter::{ChunksExact, ChunksExactMut};
64 
65 #[stable(feature = "rchunks", since = "1.31.0")]
66 pub use iter::{RChunks, RChunksExact, RChunksExactMut, RChunksMut};
67 
68 #[unstable(feature = "array_chunks", issue = "74985")]
69 pub use iter::{ArrayChunks, ArrayChunksMut};
70 
71 #[unstable(feature = "array_windows", issue = "75027")]
72 pub use iter::ArrayWindows;
73 
74 #[unstable(feature = "slice_group_by", issue = "80552")]
75 pub use iter::{GroupBy, GroupByMut};
76 
77 #[stable(feature = "split_inclusive", since = "1.51.0")]
78 pub use iter::{SplitInclusive, SplitInclusiveMut};
79 
80 #[stable(feature = "rust1", since = "1.0.0")]
81 pub use raw::{from_raw_parts, from_raw_parts_mut};
82 
83 #[stable(feature = "from_ref", since = "1.28.0")]
84 pub use raw::{from_mut, from_ref};
85 
86 #[unstable(feature = "slice_from_ptr_range", issue = "89792")]
87 pub use raw::{from_mut_ptr_range, from_ptr_range};
88 
89 // This function is public only because there is no other way to unit test heapsort.
90 #[unstable(feature = "sort_internals", reason = "internal to sort module", issue = "none")]
91 pub use sort::heapsort;
92 
93 #[stable(feature = "slice_get_slice", since = "1.28.0")]
94 pub use index::SliceIndex;
95 
96 #[unstable(feature = "slice_range", issue = "76393")]
97 pub use index::range;
98 
99 #[stable(feature = "inherent_ascii_escape", since = "1.60.0")]
100 pub use ascii::EscapeAscii;
101 
102 /// Calculates the direction and split point of a one-sided range.
103 ///
104 /// This is a helper function for `take` and `take_mut` that returns
105 /// the direction of the split (front or back) as well as the index at
106 /// which to split. Returns `None` if the split index would overflow.
107 #[inline]
split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)>108 fn split_point_of(range: impl OneSidedRange<usize>) -> Option<(Direction, usize)> {
109     use Bound::*;
110 
111     Some(match (range.start_bound(), range.end_bound()) {
112         (Unbounded, Excluded(i)) => (Direction::Front, *i),
113         (Unbounded, Included(i)) => (Direction::Front, i.checked_add(1)?),
114         (Excluded(i), Unbounded) => (Direction::Back, i.checked_add(1)?),
115         (Included(i), Unbounded) => (Direction::Back, *i),
116         _ => unreachable!(),
117     })
118 }
119 
120 enum Direction {
121     Front,
122     Back,
123 }
124 
125 #[cfg(not(test))]
126 impl<T> [T] {
127     /// Returns the number of elements in the slice.
128     ///
129     /// # Examples
130     ///
131     /// ```
132     /// let a = [1, 2, 3];
133     /// assert_eq!(a.len(), 3);
134     /// ```
135     #[lang = "slice_len_fn"]
136     #[stable(feature = "rust1", since = "1.0.0")]
137     #[rustc_const_stable(feature = "const_slice_len", since = "1.39.0")]
138     #[rustc_allow_const_fn_unstable(ptr_metadata)]
139     #[inline]
140     #[must_use]
len(&self) -> usize141     pub const fn len(&self) -> usize {
142         ptr::metadata(self)
143     }
144 
145     /// Returns `true` if the slice has a length of 0.
146     ///
147     /// # Examples
148     ///
149     /// ```
150     /// let a = [1, 2, 3];
151     /// assert!(!a.is_empty());
152     /// ```
153     #[stable(feature = "rust1", since = "1.0.0")]
154     #[rustc_const_stable(feature = "const_slice_is_empty", since = "1.39.0")]
155     #[inline]
156     #[must_use]
is_empty(&self) -> bool157     pub const fn is_empty(&self) -> bool {
158         self.len() == 0
159     }
160 
161     /// Returns the first element of the slice, or `None` if it is empty.
162     ///
163     /// # Examples
164     ///
165     /// ```
166     /// let v = [10, 40, 30];
167     /// assert_eq!(Some(&10), v.first());
168     ///
169     /// let w: &[i32] = &[];
170     /// assert_eq!(None, w.first());
171     /// ```
172     #[stable(feature = "rust1", since = "1.0.0")]
173     #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
174     #[inline]
175     #[must_use]
first(&self) -> Option<&T>176     pub const fn first(&self) -> Option<&T> {
177         if let [first, ..] = self { Some(first) } else { None }
178     }
179 
180     /// Returns a mutable pointer to the first element of the slice, or `None` if it is empty.
181     ///
182     /// # Examples
183     ///
184     /// ```
185     /// let x = &mut [0, 1, 2];
186     ///
187     /// if let Some(first) = x.first_mut() {
188     ///     *first = 5;
189     /// }
190     /// assert_eq!(x, &[5, 1, 2]);
191     /// ```
192     #[stable(feature = "rust1", since = "1.0.0")]
193     #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
194     #[inline]
195     #[must_use]
first_mut(&mut self) -> Option<&mut T>196     pub const fn first_mut(&mut self) -> Option<&mut T> {
197         if let [first, ..] = self { Some(first) } else { None }
198     }
199 
200     /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
201     ///
202     /// # Examples
203     ///
204     /// ```
205     /// let x = &[0, 1, 2];
206     ///
207     /// if let Some((first, elements)) = x.split_first() {
208     ///     assert_eq!(first, &0);
209     ///     assert_eq!(elements, &[1, 2]);
210     /// }
211     /// ```
212     #[stable(feature = "slice_splits", since = "1.5.0")]
213     #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
214     #[inline]
215     #[must_use]
split_first(&self) -> Option<(&T, &[T])>216     pub const fn split_first(&self) -> Option<(&T, &[T])> {
217         if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
218     }
219 
220     /// Returns the first and all the rest of the elements of the slice, or `None` if it is empty.
221     ///
222     /// # Examples
223     ///
224     /// ```
225     /// let x = &mut [0, 1, 2];
226     ///
227     /// if let Some((first, elements)) = x.split_first_mut() {
228     ///     *first = 3;
229     ///     elements[0] = 4;
230     ///     elements[1] = 5;
231     /// }
232     /// assert_eq!(x, &[3, 4, 5]);
233     /// ```
234     #[stable(feature = "slice_splits", since = "1.5.0")]
235     #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
236     #[inline]
237     #[must_use]
split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>238     pub const fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])> {
239         if let [first, tail @ ..] = self { Some((first, tail)) } else { None }
240     }
241 
242     /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
243     ///
244     /// # Examples
245     ///
246     /// ```
247     /// let x = &[0, 1, 2];
248     ///
249     /// if let Some((last, elements)) = x.split_last() {
250     ///     assert_eq!(last, &2);
251     ///     assert_eq!(elements, &[0, 1]);
252     /// }
253     /// ```
254     #[stable(feature = "slice_splits", since = "1.5.0")]
255     #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
256     #[inline]
257     #[must_use]
split_last(&self) -> Option<(&T, &[T])>258     pub const fn split_last(&self) -> Option<(&T, &[T])> {
259         if let [init @ .., last] = self { Some((last, init)) } else { None }
260     }
261 
262     /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
263     ///
264     /// # Examples
265     ///
266     /// ```
267     /// let x = &mut [0, 1, 2];
268     ///
269     /// if let Some((last, elements)) = x.split_last_mut() {
270     ///     *last = 3;
271     ///     elements[0] = 4;
272     ///     elements[1] = 5;
273     /// }
274     /// assert_eq!(x, &[4, 5, 3]);
275     /// ```
276     #[stable(feature = "slice_splits", since = "1.5.0")]
277     #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
278     #[inline]
279     #[must_use]
split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>280     pub const fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])> {
281         if let [init @ .., last] = self { Some((last, init)) } else { None }
282     }
283 
284     /// Returns the last element of the slice, or `None` if it is empty.
285     ///
286     /// # Examples
287     ///
288     /// ```
289     /// let v = [10, 40, 30];
290     /// assert_eq!(Some(&30), v.last());
291     ///
292     /// let w: &[i32] = &[];
293     /// assert_eq!(None, w.last());
294     /// ```
295     #[stable(feature = "rust1", since = "1.0.0")]
296     #[rustc_const_stable(feature = "const_slice_first_last_not_mut", since = "1.56.0")]
297     #[inline]
298     #[must_use]
last(&self) -> Option<&T>299     pub const fn last(&self) -> Option<&T> {
300         if let [.., last] = self { Some(last) } else { None }
301     }
302 
303     /// Returns a mutable pointer to the last item in the slice.
304     ///
305     /// # Examples
306     ///
307     /// ```
308     /// let x = &mut [0, 1, 2];
309     ///
310     /// if let Some(last) = x.last_mut() {
311     ///     *last = 10;
312     /// }
313     /// assert_eq!(x, &[0, 1, 10]);
314     /// ```
315     #[stable(feature = "rust1", since = "1.0.0")]
316     #[rustc_const_unstable(feature = "const_slice_first_last", issue = "83570")]
317     #[inline]
318     #[must_use]
last_mut(&mut self) -> Option<&mut T>319     pub const fn last_mut(&mut self) -> Option<&mut T> {
320         if let [.., last] = self { Some(last) } else { None }
321     }
322 
323     /// Returns the first `N` elements of the slice, or `None` if it has fewer than `N` elements.
324     ///
325     /// # Examples
326     ///
327     /// ```
328     /// #![feature(slice_first_last_chunk)]
329     ///
330     /// let u = [10, 40, 30];
331     /// assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
332     ///
333     /// let v: &[i32] = &[10];
334     /// assert_eq!(None, v.first_chunk::<2>());
335     ///
336     /// let w: &[i32] = &[];
337     /// assert_eq!(Some(&[]), w.first_chunk::<0>());
338     /// ```
339     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
340     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
341     #[inline]
first_chunk<const N: usize>(&self) -> Option<&[T; N]>342     pub const fn first_chunk<const N: usize>(&self) -> Option<&[T; N]> {
343         if self.len() < N {
344             None
345         } else {
346             // SAFETY: We explicitly check for the correct number of elements,
347             //   and do not let the reference outlive the slice.
348             Some(unsafe { &*(self.as_ptr() as *const [T; N]) })
349         }
350     }
351 
352     /// Returns a mutable reference to the first `N` elements of the slice,
353     /// or `None` if it has fewer than `N` elements.
354     ///
355     /// # Examples
356     ///
357     /// ```
358     /// #![feature(slice_first_last_chunk)]
359     ///
360     /// let x = &mut [0, 1, 2];
361     ///
362     /// if let Some(first) = x.first_chunk_mut::<2>() {
363     ///     first[0] = 5;
364     ///     first[1] = 4;
365     /// }
366     /// assert_eq!(x, &[5, 4, 2]);
367     /// ```
368     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
369     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
370     #[inline]
first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>371     pub const fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
372         if self.len() < N {
373             None
374         } else {
375             // SAFETY: We explicitly check for the correct number of elements,
376             //   do not let the reference outlive the slice,
377             //   and require exclusive access to the entire slice to mutate the chunk.
378             Some(unsafe { &mut *(self.as_mut_ptr() as *mut [T; N]) })
379         }
380     }
381 
382     /// Returns the first `N` elements of the slice and the remainder,
383     /// or `None` if it has fewer than `N` elements.
384     ///
385     /// # Examples
386     ///
387     /// ```
388     /// #![feature(slice_first_last_chunk)]
389     ///
390     /// let x = &[0, 1, 2];
391     ///
392     /// if let Some((first, elements)) = x.split_first_chunk::<2>() {
393     ///     assert_eq!(first, &[0, 1]);
394     ///     assert_eq!(elements, &[2]);
395     /// }
396     /// ```
397     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
398     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
399     #[inline]
split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>400     pub const fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
401         if self.len() < N {
402             None
403         } else {
404             // SAFETY: We manually verified the bounds of the split.
405             let (first, tail) = unsafe { self.split_at_unchecked(N) };
406 
407             // SAFETY: We explicitly check for the correct number of elements,
408             //   and do not let the references outlive the slice.
409             Some((unsafe { &*(first.as_ptr() as *const [T; N]) }, tail))
410         }
411     }
412 
413     /// Returns a mutable reference to the first `N` elements of the slice and the remainder,
414     /// or `None` if it has fewer than `N` elements.
415     ///
416     /// # Examples
417     ///
418     /// ```
419     /// #![feature(slice_first_last_chunk)]
420     ///
421     /// let x = &mut [0, 1, 2];
422     ///
423     /// if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
424     ///     first[0] = 3;
425     ///     first[1] = 4;
426     ///     elements[0] = 5;
427     /// }
428     /// assert_eq!(x, &[3, 4, 5]);
429     /// ```
430     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
431     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
432     #[inline]
split_first_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T; N], &mut [T])>433     pub const fn split_first_chunk_mut<const N: usize>(
434         &mut self,
435     ) -> Option<(&mut [T; N], &mut [T])> {
436         if self.len() < N {
437             None
438         } else {
439             // SAFETY: We manually verified the bounds of the split.
440             let (first, tail) = unsafe { self.split_at_mut_unchecked(N) };
441 
442             // SAFETY: We explicitly check for the correct number of elements,
443             //   do not let the reference outlive the slice,
444             //   and enforce exclusive mutability of the chunk by the split.
445             Some((unsafe { &mut *(first.as_mut_ptr() as *mut [T; N]) }, tail))
446         }
447     }
448 
449     /// Returns the last `N` elements of the slice and the remainder,
450     /// or `None` if it has fewer than `N` elements.
451     ///
452     /// # Examples
453     ///
454     /// ```
455     /// #![feature(slice_first_last_chunk)]
456     ///
457     /// let x = &[0, 1, 2];
458     ///
459     /// if let Some((last, elements)) = x.split_last_chunk::<2>() {
460     ///     assert_eq!(last, &[1, 2]);
461     ///     assert_eq!(elements, &[0]);
462     /// }
463     /// ```
464     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
465     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
466     #[inline]
split_last_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>467     pub const fn split_last_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])> {
468         if self.len() < N {
469             None
470         } else {
471             // SAFETY: We manually verified the bounds of the split.
472             let (init, last) = unsafe { self.split_at_unchecked(self.len() - N) };
473 
474             // SAFETY: We explicitly check for the correct number of elements,
475             //   and do not let the references outlive the slice.
476             Some((unsafe { &*(last.as_ptr() as *const [T; N]) }, init))
477         }
478     }
479 
480     /// Returns the last and all the rest of the elements of the slice, or `None` if it is empty.
481     ///
482     /// # Examples
483     ///
484     /// ```
485     /// #![feature(slice_first_last_chunk)]
486     ///
487     /// let x = &mut [0, 1, 2];
488     ///
489     /// if let Some((last, elements)) = x.split_last_chunk_mut::<2>() {
490     ///     last[0] = 3;
491     ///     last[1] = 4;
492     ///     elements[0] = 5;
493     /// }
494     /// assert_eq!(x, &[5, 3, 4]);
495     /// ```
496     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
497     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
498     #[inline]
split_last_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T; N], &mut [T])>499     pub const fn split_last_chunk_mut<const N: usize>(
500         &mut self,
501     ) -> Option<(&mut [T; N], &mut [T])> {
502         if self.len() < N {
503             None
504         } else {
505             // SAFETY: We manually verified the bounds of the split.
506             let (init, last) = unsafe { self.split_at_mut_unchecked(self.len() - N) };
507 
508             // SAFETY: We explicitly check for the correct number of elements,
509             //   do not let the reference outlive the slice,
510             //   and enforce exclusive mutability of the chunk by the split.
511             Some((unsafe { &mut *(last.as_mut_ptr() as *mut [T; N]) }, init))
512         }
513     }
514 
515     /// Returns the last element of the slice, or `None` if it is empty.
516     ///
517     /// # Examples
518     ///
519     /// ```
520     /// #![feature(slice_first_last_chunk)]
521     ///
522     /// let u = [10, 40, 30];
523     /// assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
524     ///
525     /// let v: &[i32] = &[10];
526     /// assert_eq!(None, v.last_chunk::<2>());
527     ///
528     /// let w: &[i32] = &[];
529     /// assert_eq!(Some(&[]), w.last_chunk::<0>());
530     /// ```
531     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
532     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
533     #[inline]
last_chunk<const N: usize>(&self) -> Option<&[T; N]>534     pub const fn last_chunk<const N: usize>(&self) -> Option<&[T; N]> {
535         if self.len() < N {
536             None
537         } else {
538             // SAFETY: We manually verified the bounds of the slice.
539             // FIXME: Without const traits, we need this instead of `get_unchecked`.
540             let last = unsafe { self.split_at_unchecked(self.len() - N).1 };
541 
542             // SAFETY: We explicitly check for the correct number of elements,
543             //   and do not let the references outlive the slice.
544             Some(unsafe { &*(last.as_ptr() as *const [T; N]) })
545         }
546     }
547 
548     /// Returns a mutable pointer to the last item in the slice.
549     ///
550     /// # Examples
551     ///
552     /// ```
553     /// #![feature(slice_first_last_chunk)]
554     ///
555     /// let x = &mut [0, 1, 2];
556     ///
557     /// if let Some(last) = x.last_chunk_mut::<2>() {
558     ///     last[0] = 10;
559     ///     last[1] = 20;
560     /// }
561     /// assert_eq!(x, &[0, 10, 20]);
562     /// ```
563     #[unstable(feature = "slice_first_last_chunk", issue = "111774")]
564     #[rustc_const_unstable(feature = "slice_first_last_chunk", issue = "111774")]
565     #[inline]
last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>566     pub const fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]> {
567         if self.len() < N {
568             None
569         } else {
570             // SAFETY: We manually verified the bounds of the slice.
571             // FIXME: Without const traits, we need this instead of `get_unchecked`.
572             let last = unsafe { self.split_at_mut_unchecked(self.len() - N).1 };
573 
574             // SAFETY: We explicitly check for the correct number of elements,
575             //   do not let the reference outlive the slice,
576             //   and require exclusive access to the entire slice to mutate the chunk.
577             Some(unsafe { &mut *(last.as_mut_ptr() as *mut [T; N]) })
578         }
579     }
580 
581     /// Returns a reference to an element or subslice depending on the type of
582     /// index.
583     ///
584     /// - If given a position, returns a reference to the element at that
585     ///   position or `None` if out of bounds.
586     /// - If given a range, returns the subslice corresponding to that range,
587     ///   or `None` if out of bounds.
588     ///
589     /// # Examples
590     ///
591     /// ```
592     /// let v = [10, 40, 30];
593     /// assert_eq!(Some(&40), v.get(1));
594     /// assert_eq!(Some(&[10, 40][..]), v.get(0..2));
595     /// assert_eq!(None, v.get(3));
596     /// assert_eq!(None, v.get(0..4));
597     /// ```
598     #[stable(feature = "rust1", since = "1.0.0")]
599     #[inline]
600     #[must_use]
get<I>(&self, index: I) -> Option<&I::Output> where I: SliceIndex<Self>,601     pub fn get<I>(&self, index: I) -> Option<&I::Output>
602     where
603         I: SliceIndex<Self>,
604     {
605         index.get(self)
606     }
607 
608     /// Returns a mutable reference to an element or subslice depending on the
609     /// type of index (see [`get`]) or `None` if the index is out of bounds.
610     ///
611     /// [`get`]: slice::get
612     ///
613     /// # Examples
614     ///
615     /// ```
616     /// let x = &mut [0, 1, 2];
617     ///
618     /// if let Some(elem) = x.get_mut(1) {
619     ///     *elem = 42;
620     /// }
621     /// assert_eq!(x, &[0, 42, 2]);
622     /// ```
623     #[stable(feature = "rust1", since = "1.0.0")]
624     #[inline]
625     #[must_use]
get_mut<I>(&mut self, index: I) -> Option<&mut I::Output> where I: SliceIndex<Self>,626     pub fn get_mut<I>(&mut self, index: I) -> Option<&mut I::Output>
627     where
628         I: SliceIndex<Self>,
629     {
630         index.get_mut(self)
631     }
632 
633     /// Returns a reference to an element or subslice, without doing bounds
634     /// checking.
635     ///
636     /// For a safe alternative see [`get`].
637     ///
638     /// # Safety
639     ///
640     /// Calling this method with an out-of-bounds index is *[undefined behavior]*
641     /// even if the resulting reference is not used.
642     ///
643     /// [`get`]: slice::get
644     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
645     ///
646     /// # Examples
647     ///
648     /// ```
649     /// let x = &[1, 2, 4];
650     ///
651     /// unsafe {
652     ///     assert_eq!(x.get_unchecked(1), &2);
653     /// }
654     /// ```
655     #[stable(feature = "rust1", since = "1.0.0")]
656     #[inline]
657     #[must_use]
get_unchecked<I>(&self, index: I) -> &I::Output where I: SliceIndex<Self>,658     pub unsafe fn get_unchecked<I>(&self, index: I) -> &I::Output
659     where
660         I: SliceIndex<Self>,
661     {
662         // SAFETY: the caller must uphold most of the safety requirements for `get_unchecked`;
663         // the slice is dereferenceable because `self` is a safe reference.
664         // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
665         unsafe { &*index.get_unchecked(self) }
666     }
667 
668     /// Returns a mutable reference to an element or subslice, without doing
669     /// bounds checking.
670     ///
671     /// For a safe alternative see [`get_mut`].
672     ///
673     /// # Safety
674     ///
675     /// Calling this method with an out-of-bounds index is *[undefined behavior]*
676     /// even if the resulting reference is not used.
677     ///
678     /// [`get_mut`]: slice::get_mut
679     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
680     ///
681     /// # Examples
682     ///
683     /// ```
684     /// let x = &mut [1, 2, 4];
685     ///
686     /// unsafe {
687     ///     let elem = x.get_unchecked_mut(1);
688     ///     *elem = 13;
689     /// }
690     /// assert_eq!(x, &[1, 13, 4]);
691     /// ```
692     #[stable(feature = "rust1", since = "1.0.0")]
693     #[inline]
694     #[must_use]
get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output where I: SliceIndex<Self>,695     pub unsafe fn get_unchecked_mut<I>(&mut self, index: I) -> &mut I::Output
696     where
697         I: SliceIndex<Self>,
698     {
699         // SAFETY: the caller must uphold the safety requirements for `get_unchecked_mut`;
700         // the slice is dereferenceable because `self` is a safe reference.
701         // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
702         unsafe { &mut *index.get_unchecked_mut(self) }
703     }
704 
705     /// Returns a raw pointer to the slice's buffer.
706     ///
707     /// The caller must ensure that the slice outlives the pointer this
708     /// function returns, or else it will end up pointing to garbage.
709     ///
710     /// The caller must also ensure that the memory the pointer (non-transitively) points to
711     /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
712     /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
713     ///
714     /// Modifying the container referenced by this slice may cause its buffer
715     /// to be reallocated, which would also make any pointers to it invalid.
716     ///
717     /// # Examples
718     ///
719     /// ```
720     /// let x = &[1, 2, 4];
721     /// let x_ptr = x.as_ptr();
722     ///
723     /// unsafe {
724     ///     for i in 0..x.len() {
725     ///         assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
726     ///     }
727     /// }
728     /// ```
729     ///
730     /// [`as_mut_ptr`]: slice::as_mut_ptr
731     #[stable(feature = "rust1", since = "1.0.0")]
732     #[rustc_const_stable(feature = "const_slice_as_ptr", since = "1.32.0")]
733     #[inline(always)]
734     #[must_use]
as_ptr(&self) -> *const T735     pub const fn as_ptr(&self) -> *const T {
736         self as *const [T] as *const T
737     }
738 
739     /// Returns an unsafe mutable pointer to the slice's buffer.
740     ///
741     /// The caller must ensure that the slice outlives the pointer this
742     /// function returns, or else it will end up pointing to garbage.
743     ///
744     /// Modifying the container referenced by this slice may cause its buffer
745     /// to be reallocated, which would also make any pointers to it invalid.
746     ///
747     /// # Examples
748     ///
749     /// ```
750     /// let x = &mut [1, 2, 4];
751     /// let x_ptr = x.as_mut_ptr();
752     ///
753     /// unsafe {
754     ///     for i in 0..x.len() {
755     ///         *x_ptr.add(i) += 2;
756     ///     }
757     /// }
758     /// assert_eq!(x, &[3, 4, 6]);
759     /// ```
760     #[stable(feature = "rust1", since = "1.0.0")]
761     #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
762     #[rustc_allow_const_fn_unstable(const_mut_refs)]
763     #[inline(always)]
764     #[must_use]
as_mut_ptr(&mut self) -> *mut T765     pub const fn as_mut_ptr(&mut self) -> *mut T {
766         self as *mut [T] as *mut T
767     }
768 
769     /// Returns the two raw pointers spanning the slice.
770     ///
771     /// The returned range is half-open, which means that the end pointer
772     /// points *one past* the last element of the slice. This way, an empty
773     /// slice is represented by two equal pointers, and the difference between
774     /// the two pointers represents the size of the slice.
775     ///
776     /// See [`as_ptr`] for warnings on using these pointers. The end pointer
777     /// requires extra caution, as it does not point to a valid element in the
778     /// slice.
779     ///
780     /// This function is useful for interacting with foreign interfaces which
781     /// use two pointers to refer to a range of elements in memory, as is
782     /// common in C++.
783     ///
784     /// It can also be useful to check if a pointer to an element refers to an
785     /// element of this slice:
786     ///
787     /// ```
788     /// let a = [1, 2, 3];
789     /// let x = &a[1] as *const _;
790     /// let y = &5 as *const _;
791     ///
792     /// assert!(a.as_ptr_range().contains(&x));
793     /// assert!(!a.as_ptr_range().contains(&y));
794     /// ```
795     ///
796     /// [`as_ptr`]: slice::as_ptr
797     #[stable(feature = "slice_ptr_range", since = "1.48.0")]
798     #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
799     #[inline]
800     #[must_use]
as_ptr_range(&self) -> Range<*const T>801     pub const fn as_ptr_range(&self) -> Range<*const T> {
802         let start = self.as_ptr();
803         // SAFETY: The `add` here is safe, because:
804         //
805         //   - Both pointers are part of the same object, as pointing directly
806         //     past the object also counts.
807         //
808         //   - The size of the slice is never larger than isize::MAX bytes, as
809         //     noted here:
810         //       - https://github.com/rust-lang/unsafe-code-guidelines/issues/102#issuecomment-473340447
811         //       - https://doc.rust-lang.org/reference/behavior-considered-undefined.html
812         //       - https://doc.rust-lang.org/core/slice/fn.from_raw_parts.html#safety
813         //     (This doesn't seem normative yet, but the very same assumption is
814         //     made in many places, including the Index implementation of slices.)
815         //
816         //   - There is no wrapping around involved, as slices do not wrap past
817         //     the end of the address space.
818         //
819         // See the documentation of pointer::add.
820         let end = unsafe { start.add(self.len()) };
821         start..end
822     }
823 
824     /// Returns the two unsafe mutable pointers spanning the slice.
825     ///
826     /// The returned range is half-open, which means that the end pointer
827     /// points *one past* the last element of the slice. This way, an empty
828     /// slice is represented by two equal pointers, and the difference between
829     /// the two pointers represents the size of the slice.
830     ///
831     /// See [`as_mut_ptr`] for warnings on using these pointers. The end
832     /// pointer requires extra caution, as it does not point to a valid element
833     /// in the slice.
834     ///
835     /// This function is useful for interacting with foreign interfaces which
836     /// use two pointers to refer to a range of elements in memory, as is
837     /// common in C++.
838     ///
839     /// [`as_mut_ptr`]: slice::as_mut_ptr
840     #[stable(feature = "slice_ptr_range", since = "1.48.0")]
841     #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
842     #[rustc_allow_const_fn_unstable(const_mut_refs)]
843     #[inline]
844     #[must_use]
as_mut_ptr_range(&mut self) -> Range<*mut T>845     pub const fn as_mut_ptr_range(&mut self) -> Range<*mut T> {
846         let start = self.as_mut_ptr();
847         // SAFETY: See as_ptr_range() above for why `add` here is safe.
848         let end = unsafe { start.add(self.len()) };
849         start..end
850     }
851 
852     /// Swaps two elements in the slice.
853     ///
854     /// If `a` equals to `b`, it's guaranteed that elements won't change value.
855     ///
856     /// # Arguments
857     ///
858     /// * a - The index of the first element
859     /// * b - The index of the second element
860     ///
861     /// # Panics
862     ///
863     /// Panics if `a` or `b` are out of bounds.
864     ///
865     /// # Examples
866     ///
867     /// ```
868     /// let mut v = ["a", "b", "c", "d", "e"];
869     /// v.swap(2, 4);
870     /// assert!(v == ["a", "b", "e", "d", "c"]);
871     /// ```
872     #[stable(feature = "rust1", since = "1.0.0")]
873     #[rustc_const_unstable(feature = "const_swap", issue = "83163")]
874     #[inline]
875     #[track_caller]
swap(&mut self, a: usize, b: usize)876     pub const fn swap(&mut self, a: usize, b: usize) {
877         // FIXME: use swap_unchecked here (https://github.com/rust-lang/rust/pull/88540#issuecomment-944344343)
878         // Can't take two mutable loans from one vector, so instead use raw pointers.
879         let pa = ptr::addr_of_mut!(self[a]);
880         let pb = ptr::addr_of_mut!(self[b]);
881         // SAFETY: `pa` and `pb` have been created from safe mutable references and refer
882         // to elements in the slice and therefore are guaranteed to be valid and aligned.
883         // Note that accessing the elements behind `a` and `b` is checked and will
884         // panic when out of bounds.
885         unsafe {
886             ptr::swap(pa, pb);
887         }
888     }
889 
890     /// Swaps two elements in the slice, without doing bounds checking.
891     ///
892     /// For a safe alternative see [`swap`].
893     ///
894     /// # Arguments
895     ///
896     /// * a - The index of the first element
897     /// * b - The index of the second element
898     ///
899     /// # Safety
900     ///
901     /// Calling this method with an out-of-bounds index is *[undefined behavior]*.
902     /// The caller has to ensure that `a < self.len()` and `b < self.len()`.
903     ///
904     /// # Examples
905     ///
906     /// ```
907     /// #![feature(slice_swap_unchecked)]
908     ///
909     /// let mut v = ["a", "b", "c", "d"];
910     /// // SAFETY: we know that 1 and 3 are both indices of the slice
911     /// unsafe { v.swap_unchecked(1, 3) };
912     /// assert!(v == ["a", "d", "c", "b"]);
913     /// ```
914     ///
915     /// [`swap`]: slice::swap
916     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
917     #[unstable(feature = "slice_swap_unchecked", issue = "88539")]
918     #[rustc_const_unstable(feature = "const_swap", issue = "83163")]
swap_unchecked(&mut self, a: usize, b: usize)919     pub const unsafe fn swap_unchecked(&mut self, a: usize, b: usize) {
920         let this = self;
921         let ptr = this.as_mut_ptr();
922         // SAFETY: caller has to guarantee that `a < self.len()` and `b < self.len()`
923         unsafe {
924             assert_unsafe_precondition!(
925                 "slice::swap_unchecked requires that the indices are within the slice",
926                 [T](a: usize, b: usize, this: &mut [T]) => a < this.len() && b < this.len()
927             );
928             ptr::swap(ptr.add(a), ptr.add(b));
929         }
930     }
931 
932     /// Reverses the order of elements in the slice, in place.
933     ///
934     /// # Examples
935     ///
936     /// ```
937     /// let mut v = [1, 2, 3];
938     /// v.reverse();
939     /// assert!(v == [3, 2, 1]);
940     /// ```
941     #[stable(feature = "rust1", since = "1.0.0")]
942     #[inline]
reverse(&mut self)943     pub fn reverse(&mut self) {
944         let half_len = self.len() / 2;
945         let Range { start, end } = self.as_mut_ptr_range();
946 
947         // These slices will skip the middle item for an odd length,
948         // since that one doesn't need to move.
949         let (front_half, back_half) =
950             // SAFETY: Both are subparts of the original slice, so the memory
951             // range is valid, and they don't overlap because they're each only
952             // half (or less) of the original slice.
953             unsafe {
954                 (
955                     slice::from_raw_parts_mut(start, half_len),
956                     slice::from_raw_parts_mut(end.sub(half_len), half_len),
957                 )
958             };
959 
960         // Introducing a function boundary here means that the two halves
961         // get `noalias` markers, allowing better optimization as LLVM
962         // knows that they're disjoint, unlike in the original slice.
963         revswap(front_half, back_half, half_len);
964 
965         #[inline]
966         fn revswap<T>(a: &mut [T], b: &mut [T], n: usize) {
967             debug_assert!(a.len() == n);
968             debug_assert!(b.len() == n);
969 
970             // Because this function is first compiled in isolation,
971             // this check tells LLVM that the indexing below is
972             // in-bounds. Then after inlining -- once the actual
973             // lengths of the slices are known -- it's removed.
974             let (a, b) = (&mut a[..n], &mut b[..n]);
975 
976             let mut i = 0;
977             while i < n {
978                 mem::swap(&mut a[i], &mut b[n - 1 - i]);
979                 i += 1;
980             }
981         }
982     }
983 
984     /// Returns an iterator over the slice.
985     ///
986     /// The iterator yields all items from start to end.
987     ///
988     /// # Examples
989     ///
990     /// ```
991     /// let x = &[1, 2, 4];
992     /// let mut iterator = x.iter();
993     ///
994     /// assert_eq!(iterator.next(), Some(&1));
995     /// assert_eq!(iterator.next(), Some(&2));
996     /// assert_eq!(iterator.next(), Some(&4));
997     /// assert_eq!(iterator.next(), None);
998     /// ```
999     #[stable(feature = "rust1", since = "1.0.0")]
1000     #[inline]
iter(&self) -> Iter<'_, T>1001     pub fn iter(&self) -> Iter<'_, T> {
1002         Iter::new(self)
1003     }
1004 
1005     /// Returns an iterator that allows modifying each value.
1006     ///
1007     /// The iterator yields all items from start to end.
1008     ///
1009     /// # Examples
1010     ///
1011     /// ```
1012     /// let x = &mut [1, 2, 4];
1013     /// for elem in x.iter_mut() {
1014     ///     *elem += 2;
1015     /// }
1016     /// assert_eq!(x, &[3, 4, 6]);
1017     /// ```
1018     #[stable(feature = "rust1", since = "1.0.0")]
1019     #[inline]
iter_mut(&mut self) -> IterMut<'_, T>1020     pub fn iter_mut(&mut self) -> IterMut<'_, T> {
1021         IterMut::new(self)
1022     }
1023 
1024     /// Returns an iterator over all contiguous windows of length
1025     /// `size`. The windows overlap. If the slice is shorter than
1026     /// `size`, the iterator returns no values.
1027     ///
1028     /// # Panics
1029     ///
1030     /// Panics if `size` is 0.
1031     ///
1032     /// # Examples
1033     ///
1034     /// ```
1035     /// let slice = ['r', 'u', 's', 't'];
1036     /// let mut iter = slice.windows(2);
1037     /// assert_eq!(iter.next().unwrap(), &['r', 'u']);
1038     /// assert_eq!(iter.next().unwrap(), &['u', 's']);
1039     /// assert_eq!(iter.next().unwrap(), &['s', 't']);
1040     /// assert!(iter.next().is_none());
1041     /// ```
1042     ///
1043     /// If the slice is shorter than `size`:
1044     ///
1045     /// ```
1046     /// let slice = ['f', 'o', 'o'];
1047     /// let mut iter = slice.windows(4);
1048     /// assert!(iter.next().is_none());
1049     /// ```
1050     ///
1051     /// There's no `windows_mut`, as that existing would let safe code violate the
1052     /// "only one `&mut` at a time to the same thing" rule.  However, you can sometimes
1053     /// use [`Cell::as_slice_of_cells`](crate::cell::Cell::as_slice_of_cells) in
1054     /// conjunction with `windows` to accomplish something similar:
1055     /// ```
1056     /// use std::cell::Cell;
1057     ///
1058     /// let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
1059     /// let slice = &mut array[..];
1060     /// let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
1061     /// for w in slice_of_cells.windows(3) {
1062     ///     Cell::swap(&w[0], &w[2]);
1063     /// }
1064     /// assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1065     /// ```
1066     #[stable(feature = "rust1", since = "1.0.0")]
1067     #[inline]
1068     #[track_caller]
windows(&self, size: usize) -> Windows<'_, T>1069     pub fn windows(&self, size: usize) -> Windows<'_, T> {
1070         let size = NonZeroUsize::new(size).expect("window size must be non-zero");
1071         Windows::new(self, size)
1072     }
1073 
1074     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1075     /// beginning of the slice.
1076     ///
1077     /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1078     /// slice, then the last chunk will not have length `chunk_size`.
1079     ///
1080     /// See [`chunks_exact`] for a variant of this iterator that returns chunks of always exactly
1081     /// `chunk_size` elements, and [`rchunks`] for the same iterator but starting at the end of the
1082     /// slice.
1083     ///
1084     /// # Panics
1085     ///
1086     /// Panics if `chunk_size` is 0.
1087     ///
1088     /// # Examples
1089     ///
1090     /// ```
1091     /// let slice = ['l', 'o', 'r', 'e', 'm'];
1092     /// let mut iter = slice.chunks(2);
1093     /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1094     /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1095     /// assert_eq!(iter.next().unwrap(), &['m']);
1096     /// assert!(iter.next().is_none());
1097     /// ```
1098     ///
1099     /// [`chunks_exact`]: slice::chunks_exact
1100     /// [`rchunks`]: slice::rchunks
1101     #[stable(feature = "rust1", since = "1.0.0")]
1102     #[inline]
1103     #[track_caller]
chunks(&self, chunk_size: usize) -> Chunks<'_, T>1104     pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T> {
1105         assert!(chunk_size != 0, "chunk size must be non-zero");
1106         Chunks::new(self, chunk_size)
1107     }
1108 
1109     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1110     /// beginning of the slice.
1111     ///
1112     /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1113     /// length of the slice, then the last chunk will not have length `chunk_size`.
1114     ///
1115     /// See [`chunks_exact_mut`] for a variant of this iterator that returns chunks of always
1116     /// exactly `chunk_size` elements, and [`rchunks_mut`] for the same iterator but starting at
1117     /// the end of the slice.
1118     ///
1119     /// # Panics
1120     ///
1121     /// Panics if `chunk_size` is 0.
1122     ///
1123     /// # Examples
1124     ///
1125     /// ```
1126     /// let v = &mut [0, 0, 0, 0, 0];
1127     /// let mut count = 1;
1128     ///
1129     /// for chunk in v.chunks_mut(2) {
1130     ///     for elem in chunk.iter_mut() {
1131     ///         *elem += count;
1132     ///     }
1133     ///     count += 1;
1134     /// }
1135     /// assert_eq!(v, &[1, 1, 2, 2, 3]);
1136     /// ```
1137     ///
1138     /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1139     /// [`rchunks_mut`]: slice::rchunks_mut
1140     #[stable(feature = "rust1", since = "1.0.0")]
1141     #[inline]
1142     #[track_caller]
chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>1143     pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T> {
1144         assert!(chunk_size != 0, "chunk size must be non-zero");
1145         ChunksMut::new(self, chunk_size)
1146     }
1147 
1148     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1149     /// beginning of the slice.
1150     ///
1151     /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1152     /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1153     /// from the `remainder` function of the iterator.
1154     ///
1155     /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1156     /// resulting code better than in the case of [`chunks`].
1157     ///
1158     /// See [`chunks`] for a variant of this iterator that also returns the remainder as a smaller
1159     /// chunk, and [`rchunks_exact`] for the same iterator but starting at the end of the slice.
1160     ///
1161     /// # Panics
1162     ///
1163     /// Panics if `chunk_size` is 0.
1164     ///
1165     /// # Examples
1166     ///
1167     /// ```
1168     /// let slice = ['l', 'o', 'r', 'e', 'm'];
1169     /// let mut iter = slice.chunks_exact(2);
1170     /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1171     /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1172     /// assert!(iter.next().is_none());
1173     /// assert_eq!(iter.remainder(), &['m']);
1174     /// ```
1175     ///
1176     /// [`chunks`]: slice::chunks
1177     /// [`rchunks_exact`]: slice::rchunks_exact
1178     #[stable(feature = "chunks_exact", since = "1.31.0")]
1179     #[inline]
1180     #[track_caller]
chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>1181     pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T> {
1182         assert!(chunk_size != 0, "chunk size must be non-zero");
1183         ChunksExact::new(self, chunk_size)
1184     }
1185 
1186     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1187     /// beginning of the slice.
1188     ///
1189     /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1190     /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1191     /// retrieved from the `into_remainder` function of the iterator.
1192     ///
1193     /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1194     /// resulting code better than in the case of [`chunks_mut`].
1195     ///
1196     /// See [`chunks_mut`] for a variant of this iterator that also returns the remainder as a
1197     /// smaller chunk, and [`rchunks_exact_mut`] for the same iterator but starting at the end of
1198     /// the slice.
1199     ///
1200     /// # Panics
1201     ///
1202     /// Panics if `chunk_size` is 0.
1203     ///
1204     /// # Examples
1205     ///
1206     /// ```
1207     /// let v = &mut [0, 0, 0, 0, 0];
1208     /// let mut count = 1;
1209     ///
1210     /// for chunk in v.chunks_exact_mut(2) {
1211     ///     for elem in chunk.iter_mut() {
1212     ///         *elem += count;
1213     ///     }
1214     ///     count += 1;
1215     /// }
1216     /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1217     /// ```
1218     ///
1219     /// [`chunks_mut`]: slice::chunks_mut
1220     /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1221     #[stable(feature = "chunks_exact", since = "1.31.0")]
1222     #[inline]
1223     #[track_caller]
chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T>1224     pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T> {
1225         assert!(chunk_size != 0, "chunk size must be non-zero");
1226         ChunksExactMut::new(self, chunk_size)
1227     }
1228 
1229     /// Splits the slice into a slice of `N`-element arrays,
1230     /// assuming that there's no remainder.
1231     ///
1232     /// # Safety
1233     ///
1234     /// This may only be called when
1235     /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1236     /// - `N != 0`.
1237     ///
1238     /// # Examples
1239     ///
1240     /// ```
1241     /// #![feature(slice_as_chunks)]
1242     /// let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
1243     /// let chunks: &[[char; 1]] =
1244     ///     // SAFETY: 1-element chunks never have remainder
1245     ///     unsafe { slice.as_chunks_unchecked() };
1246     /// assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1247     /// let chunks: &[[char; 3]] =
1248     ///     // SAFETY: The slice length (6) is a multiple of 3
1249     ///     unsafe { slice.as_chunks_unchecked() };
1250     /// assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
1251     ///
1252     /// // These would be unsound:
1253     /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
1254     /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
1255     /// ```
1256     #[unstable(feature = "slice_as_chunks", issue = "74985")]
1257     #[inline]
1258     #[must_use]
as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]1259     pub const unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]] {
1260         let this = self;
1261         // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1262         let new_len = unsafe {
1263             assert_unsafe_precondition!(
1264                 "slice::as_chunks_unchecked requires `N != 0` and the slice to split exactly into `N`-element chunks",
1265                 [T](this: &[T], N: usize) => N != 0 && this.len() % N == 0
1266             );
1267             exact_div(self.len(), N)
1268         };
1269         // SAFETY: We cast a slice of `new_len * N` elements into
1270         // a slice of `new_len` many `N` elements chunks.
1271         unsafe { from_raw_parts(self.as_ptr().cast(), new_len) }
1272     }
1273 
1274     /// Splits the slice into a slice of `N`-element arrays,
1275     /// starting at the beginning of the slice,
1276     /// and a remainder slice with length strictly less than `N`.
1277     ///
1278     /// # Panics
1279     ///
1280     /// Panics if `N` is 0. This check will most probably get changed to a compile time
1281     /// error before this method gets stabilized.
1282     ///
1283     /// # Examples
1284     ///
1285     /// ```
1286     /// #![feature(slice_as_chunks)]
1287     /// let slice = ['l', 'o', 'r', 'e', 'm'];
1288     /// let (chunks, remainder) = slice.as_chunks();
1289     /// assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
1290     /// assert_eq!(remainder, &['m']);
1291     /// ```
1292     ///
1293     /// If you expect the slice to be an exact multiple, you can combine
1294     /// `let`-`else` with an empty slice pattern:
1295     /// ```
1296     /// #![feature(slice_as_chunks)]
1297     /// let slice = ['R', 'u', 's', 't'];
1298     /// let (chunks, []) = slice.as_chunks::<2>() else {
1299     ///     panic!("slice didn't have even length")
1300     /// };
1301     /// assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
1302     /// ```
1303     #[unstable(feature = "slice_as_chunks", issue = "74985")]
1304     #[inline]
1305     #[track_caller]
1306     #[must_use]
as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])1307     pub const fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T]) {
1308         assert!(N != 0, "chunk size must be non-zero");
1309         let len = self.len() / N;
1310         let (multiple_of_n, remainder) = self.split_at(len * N);
1311         // SAFETY: We already panicked for zero, and ensured by construction
1312         // that the length of the subslice is a multiple of N.
1313         let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1314         (array_slice, remainder)
1315     }
1316 
1317     /// Splits the slice into a slice of `N`-element arrays,
1318     /// starting at the end of the slice,
1319     /// and a remainder slice with length strictly less than `N`.
1320     ///
1321     /// # Panics
1322     ///
1323     /// Panics if `N` is 0. This check will most probably get changed to a compile time
1324     /// error before this method gets stabilized.
1325     ///
1326     /// # Examples
1327     ///
1328     /// ```
1329     /// #![feature(slice_as_chunks)]
1330     /// let slice = ['l', 'o', 'r', 'e', 'm'];
1331     /// let (remainder, chunks) = slice.as_rchunks();
1332     /// assert_eq!(remainder, &['l']);
1333     /// assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
1334     /// ```
1335     #[unstable(feature = "slice_as_chunks", issue = "74985")]
1336     #[inline]
1337     #[track_caller]
1338     #[must_use]
as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])1339     pub const fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]]) {
1340         assert!(N != 0, "chunk size must be non-zero");
1341         let len = self.len() / N;
1342         let (remainder, multiple_of_n) = self.split_at(self.len() - len * N);
1343         // SAFETY: We already panicked for zero, and ensured by construction
1344         // that the length of the subslice is a multiple of N.
1345         let array_slice = unsafe { multiple_of_n.as_chunks_unchecked() };
1346         (remainder, array_slice)
1347     }
1348 
1349     /// Returns an iterator over `N` elements of the slice at a time, starting at the
1350     /// beginning of the slice.
1351     ///
1352     /// The chunks are array references and do not overlap. If `N` does not divide the
1353     /// length of the slice, then the last up to `N-1` elements will be omitted and can be
1354     /// retrieved from the `remainder` function of the iterator.
1355     ///
1356     /// This method is the const generic equivalent of [`chunks_exact`].
1357     ///
1358     /// # Panics
1359     ///
1360     /// Panics if `N` is 0. This check will most probably get changed to a compile time
1361     /// error before this method gets stabilized.
1362     ///
1363     /// # Examples
1364     ///
1365     /// ```
1366     /// #![feature(array_chunks)]
1367     /// let slice = ['l', 'o', 'r', 'e', 'm'];
1368     /// let mut iter = slice.array_chunks();
1369     /// assert_eq!(iter.next().unwrap(), &['l', 'o']);
1370     /// assert_eq!(iter.next().unwrap(), &['r', 'e']);
1371     /// assert!(iter.next().is_none());
1372     /// assert_eq!(iter.remainder(), &['m']);
1373     /// ```
1374     ///
1375     /// [`chunks_exact`]: slice::chunks_exact
1376     #[unstable(feature = "array_chunks", issue = "74985")]
1377     #[inline]
1378     #[track_caller]
array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>1379     pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N> {
1380         assert!(N != 0, "chunk size must be non-zero");
1381         ArrayChunks::new(self)
1382     }
1383 
1384     /// Splits the slice into a slice of `N`-element arrays,
1385     /// assuming that there's no remainder.
1386     ///
1387     /// # Safety
1388     ///
1389     /// This may only be called when
1390     /// - The slice splits exactly into `N`-element chunks (aka `self.len() % N == 0`).
1391     /// - `N != 0`.
1392     ///
1393     /// # Examples
1394     ///
1395     /// ```
1396     /// #![feature(slice_as_chunks)]
1397     /// let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
1398     /// let chunks: &mut [[char; 1]] =
1399     ///     // SAFETY: 1-element chunks never have remainder
1400     ///     unsafe { slice.as_chunks_unchecked_mut() };
1401     /// chunks[0] = ['L'];
1402     /// assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
1403     /// let chunks: &mut [[char; 3]] =
1404     ///     // SAFETY: The slice length (6) is a multiple of 3
1405     ///     unsafe { slice.as_chunks_unchecked_mut() };
1406     /// chunks[1] = ['a', 'x', '?'];
1407     /// assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
1408     ///
1409     /// // These would be unsound:
1410     /// // let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
1411     /// // let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
1412     /// ```
1413     #[unstable(feature = "slice_as_chunks", issue = "74985")]
1414     #[inline]
1415     #[must_use]
as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]]1416     pub const unsafe fn as_chunks_unchecked_mut<const N: usize>(&mut self) -> &mut [[T; N]] {
1417         let this = &*self;
1418         // SAFETY: Caller must guarantee that `N` is nonzero and exactly divides the slice length
1419         let new_len = unsafe {
1420             assert_unsafe_precondition!(
1421                 "slice::as_chunks_unchecked_mut requires `N != 0` and the slice to split exactly into `N`-element chunks",
1422                 [T](this: &[T], N: usize) => N != 0 && this.len() % N == 0
1423             );
1424             exact_div(this.len(), N)
1425         };
1426         // SAFETY: We cast a slice of `new_len * N` elements into
1427         // a slice of `new_len` many `N` elements chunks.
1428         unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), new_len) }
1429     }
1430 
1431     /// Splits the slice into a slice of `N`-element arrays,
1432     /// starting at the beginning of the slice,
1433     /// and a remainder slice with length strictly less than `N`.
1434     ///
1435     /// # Panics
1436     ///
1437     /// Panics if `N` is 0. This check will most probably get changed to a compile time
1438     /// error before this method gets stabilized.
1439     ///
1440     /// # Examples
1441     ///
1442     /// ```
1443     /// #![feature(slice_as_chunks)]
1444     /// let v = &mut [0, 0, 0, 0, 0];
1445     /// let mut count = 1;
1446     ///
1447     /// let (chunks, remainder) = v.as_chunks_mut();
1448     /// remainder[0] = 9;
1449     /// for chunk in chunks {
1450     ///     *chunk = [count; 2];
1451     ///     count += 1;
1452     /// }
1453     /// assert_eq!(v, &[1, 1, 2, 2, 9]);
1454     /// ```
1455     #[unstable(feature = "slice_as_chunks", issue = "74985")]
1456     #[inline]
1457     #[track_caller]
1458     #[must_use]
as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T])1459     pub const fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T]) {
1460         assert!(N != 0, "chunk size must be non-zero");
1461         let len = self.len() / N;
1462         let (multiple_of_n, remainder) = self.split_at_mut(len * N);
1463         // SAFETY: We already panicked for zero, and ensured by construction
1464         // that the length of the subslice is a multiple of N.
1465         let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1466         (array_slice, remainder)
1467     }
1468 
1469     /// Splits the slice into a slice of `N`-element arrays,
1470     /// starting at the end of the slice,
1471     /// and a remainder slice with length strictly less than `N`.
1472     ///
1473     /// # Panics
1474     ///
1475     /// Panics if `N` is 0. This check will most probably get changed to a compile time
1476     /// error before this method gets stabilized.
1477     ///
1478     /// # Examples
1479     ///
1480     /// ```
1481     /// #![feature(slice_as_chunks)]
1482     /// let v = &mut [0, 0, 0, 0, 0];
1483     /// let mut count = 1;
1484     ///
1485     /// let (remainder, chunks) = v.as_rchunks_mut();
1486     /// remainder[0] = 9;
1487     /// for chunk in chunks {
1488     ///     *chunk = [count; 2];
1489     ///     count += 1;
1490     /// }
1491     /// assert_eq!(v, &[9, 1, 1, 2, 2]);
1492     /// ```
1493     #[unstable(feature = "slice_as_chunks", issue = "74985")]
1494     #[inline]
1495     #[track_caller]
1496     #[must_use]
as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]])1497     pub const fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]]) {
1498         assert!(N != 0, "chunk size must be non-zero");
1499         let len = self.len() / N;
1500         let (remainder, multiple_of_n) = self.split_at_mut(self.len() - len * N);
1501         // SAFETY: We already panicked for zero, and ensured by construction
1502         // that the length of the subslice is a multiple of N.
1503         let array_slice = unsafe { multiple_of_n.as_chunks_unchecked_mut() };
1504         (remainder, array_slice)
1505     }
1506 
1507     /// Returns an iterator over `N` elements of the slice at a time, starting at the
1508     /// beginning of the slice.
1509     ///
1510     /// The chunks are mutable array references and do not overlap. If `N` does not divide
1511     /// the length of the slice, then the last up to `N-1` elements will be omitted and
1512     /// can be retrieved from the `into_remainder` function of the iterator.
1513     ///
1514     /// This method is the const generic equivalent of [`chunks_exact_mut`].
1515     ///
1516     /// # Panics
1517     ///
1518     /// Panics if `N` is 0. This check will most probably get changed to a compile time
1519     /// error before this method gets stabilized.
1520     ///
1521     /// # Examples
1522     ///
1523     /// ```
1524     /// #![feature(array_chunks)]
1525     /// let v = &mut [0, 0, 0, 0, 0];
1526     /// let mut count = 1;
1527     ///
1528     /// for chunk in v.array_chunks_mut() {
1529     ///     *chunk = [count; 2];
1530     ///     count += 1;
1531     /// }
1532     /// assert_eq!(v, &[1, 1, 2, 2, 0]);
1533     /// ```
1534     ///
1535     /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1536     #[unstable(feature = "array_chunks", issue = "74985")]
1537     #[inline]
1538     #[track_caller]
array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N>1539     pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N> {
1540         assert!(N != 0, "chunk size must be non-zero");
1541         ArrayChunksMut::new(self)
1542     }
1543 
1544     /// Returns an iterator over overlapping windows of `N` elements of a slice,
1545     /// starting at the beginning of the slice.
1546     ///
1547     /// This is the const generic equivalent of [`windows`].
1548     ///
1549     /// If `N` is greater than the size of the slice, it will return no windows.
1550     ///
1551     /// # Panics
1552     ///
1553     /// Panics if `N` is 0. This check will most probably get changed to a compile time
1554     /// error before this method gets stabilized.
1555     ///
1556     /// # Examples
1557     ///
1558     /// ```
1559     /// #![feature(array_windows)]
1560     /// let slice = [0, 1, 2, 3];
1561     /// let mut iter = slice.array_windows();
1562     /// assert_eq!(iter.next().unwrap(), &[0, 1]);
1563     /// assert_eq!(iter.next().unwrap(), &[1, 2]);
1564     /// assert_eq!(iter.next().unwrap(), &[2, 3]);
1565     /// assert!(iter.next().is_none());
1566     /// ```
1567     ///
1568     /// [`windows`]: slice::windows
1569     #[unstable(feature = "array_windows", issue = "75027")]
1570     #[inline]
1571     #[track_caller]
array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>1572     pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N> {
1573         assert!(N != 0, "window size must be non-zero");
1574         ArrayWindows::new(self)
1575     }
1576 
1577     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1578     /// of the slice.
1579     ///
1580     /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1581     /// slice, then the last chunk will not have length `chunk_size`.
1582     ///
1583     /// See [`rchunks_exact`] for a variant of this iterator that returns chunks of always exactly
1584     /// `chunk_size` elements, and [`chunks`] for the same iterator but starting at the beginning
1585     /// of the slice.
1586     ///
1587     /// # Panics
1588     ///
1589     /// Panics if `chunk_size` is 0.
1590     ///
1591     /// # Examples
1592     ///
1593     /// ```
1594     /// let slice = ['l', 'o', 'r', 'e', 'm'];
1595     /// let mut iter = slice.rchunks(2);
1596     /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1597     /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1598     /// assert_eq!(iter.next().unwrap(), &['l']);
1599     /// assert!(iter.next().is_none());
1600     /// ```
1601     ///
1602     /// [`rchunks_exact`]: slice::rchunks_exact
1603     /// [`chunks`]: slice::chunks
1604     #[stable(feature = "rchunks", since = "1.31.0")]
1605     #[inline]
1606     #[track_caller]
rchunks(&self, chunk_size: usize) -> RChunks<'_, T>1607     pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T> {
1608         assert!(chunk_size != 0, "chunk size must be non-zero");
1609         RChunks::new(self, chunk_size)
1610     }
1611 
1612     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1613     /// of the slice.
1614     ///
1615     /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1616     /// length of the slice, then the last chunk will not have length `chunk_size`.
1617     ///
1618     /// See [`rchunks_exact_mut`] for a variant of this iterator that returns chunks of always
1619     /// exactly `chunk_size` elements, and [`chunks_mut`] for the same iterator but starting at the
1620     /// beginning of the slice.
1621     ///
1622     /// # Panics
1623     ///
1624     /// Panics if `chunk_size` is 0.
1625     ///
1626     /// # Examples
1627     ///
1628     /// ```
1629     /// let v = &mut [0, 0, 0, 0, 0];
1630     /// let mut count = 1;
1631     ///
1632     /// for chunk in v.rchunks_mut(2) {
1633     ///     for elem in chunk.iter_mut() {
1634     ///         *elem += count;
1635     ///     }
1636     ///     count += 1;
1637     /// }
1638     /// assert_eq!(v, &[3, 2, 2, 1, 1]);
1639     /// ```
1640     ///
1641     /// [`rchunks_exact_mut`]: slice::rchunks_exact_mut
1642     /// [`chunks_mut`]: slice::chunks_mut
1643     #[stable(feature = "rchunks", since = "1.31.0")]
1644     #[inline]
1645     #[track_caller]
rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T>1646     pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T> {
1647         assert!(chunk_size != 0, "chunk size must be non-zero");
1648         RChunksMut::new(self, chunk_size)
1649     }
1650 
1651     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the
1652     /// end of the slice.
1653     ///
1654     /// The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the
1655     /// slice, then the last up to `chunk_size-1` elements will be omitted and can be retrieved
1656     /// from the `remainder` function of the iterator.
1657     ///
1658     /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1659     /// resulting code better than in the case of [`rchunks`].
1660     ///
1661     /// See [`rchunks`] for a variant of this iterator that also returns the remainder as a smaller
1662     /// chunk, and [`chunks_exact`] for the same iterator but starting at the beginning of the
1663     /// slice.
1664     ///
1665     /// # Panics
1666     ///
1667     /// Panics if `chunk_size` is 0.
1668     ///
1669     /// # Examples
1670     ///
1671     /// ```
1672     /// let slice = ['l', 'o', 'r', 'e', 'm'];
1673     /// let mut iter = slice.rchunks_exact(2);
1674     /// assert_eq!(iter.next().unwrap(), &['e', 'm']);
1675     /// assert_eq!(iter.next().unwrap(), &['o', 'r']);
1676     /// assert!(iter.next().is_none());
1677     /// assert_eq!(iter.remainder(), &['l']);
1678     /// ```
1679     ///
1680     /// [`chunks`]: slice::chunks
1681     /// [`rchunks`]: slice::rchunks
1682     /// [`chunks_exact`]: slice::chunks_exact
1683     #[stable(feature = "rchunks", since = "1.31.0")]
1684     #[inline]
1685     #[track_caller]
rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>1686     pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T> {
1687         assert!(chunk_size != 0, "chunk size must be non-zero");
1688         RChunksExact::new(self, chunk_size)
1689     }
1690 
1691     /// Returns an iterator over `chunk_size` elements of the slice at a time, starting at the end
1692     /// of the slice.
1693     ///
1694     /// The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the
1695     /// length of the slice, then the last up to `chunk_size-1` elements will be omitted and can be
1696     /// retrieved from the `into_remainder` function of the iterator.
1697     ///
1698     /// Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the
1699     /// resulting code better than in the case of [`chunks_mut`].
1700     ///
1701     /// See [`rchunks_mut`] for a variant of this iterator that also returns the remainder as a
1702     /// smaller chunk, and [`chunks_exact_mut`] for the same iterator but starting at the beginning
1703     /// of the slice.
1704     ///
1705     /// # Panics
1706     ///
1707     /// Panics if `chunk_size` is 0.
1708     ///
1709     /// # Examples
1710     ///
1711     /// ```
1712     /// let v = &mut [0, 0, 0, 0, 0];
1713     /// let mut count = 1;
1714     ///
1715     /// for chunk in v.rchunks_exact_mut(2) {
1716     ///     for elem in chunk.iter_mut() {
1717     ///         *elem += count;
1718     ///     }
1719     ///     count += 1;
1720     /// }
1721     /// assert_eq!(v, &[0, 2, 2, 1, 1]);
1722     /// ```
1723     ///
1724     /// [`chunks_mut`]: slice::chunks_mut
1725     /// [`rchunks_mut`]: slice::rchunks_mut
1726     /// [`chunks_exact_mut`]: slice::chunks_exact_mut
1727     #[stable(feature = "rchunks", since = "1.31.0")]
1728     #[inline]
1729     #[track_caller]
rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T>1730     pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T> {
1731         assert!(chunk_size != 0, "chunk size must be non-zero");
1732         RChunksExactMut::new(self, chunk_size)
1733     }
1734 
1735     /// Returns an iterator over the slice producing non-overlapping runs
1736     /// of elements using the predicate to separate them.
1737     ///
1738     /// The predicate is called on two elements following themselves,
1739     /// it means the predicate is called on `slice[0]` and `slice[1]`
1740     /// then on `slice[1]` and `slice[2]` and so on.
1741     ///
1742     /// # Examples
1743     ///
1744     /// ```
1745     /// #![feature(slice_group_by)]
1746     ///
1747     /// let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
1748     ///
1749     /// let mut iter = slice.group_by(|a, b| a == b);
1750     ///
1751     /// assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
1752     /// assert_eq!(iter.next(), Some(&[3, 3][..]));
1753     /// assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
1754     /// assert_eq!(iter.next(), None);
1755     /// ```
1756     ///
1757     /// This method can be used to extract the sorted subslices:
1758     ///
1759     /// ```
1760     /// #![feature(slice_group_by)]
1761     ///
1762     /// let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
1763     ///
1764     /// let mut iter = slice.group_by(|a, b| a <= b);
1765     ///
1766     /// assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
1767     /// assert_eq!(iter.next(), Some(&[2, 3][..]));
1768     /// assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
1769     /// assert_eq!(iter.next(), None);
1770     /// ```
1771     #[unstable(feature = "slice_group_by", issue = "80552")]
1772     #[inline]
group_by<F>(&self, pred: F) -> GroupBy<'_, T, F> where F: FnMut(&T, &T) -> bool,1773     pub fn group_by<F>(&self, pred: F) -> GroupBy<'_, T, F>
1774     where
1775         F: FnMut(&T, &T) -> bool,
1776     {
1777         GroupBy::new(self, pred)
1778     }
1779 
1780     /// Returns an iterator over the slice producing non-overlapping mutable
1781     /// runs of elements using the predicate to separate them.
1782     ///
1783     /// The predicate is called on two elements following themselves,
1784     /// it means the predicate is called on `slice[0]` and `slice[1]`
1785     /// then on `slice[1]` and `slice[2]` and so on.
1786     ///
1787     /// # Examples
1788     ///
1789     /// ```
1790     /// #![feature(slice_group_by)]
1791     ///
1792     /// let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
1793     ///
1794     /// let mut iter = slice.group_by_mut(|a, b| a == b);
1795     ///
1796     /// assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
1797     /// assert_eq!(iter.next(), Some(&mut [3, 3][..]));
1798     /// assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
1799     /// assert_eq!(iter.next(), None);
1800     /// ```
1801     ///
1802     /// This method can be used to extract the sorted subslices:
1803     ///
1804     /// ```
1805     /// #![feature(slice_group_by)]
1806     ///
1807     /// let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
1808     ///
1809     /// let mut iter = slice.group_by_mut(|a, b| a <= b);
1810     ///
1811     /// assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
1812     /// assert_eq!(iter.next(), Some(&mut [2, 3][..]));
1813     /// assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
1814     /// assert_eq!(iter.next(), None);
1815     /// ```
1816     #[unstable(feature = "slice_group_by", issue = "80552")]
1817     #[inline]
group_by_mut<F>(&mut self, pred: F) -> GroupByMut<'_, T, F> where F: FnMut(&T, &T) -> bool,1818     pub fn group_by_mut<F>(&mut self, pred: F) -> GroupByMut<'_, T, F>
1819     where
1820         F: FnMut(&T, &T) -> bool,
1821     {
1822         GroupByMut::new(self, pred)
1823     }
1824 
1825     /// Divides one slice into two at an index.
1826     ///
1827     /// The first will contain all indices from `[0, mid)` (excluding
1828     /// the index `mid` itself) and the second will contain all
1829     /// indices from `[mid, len)` (excluding the index `len` itself).
1830     ///
1831     /// # Panics
1832     ///
1833     /// Panics if `mid > len`.
1834     ///
1835     /// # Examples
1836     ///
1837     /// ```
1838     /// let v = [1, 2, 3, 4, 5, 6];
1839     ///
1840     /// {
1841     ///    let (left, right) = v.split_at(0);
1842     ///    assert_eq!(left, []);
1843     ///    assert_eq!(right, [1, 2, 3, 4, 5, 6]);
1844     /// }
1845     ///
1846     /// {
1847     ///     let (left, right) = v.split_at(2);
1848     ///     assert_eq!(left, [1, 2]);
1849     ///     assert_eq!(right, [3, 4, 5, 6]);
1850     /// }
1851     ///
1852     /// {
1853     ///     let (left, right) = v.split_at(6);
1854     ///     assert_eq!(left, [1, 2, 3, 4, 5, 6]);
1855     ///     assert_eq!(right, []);
1856     /// }
1857     /// ```
1858     #[stable(feature = "rust1", since = "1.0.0")]
1859     #[rustc_const_stable(feature = "const_slice_split_at_not_mut", since = "1.71.0")]
1860     #[rustc_allow_const_fn_unstable(slice_split_at_unchecked)]
1861     #[inline]
1862     #[track_caller]
1863     #[must_use]
split_at(&self, mid: usize) -> (&[T], &[T])1864     pub const fn split_at(&self, mid: usize) -> (&[T], &[T]) {
1865         assert!(mid <= self.len());
1866         // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
1867         // fulfills the requirements of `split_at_unchecked`.
1868         unsafe { self.split_at_unchecked(mid) }
1869     }
1870 
1871     /// Divides one mutable slice into two at an index.
1872     ///
1873     /// The first will contain all indices from `[0, mid)` (excluding
1874     /// the index `mid` itself) and the second will contain all
1875     /// indices from `[mid, len)` (excluding the index `len` itself).
1876     ///
1877     /// # Panics
1878     ///
1879     /// Panics if `mid > len`.
1880     ///
1881     /// # Examples
1882     ///
1883     /// ```
1884     /// let mut v = [1, 0, 3, 0, 5, 6];
1885     /// let (left, right) = v.split_at_mut(2);
1886     /// assert_eq!(left, [1, 0]);
1887     /// assert_eq!(right, [3, 0, 5, 6]);
1888     /// left[1] = 2;
1889     /// right[1] = 4;
1890     /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1891     /// ```
1892     #[stable(feature = "rust1", since = "1.0.0")]
1893     #[inline]
1894     #[track_caller]
1895     #[must_use]
1896     #[rustc_const_unstable(feature = "const_slice_split_at_mut", issue = "101804")]
split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])1897     pub const fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
1898         assert!(mid <= self.len());
1899         // SAFETY: `[ptr; mid]` and `[mid; len]` are inside `self`, which
1900         // fulfills the requirements of `from_raw_parts_mut`.
1901         unsafe { self.split_at_mut_unchecked(mid) }
1902     }
1903 
1904     /// Divides one slice into two at an index, without doing bounds checking.
1905     ///
1906     /// The first will contain all indices from `[0, mid)` (excluding
1907     /// the index `mid` itself) and the second will contain all
1908     /// indices from `[mid, len)` (excluding the index `len` itself).
1909     ///
1910     /// For a safe alternative see [`split_at`].
1911     ///
1912     /// # Safety
1913     ///
1914     /// Calling this method with an out-of-bounds index is *[undefined behavior]*
1915     /// even if the resulting reference is not used. The caller has to ensure that
1916     /// `0 <= mid <= self.len()`.
1917     ///
1918     /// [`split_at`]: slice::split_at
1919     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1920     ///
1921     /// # Examples
1922     ///
1923     /// ```
1924     /// #![feature(slice_split_at_unchecked)]
1925     ///
1926     /// let v = [1, 2, 3, 4, 5, 6];
1927     ///
1928     /// unsafe {
1929     ///    let (left, right) = v.split_at_unchecked(0);
1930     ///    assert_eq!(left, []);
1931     ///    assert_eq!(right, [1, 2, 3, 4, 5, 6]);
1932     /// }
1933     ///
1934     /// unsafe {
1935     ///     let (left, right) = v.split_at_unchecked(2);
1936     ///     assert_eq!(left, [1, 2]);
1937     ///     assert_eq!(right, [3, 4, 5, 6]);
1938     /// }
1939     ///
1940     /// unsafe {
1941     ///     let (left, right) = v.split_at_unchecked(6);
1942     ///     assert_eq!(left, [1, 2, 3, 4, 5, 6]);
1943     ///     assert_eq!(right, []);
1944     /// }
1945     /// ```
1946     #[unstable(feature = "slice_split_at_unchecked", reason = "new API", issue = "76014")]
1947     #[rustc_const_unstable(feature = "slice_split_at_unchecked", issue = "76014")]
1948     #[inline]
1949     #[must_use]
split_at_unchecked(&self, mid: usize) -> (&[T], &[T])1950     pub const unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T]) {
1951         // HACK: the const function `from_raw_parts` is used to make this
1952         // function const; previously the implementation used
1953         // `(self.get_unchecked(..mid), self.get_unchecked(mid..))`
1954 
1955         let len = self.len();
1956         let ptr = self.as_ptr();
1957 
1958         // SAFETY: Caller has to check that `0 <= mid <= self.len()`
1959         unsafe {
1960             assert_unsafe_precondition!(
1961                 "slice::split_at_unchecked requires the index to be within the slice",
1962                 (mid: usize, len: usize) => mid <= len
1963             );
1964             (from_raw_parts(ptr, mid), from_raw_parts(ptr.add(mid), len - mid))
1965         }
1966     }
1967 
1968     /// Divides one mutable slice into two at an index, without doing bounds checking.
1969     ///
1970     /// The first will contain all indices from `[0, mid)` (excluding
1971     /// the index `mid` itself) and the second will contain all
1972     /// indices from `[mid, len)` (excluding the index `len` itself).
1973     ///
1974     /// For a safe alternative see [`split_at_mut`].
1975     ///
1976     /// # Safety
1977     ///
1978     /// Calling this method with an out-of-bounds index is *[undefined behavior]*
1979     /// even if the resulting reference is not used. The caller has to ensure that
1980     /// `0 <= mid <= self.len()`.
1981     ///
1982     /// [`split_at_mut`]: slice::split_at_mut
1983     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1984     ///
1985     /// # Examples
1986     ///
1987     /// ```
1988     /// #![feature(slice_split_at_unchecked)]
1989     ///
1990     /// let mut v = [1, 0, 3, 0, 5, 6];
1991     /// // scoped to restrict the lifetime of the borrows
1992     /// unsafe {
1993     ///     let (left, right) = v.split_at_mut_unchecked(2);
1994     ///     assert_eq!(left, [1, 0]);
1995     ///     assert_eq!(right, [3, 0, 5, 6]);
1996     ///     left[1] = 2;
1997     ///     right[1] = 4;
1998     /// }
1999     /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2000     /// ```
2001     #[unstable(feature = "slice_split_at_unchecked", reason = "new API", issue = "76014")]
2002     #[rustc_const_unstable(feature = "const_slice_split_at_mut", issue = "101804")]
2003     #[inline]
2004     #[must_use]
split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T])2005     pub const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut [T], &mut [T]) {
2006         let len = self.len();
2007         let ptr = self.as_mut_ptr();
2008 
2009         // SAFETY: Caller has to check that `0 <= mid <= self.len()`.
2010         //
2011         // `[ptr; mid]` and `[mid; len]` are not overlapping, so returning a mutable reference
2012         // is fine.
2013         unsafe {
2014             assert_unsafe_precondition!(
2015                 "slice::split_at_mut_unchecked requires the index to be within the slice",
2016                 (mid: usize, len: usize) => mid <= len
2017             );
2018             (from_raw_parts_mut(ptr, mid), from_raw_parts_mut(ptr.add(mid), len - mid))
2019         }
2020     }
2021 
2022     /// Divides one slice into an array and a remainder slice at an index.
2023     ///
2024     /// The array will contain all indices from `[0, N)` (excluding
2025     /// the index `N` itself) and the slice will contain all
2026     /// indices from `[N, len)` (excluding the index `len` itself).
2027     ///
2028     /// # Panics
2029     ///
2030     /// Panics if `N > len`.
2031     ///
2032     /// # Examples
2033     ///
2034     /// ```
2035     /// #![feature(split_array)]
2036     ///
2037     /// let v = &[1, 2, 3, 4, 5, 6][..];
2038     ///
2039     /// {
2040     ///    let (left, right) = v.split_array_ref::<0>();
2041     ///    assert_eq!(left, &[]);
2042     ///    assert_eq!(right, [1, 2, 3, 4, 5, 6]);
2043     /// }
2044     ///
2045     /// {
2046     ///     let (left, right) = v.split_array_ref::<2>();
2047     ///     assert_eq!(left, &[1, 2]);
2048     ///     assert_eq!(right, [3, 4, 5, 6]);
2049     /// }
2050     ///
2051     /// {
2052     ///     let (left, right) = v.split_array_ref::<6>();
2053     ///     assert_eq!(left, &[1, 2, 3, 4, 5, 6]);
2054     ///     assert_eq!(right, []);
2055     /// }
2056     /// ```
2057     #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
2058     #[inline]
2059     #[track_caller]
2060     #[must_use]
split_array_ref<const N: usize>(&self) -> (&[T; N], &[T])2061     pub fn split_array_ref<const N: usize>(&self) -> (&[T; N], &[T]) {
2062         let (a, b) = self.split_at(N);
2063         // SAFETY: a points to [T; N]? Yes it's [T] of length N (checked by split_at)
2064         unsafe { (&*(a.as_ptr() as *const [T; N]), b) }
2065     }
2066 
2067     /// Divides one mutable slice into an array and a remainder slice at an index.
2068     ///
2069     /// The array will contain all indices from `[0, N)` (excluding
2070     /// the index `N` itself) and the slice will contain all
2071     /// indices from `[N, len)` (excluding the index `len` itself).
2072     ///
2073     /// # Panics
2074     ///
2075     /// Panics if `N > len`.
2076     ///
2077     /// # Examples
2078     ///
2079     /// ```
2080     /// #![feature(split_array)]
2081     ///
2082     /// let mut v = &mut [1, 0, 3, 0, 5, 6][..];
2083     /// let (left, right) = v.split_array_mut::<2>();
2084     /// assert_eq!(left, &mut [1, 0]);
2085     /// assert_eq!(right, [3, 0, 5, 6]);
2086     /// left[1] = 2;
2087     /// right[1] = 4;
2088     /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2089     /// ```
2090     #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
2091     #[inline]
2092     #[track_caller]
2093     #[must_use]
split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T])2094     pub fn split_array_mut<const N: usize>(&mut self) -> (&mut [T; N], &mut [T]) {
2095         let (a, b) = self.split_at_mut(N);
2096         // SAFETY: a points to [T; N]? Yes it's [T] of length N (checked by split_at_mut)
2097         unsafe { (&mut *(a.as_mut_ptr() as *mut [T; N]), b) }
2098     }
2099 
2100     /// Divides one slice into an array and a remainder slice at an index from
2101     /// the end.
2102     ///
2103     /// The slice will contain all indices from `[0, len - N)` (excluding
2104     /// the index `len - N` itself) and the array will contain all
2105     /// indices from `[len - N, len)` (excluding the index `len` itself).
2106     ///
2107     /// # Panics
2108     ///
2109     /// Panics if `N > len`.
2110     ///
2111     /// # Examples
2112     ///
2113     /// ```
2114     /// #![feature(split_array)]
2115     ///
2116     /// let v = &[1, 2, 3, 4, 5, 6][..];
2117     ///
2118     /// {
2119     ///    let (left, right) = v.rsplit_array_ref::<0>();
2120     ///    assert_eq!(left, [1, 2, 3, 4, 5, 6]);
2121     ///    assert_eq!(right, &[]);
2122     /// }
2123     ///
2124     /// {
2125     ///     let (left, right) = v.rsplit_array_ref::<2>();
2126     ///     assert_eq!(left, [1, 2, 3, 4]);
2127     ///     assert_eq!(right, &[5, 6]);
2128     /// }
2129     ///
2130     /// {
2131     ///     let (left, right) = v.rsplit_array_ref::<6>();
2132     ///     assert_eq!(left, []);
2133     ///     assert_eq!(right, &[1, 2, 3, 4, 5, 6]);
2134     /// }
2135     /// ```
2136     #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
2137     #[inline]
2138     #[must_use]
rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N])2139     pub fn rsplit_array_ref<const N: usize>(&self) -> (&[T], &[T; N]) {
2140         assert!(N <= self.len());
2141         let (a, b) = self.split_at(self.len() - N);
2142         // SAFETY: b points to [T; N]? Yes it's [T] of length N (checked by split_at)
2143         unsafe { (a, &*(b.as_ptr() as *const [T; N])) }
2144     }
2145 
2146     /// Divides one mutable slice into an array and a remainder slice at an
2147     /// index from the end.
2148     ///
2149     /// The slice will contain all indices from `[0, len - N)` (excluding
2150     /// the index `N` itself) and the array will contain all
2151     /// indices from `[len - N, len)` (excluding the index `len` itself).
2152     ///
2153     /// # Panics
2154     ///
2155     /// Panics if `N > len`.
2156     ///
2157     /// # Examples
2158     ///
2159     /// ```
2160     /// #![feature(split_array)]
2161     ///
2162     /// let mut v = &mut [1, 0, 3, 0, 5, 6][..];
2163     /// let (left, right) = v.rsplit_array_mut::<4>();
2164     /// assert_eq!(left, [1, 0]);
2165     /// assert_eq!(right, &mut [3, 0, 5, 6]);
2166     /// left[1] = 2;
2167     /// right[1] = 4;
2168     /// assert_eq!(v, [1, 2, 3, 4, 5, 6]);
2169     /// ```
2170     #[unstable(feature = "split_array", reason = "new API", issue = "90091")]
2171     #[inline]
2172     #[must_use]
rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N])2173     pub fn rsplit_array_mut<const N: usize>(&mut self) -> (&mut [T], &mut [T; N]) {
2174         assert!(N <= self.len());
2175         let (a, b) = self.split_at_mut(self.len() - N);
2176         // SAFETY: b points to [T; N]? Yes it's [T] of length N (checked by split_at_mut)
2177         unsafe { (a, &mut *(b.as_mut_ptr() as *mut [T; N])) }
2178     }
2179 
2180     /// Returns an iterator over subslices separated by elements that match
2181     /// `pred`. The matched element is not contained in the subslices.
2182     ///
2183     /// # Examples
2184     ///
2185     /// ```
2186     /// let slice = [10, 40, 33, 20];
2187     /// let mut iter = slice.split(|num| num % 3 == 0);
2188     ///
2189     /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2190     /// assert_eq!(iter.next().unwrap(), &[20]);
2191     /// assert!(iter.next().is_none());
2192     /// ```
2193     ///
2194     /// If the first element is matched, an empty slice will be the first item
2195     /// returned by the iterator. Similarly, if the last element in the slice
2196     /// is matched, an empty slice will be the last item returned by the
2197     /// iterator:
2198     ///
2199     /// ```
2200     /// let slice = [10, 40, 33];
2201     /// let mut iter = slice.split(|num| num % 3 == 0);
2202     ///
2203     /// assert_eq!(iter.next().unwrap(), &[10, 40]);
2204     /// assert_eq!(iter.next().unwrap(), &[]);
2205     /// assert!(iter.next().is_none());
2206     /// ```
2207     ///
2208     /// If two matched elements are directly adjacent, an empty slice will be
2209     /// present between them:
2210     ///
2211     /// ```
2212     /// let slice = [10, 6, 33, 20];
2213     /// let mut iter = slice.split(|num| num % 3 == 0);
2214     ///
2215     /// assert_eq!(iter.next().unwrap(), &[10]);
2216     /// assert_eq!(iter.next().unwrap(), &[]);
2217     /// assert_eq!(iter.next().unwrap(), &[20]);
2218     /// assert!(iter.next().is_none());
2219     /// ```
2220     #[stable(feature = "rust1", since = "1.0.0")]
2221     #[inline]
split<F>(&self, pred: F) -> Split<'_, T, F> where F: FnMut(&T) -> bool,2222     pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
2223     where
2224         F: FnMut(&T) -> bool,
2225     {
2226         Split::new(self, pred)
2227     }
2228 
2229     /// Returns an iterator over mutable subslices separated by elements that
2230     /// match `pred`. The matched element is not contained in the subslices.
2231     ///
2232     /// # Examples
2233     ///
2234     /// ```
2235     /// let mut v = [10, 40, 30, 20, 60, 50];
2236     ///
2237     /// for group in v.split_mut(|num| *num % 3 == 0) {
2238     ///     group[0] = 1;
2239     /// }
2240     /// assert_eq!(v, [1, 40, 30, 1, 60, 1]);
2241     /// ```
2242     #[stable(feature = "rust1", since = "1.0.0")]
2243     #[inline]
split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F> where F: FnMut(&T) -> bool,2244     pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
2245     where
2246         F: FnMut(&T) -> bool,
2247     {
2248         SplitMut::new(self, pred)
2249     }
2250 
2251     /// Returns an iterator over subslices separated by elements that match
2252     /// `pred`. The matched element is contained in the end of the previous
2253     /// subslice as a terminator.
2254     ///
2255     /// # Examples
2256     ///
2257     /// ```
2258     /// let slice = [10, 40, 33, 20];
2259     /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2260     ///
2261     /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2262     /// assert_eq!(iter.next().unwrap(), &[20]);
2263     /// assert!(iter.next().is_none());
2264     /// ```
2265     ///
2266     /// If the last element of the slice is matched,
2267     /// that element will be considered the terminator of the preceding slice.
2268     /// That slice will be the last item returned by the iterator.
2269     ///
2270     /// ```
2271     /// let slice = [3, 10, 40, 33];
2272     /// let mut iter = slice.split_inclusive(|num| num % 3 == 0);
2273     ///
2274     /// assert_eq!(iter.next().unwrap(), &[3]);
2275     /// assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
2276     /// assert!(iter.next().is_none());
2277     /// ```
2278     #[stable(feature = "split_inclusive", since = "1.51.0")]
2279     #[inline]
split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F> where F: FnMut(&T) -> bool,2280     pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
2281     where
2282         F: FnMut(&T) -> bool,
2283     {
2284         SplitInclusive::new(self, pred)
2285     }
2286 
2287     /// Returns an iterator over mutable subslices separated by elements that
2288     /// match `pred`. The matched element is contained in the previous
2289     /// subslice as a terminator.
2290     ///
2291     /// # Examples
2292     ///
2293     /// ```
2294     /// let mut v = [10, 40, 30, 20, 60, 50];
2295     ///
2296     /// for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
2297     ///     let terminator_idx = group.len()-1;
2298     ///     group[terminator_idx] = 1;
2299     /// }
2300     /// assert_eq!(v, [10, 40, 1, 20, 1, 1]);
2301     /// ```
2302     #[stable(feature = "split_inclusive", since = "1.51.0")]
2303     #[inline]
split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F> where F: FnMut(&T) -> bool,2304     pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
2305     where
2306         F: FnMut(&T) -> bool,
2307     {
2308         SplitInclusiveMut::new(self, pred)
2309     }
2310 
2311     /// Returns an iterator over subslices separated by elements that match
2312     /// `pred`, starting at the end of the slice and working backwards.
2313     /// The matched element is not contained in the subslices.
2314     ///
2315     /// # Examples
2316     ///
2317     /// ```
2318     /// let slice = [11, 22, 33, 0, 44, 55];
2319     /// let mut iter = slice.rsplit(|num| *num == 0);
2320     ///
2321     /// assert_eq!(iter.next().unwrap(), &[44, 55]);
2322     /// assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
2323     /// assert_eq!(iter.next(), None);
2324     /// ```
2325     ///
2326     /// As with `split()`, if the first or last element is matched, an empty
2327     /// slice will be the first (or last) item returned by the iterator.
2328     ///
2329     /// ```
2330     /// let v = &[0, 1, 1, 2, 3, 5, 8];
2331     /// let mut it = v.rsplit(|n| *n % 2 == 0);
2332     /// assert_eq!(it.next().unwrap(), &[]);
2333     /// assert_eq!(it.next().unwrap(), &[3, 5]);
2334     /// assert_eq!(it.next().unwrap(), &[1, 1]);
2335     /// assert_eq!(it.next().unwrap(), &[]);
2336     /// assert_eq!(it.next(), None);
2337     /// ```
2338     #[stable(feature = "slice_rsplit", since = "1.27.0")]
2339     #[inline]
rsplit<F>(&self, pred: F) -> RSplit<'_, T, F> where F: FnMut(&T) -> bool,2340     pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
2341     where
2342         F: FnMut(&T) -> bool,
2343     {
2344         RSplit::new(self, pred)
2345     }
2346 
2347     /// Returns an iterator over mutable subslices separated by elements that
2348     /// match `pred`, starting at the end of the slice and working
2349     /// backwards. The matched element is not contained in the subslices.
2350     ///
2351     /// # Examples
2352     ///
2353     /// ```
2354     /// let mut v = [100, 400, 300, 200, 600, 500];
2355     ///
2356     /// let mut count = 0;
2357     /// for group in v.rsplit_mut(|num| *num % 3 == 0) {
2358     ///     count += 1;
2359     ///     group[0] = count;
2360     /// }
2361     /// assert_eq!(v, [3, 400, 300, 2, 600, 1]);
2362     /// ```
2363     ///
2364     #[stable(feature = "slice_rsplit", since = "1.27.0")]
2365     #[inline]
rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F> where F: FnMut(&T) -> bool,2366     pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
2367     where
2368         F: FnMut(&T) -> bool,
2369     {
2370         RSplitMut::new(self, pred)
2371     }
2372 
2373     /// Returns an iterator over subslices separated by elements that match
2374     /// `pred`, limited to returning at most `n` items. The matched element is
2375     /// not contained in the subslices.
2376     ///
2377     /// The last element returned, if any, will contain the remainder of the
2378     /// slice.
2379     ///
2380     /// # Examples
2381     ///
2382     /// Print the slice split once by numbers divisible by 3 (i.e., `[10, 40]`,
2383     /// `[20, 60, 50]`):
2384     ///
2385     /// ```
2386     /// let v = [10, 40, 30, 20, 60, 50];
2387     ///
2388     /// for group in v.splitn(2, |num| *num % 3 == 0) {
2389     ///     println!("{group:?}");
2390     /// }
2391     /// ```
2392     #[stable(feature = "rust1", since = "1.0.0")]
2393     #[inline]
splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F> where F: FnMut(&T) -> bool,2394     pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
2395     where
2396         F: FnMut(&T) -> bool,
2397     {
2398         SplitN::new(self.split(pred), n)
2399     }
2400 
2401     /// Returns an iterator over mutable subslices separated by elements that match
2402     /// `pred`, limited to returning at most `n` items. The matched element is
2403     /// not contained in the subslices.
2404     ///
2405     /// The last element returned, if any, will contain the remainder of the
2406     /// slice.
2407     ///
2408     /// # Examples
2409     ///
2410     /// ```
2411     /// let mut v = [10, 40, 30, 20, 60, 50];
2412     ///
2413     /// for group in v.splitn_mut(2, |num| *num % 3 == 0) {
2414     ///     group[0] = 1;
2415     /// }
2416     /// assert_eq!(v, [1, 40, 30, 1, 60, 50]);
2417     /// ```
2418     #[stable(feature = "rust1", since = "1.0.0")]
2419     #[inline]
splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F> where F: FnMut(&T) -> bool,2420     pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
2421     where
2422         F: FnMut(&T) -> bool,
2423     {
2424         SplitNMut::new(self.split_mut(pred), n)
2425     }
2426 
2427     /// Returns an iterator over subslices separated by elements that match
2428     /// `pred` limited to returning at most `n` items. This starts at the end of
2429     /// the slice and works backwards. The matched element is not contained in
2430     /// the subslices.
2431     ///
2432     /// The last element returned, if any, will contain the remainder of the
2433     /// slice.
2434     ///
2435     /// # Examples
2436     ///
2437     /// Print the slice split once, starting from the end, by numbers divisible
2438     /// by 3 (i.e., `[50]`, `[10, 40, 30, 20]`):
2439     ///
2440     /// ```
2441     /// let v = [10, 40, 30, 20, 60, 50];
2442     ///
2443     /// for group in v.rsplitn(2, |num| *num % 3 == 0) {
2444     ///     println!("{group:?}");
2445     /// }
2446     /// ```
2447     #[stable(feature = "rust1", since = "1.0.0")]
2448     #[inline]
rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F> where F: FnMut(&T) -> bool,2449     pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
2450     where
2451         F: FnMut(&T) -> bool,
2452     {
2453         RSplitN::new(self.rsplit(pred), n)
2454     }
2455 
2456     /// Returns an iterator over subslices separated by elements that match
2457     /// `pred` limited to returning at most `n` items. This starts at the end of
2458     /// the slice and works backwards. The matched element is not contained in
2459     /// the subslices.
2460     ///
2461     /// The last element returned, if any, will contain the remainder of the
2462     /// slice.
2463     ///
2464     /// # Examples
2465     ///
2466     /// ```
2467     /// let mut s = [10, 40, 30, 20, 60, 50];
2468     ///
2469     /// for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
2470     ///     group[0] = 1;
2471     /// }
2472     /// assert_eq!(s, [1, 40, 30, 20, 60, 1]);
2473     /// ```
2474     #[stable(feature = "rust1", since = "1.0.0")]
2475     #[inline]
rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F> where F: FnMut(&T) -> bool,2476     pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
2477     where
2478         F: FnMut(&T) -> bool,
2479     {
2480         RSplitNMut::new(self.rsplit_mut(pred), n)
2481     }
2482 
2483     /// Returns `true` if the slice contains an element with the given value.
2484     ///
2485     /// This operation is *O*(*n*).
2486     ///
2487     /// Note that if you have a sorted slice, [`binary_search`] may be faster.
2488     ///
2489     /// [`binary_search`]: slice::binary_search
2490     ///
2491     /// # Examples
2492     ///
2493     /// ```
2494     /// let v = [10, 40, 30];
2495     /// assert!(v.contains(&30));
2496     /// assert!(!v.contains(&50));
2497     /// ```
2498     ///
2499     /// If you do not have a `&T`, but some other value that you can compare
2500     /// with one (for example, `String` implements `PartialEq<str>`), you can
2501     /// use `iter().any`:
2502     ///
2503     /// ```
2504     /// let v = [String::from("hello"), String::from("world")]; // slice of `String`
2505     /// assert!(v.iter().any(|e| e == "hello")); // search with `&str`
2506     /// assert!(!v.iter().any(|e| e == "hi"));
2507     /// ```
2508     #[stable(feature = "rust1", since = "1.0.0")]
2509     #[inline]
2510     #[must_use]
contains(&self, x: &T) -> bool where T: PartialEq,2511     pub fn contains(&self, x: &T) -> bool
2512     where
2513         T: PartialEq,
2514     {
2515         cmp::SliceContains::slice_contains(x, self)
2516     }
2517 
2518     /// Returns `true` if `needle` is a prefix of the slice.
2519     ///
2520     /// # Examples
2521     ///
2522     /// ```
2523     /// let v = [10, 40, 30];
2524     /// assert!(v.starts_with(&[10]));
2525     /// assert!(v.starts_with(&[10, 40]));
2526     /// assert!(!v.starts_with(&[50]));
2527     /// assert!(!v.starts_with(&[10, 50]));
2528     /// ```
2529     ///
2530     /// Always returns `true` if `needle` is an empty slice:
2531     ///
2532     /// ```
2533     /// let v = &[10, 40, 30];
2534     /// assert!(v.starts_with(&[]));
2535     /// let v: &[u8] = &[];
2536     /// assert!(v.starts_with(&[]));
2537     /// ```
2538     #[stable(feature = "rust1", since = "1.0.0")]
2539     #[must_use]
starts_with(&self, needle: &[T]) -> bool where T: PartialEq,2540     pub fn starts_with(&self, needle: &[T]) -> bool
2541     where
2542         T: PartialEq,
2543     {
2544         let n = needle.len();
2545         self.len() >= n && needle == &self[..n]
2546     }
2547 
2548     /// Returns `true` if `needle` is a suffix of the slice.
2549     ///
2550     /// # Examples
2551     ///
2552     /// ```
2553     /// let v = [10, 40, 30];
2554     /// assert!(v.ends_with(&[30]));
2555     /// assert!(v.ends_with(&[40, 30]));
2556     /// assert!(!v.ends_with(&[50]));
2557     /// assert!(!v.ends_with(&[50, 30]));
2558     /// ```
2559     ///
2560     /// Always returns `true` if `needle` is an empty slice:
2561     ///
2562     /// ```
2563     /// let v = &[10, 40, 30];
2564     /// assert!(v.ends_with(&[]));
2565     /// let v: &[u8] = &[];
2566     /// assert!(v.ends_with(&[]));
2567     /// ```
2568     #[stable(feature = "rust1", since = "1.0.0")]
2569     #[must_use]
ends_with(&self, needle: &[T]) -> bool where T: PartialEq,2570     pub fn ends_with(&self, needle: &[T]) -> bool
2571     where
2572         T: PartialEq,
2573     {
2574         let (m, n) = (self.len(), needle.len());
2575         m >= n && needle == &self[m - n..]
2576     }
2577 
2578     /// Returns a subslice with the prefix removed.
2579     ///
2580     /// If the slice starts with `prefix`, returns the subslice after the prefix, wrapped in `Some`.
2581     /// If `prefix` is empty, simply returns the original slice.
2582     ///
2583     /// If the slice does not start with `prefix`, returns `None`.
2584     ///
2585     /// # Examples
2586     ///
2587     /// ```
2588     /// let v = &[10, 40, 30];
2589     /// assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
2590     /// assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
2591     /// assert_eq!(v.strip_prefix(&[50]), None);
2592     /// assert_eq!(v.strip_prefix(&[10, 50]), None);
2593     ///
2594     /// let prefix : &str = "he";
2595     /// assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
2596     ///            Some(b"llo".as_ref()));
2597     /// ```
2598     #[must_use = "returns the subslice without modifying the original"]
2599     #[stable(feature = "slice_strip", since = "1.51.0")]
strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]> where T: PartialEq,2600     pub fn strip_prefix<P: SlicePattern<Item = T> + ?Sized>(&self, prefix: &P) -> Option<&[T]>
2601     where
2602         T: PartialEq,
2603     {
2604         // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2605         let prefix = prefix.as_slice();
2606         let n = prefix.len();
2607         if n <= self.len() {
2608             let (head, tail) = self.split_at(n);
2609             if head == prefix {
2610                 return Some(tail);
2611             }
2612         }
2613         None
2614     }
2615 
2616     /// Returns a subslice with the suffix removed.
2617     ///
2618     /// If the slice ends with `suffix`, returns the subslice before the suffix, wrapped in `Some`.
2619     /// If `suffix` is empty, simply returns the original slice.
2620     ///
2621     /// If the slice does not end with `suffix`, returns `None`.
2622     ///
2623     /// # Examples
2624     ///
2625     /// ```
2626     /// let v = &[10, 40, 30];
2627     /// assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
2628     /// assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
2629     /// assert_eq!(v.strip_suffix(&[50]), None);
2630     /// assert_eq!(v.strip_suffix(&[50, 30]), None);
2631     /// ```
2632     #[must_use = "returns the subslice without modifying the original"]
2633     #[stable(feature = "slice_strip", since = "1.51.0")]
strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]> where T: PartialEq,2634     pub fn strip_suffix<P: SlicePattern<Item = T> + ?Sized>(&self, suffix: &P) -> Option<&[T]>
2635     where
2636         T: PartialEq,
2637     {
2638         // This function will need rewriting if and when SlicePattern becomes more sophisticated.
2639         let suffix = suffix.as_slice();
2640         let (len, n) = (self.len(), suffix.len());
2641         if n <= len {
2642             let (head, tail) = self.split_at(len - n);
2643             if tail == suffix {
2644                 return Some(head);
2645             }
2646         }
2647         None
2648     }
2649 
2650     /// Binary searches this slice for a given element.
2651     /// If the slice is not sorted, the returned result is unspecified and
2652     /// meaningless.
2653     ///
2654     /// If the value is found then [`Result::Ok`] is returned, containing the
2655     /// index of the matching element. If there are multiple matches, then any
2656     /// one of the matches could be returned. The index is chosen
2657     /// deterministically, but is subject to change in future versions of Rust.
2658     /// If the value is not found then [`Result::Err`] is returned, containing
2659     /// the index where a matching element could be inserted while maintaining
2660     /// sorted order.
2661     ///
2662     /// See also [`binary_search_by`], [`binary_search_by_key`], and [`partition_point`].
2663     ///
2664     /// [`binary_search_by`]: slice::binary_search_by
2665     /// [`binary_search_by_key`]: slice::binary_search_by_key
2666     /// [`partition_point`]: slice::partition_point
2667     ///
2668     /// # Examples
2669     ///
2670     /// Looks up a series of four elements. The first is found, with a
2671     /// uniquely determined position; the second and third are not
2672     /// found; the fourth could match any position in `[1, 4]`.
2673     ///
2674     /// ```
2675     /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2676     ///
2677     /// assert_eq!(s.binary_search(&13),  Ok(9));
2678     /// assert_eq!(s.binary_search(&4),   Err(7));
2679     /// assert_eq!(s.binary_search(&100), Err(13));
2680     /// let r = s.binary_search(&1);
2681     /// assert!(match r { Ok(1..=4) => true, _ => false, });
2682     /// ```
2683     ///
2684     /// If you want to find that whole *range* of matching items, rather than
2685     /// an arbitrary matching one, that can be done using [`partition_point`]:
2686     /// ```
2687     /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2688     ///
2689     /// let low = s.partition_point(|x| x < &1);
2690     /// assert_eq!(low, 1);
2691     /// let high = s.partition_point(|x| x <= &1);
2692     /// assert_eq!(high, 5);
2693     /// let r = s.binary_search(&1);
2694     /// assert!((low..high).contains(&r.unwrap()));
2695     ///
2696     /// assert!(s[..low].iter().all(|&x| x < 1));
2697     /// assert!(s[low..high].iter().all(|&x| x == 1));
2698     /// assert!(s[high..].iter().all(|&x| x > 1));
2699     ///
2700     /// // For something not found, the "range" of equal items is empty
2701     /// assert_eq!(s.partition_point(|x| x < &11), 9);
2702     /// assert_eq!(s.partition_point(|x| x <= &11), 9);
2703     /// assert_eq!(s.binary_search(&11), Err(9));
2704     /// ```
2705     ///
2706     /// If you want to insert an item to a sorted vector, while maintaining
2707     /// sort order, consider using [`partition_point`]:
2708     ///
2709     /// ```
2710     /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2711     /// let num = 42;
2712     /// let idx = s.partition_point(|&x| x < num);
2713     /// // The above is equivalent to `let idx = s.binary_search(&num).unwrap_or_else(|x| x);`
2714     /// s.insert(idx, num);
2715     /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
2716     /// ```
2717     #[stable(feature = "rust1", since = "1.0.0")]
binary_search(&self, x: &T) -> Result<usize, usize> where T: Ord,2718     pub fn binary_search(&self, x: &T) -> Result<usize, usize>
2719     where
2720         T: Ord,
2721     {
2722         self.binary_search_by(|p| p.cmp(x))
2723     }
2724 
2725     /// Binary searches this slice with a comparator function.
2726     ///
2727     /// The comparator function should return an order code that indicates
2728     /// whether its argument is `Less`, `Equal` or `Greater` the desired
2729     /// target.
2730     /// If the slice is not sorted or if the comparator function does not
2731     /// implement an order consistent with the sort order of the underlying
2732     /// slice, the returned result is unspecified and meaningless.
2733     ///
2734     /// If the value is found then [`Result::Ok`] is returned, containing the
2735     /// index of the matching element. If there are multiple matches, then any
2736     /// one of the matches could be returned. The index is chosen
2737     /// deterministically, but is subject to change in future versions of Rust.
2738     /// If the value is not found then [`Result::Err`] is returned, containing
2739     /// the index where a matching element could be inserted while maintaining
2740     /// sorted order.
2741     ///
2742     /// See also [`binary_search`], [`binary_search_by_key`], and [`partition_point`].
2743     ///
2744     /// [`binary_search`]: slice::binary_search
2745     /// [`binary_search_by_key`]: slice::binary_search_by_key
2746     /// [`partition_point`]: slice::partition_point
2747     ///
2748     /// # Examples
2749     ///
2750     /// Looks up a series of four elements. The first is found, with a
2751     /// uniquely determined position; the second and third are not
2752     /// found; the fourth could match any position in `[1, 4]`.
2753     ///
2754     /// ```
2755     /// let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
2756     ///
2757     /// let seek = 13;
2758     /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
2759     /// let seek = 4;
2760     /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
2761     /// let seek = 100;
2762     /// assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
2763     /// let seek = 1;
2764     /// let r = s.binary_search_by(|probe| probe.cmp(&seek));
2765     /// assert!(match r { Ok(1..=4) => true, _ => false, });
2766     /// ```
2767     #[stable(feature = "rust1", since = "1.0.0")]
2768     #[inline]
binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize> where F: FnMut(&'a T) -> Ordering,2769     pub fn binary_search_by<'a, F>(&'a self, mut f: F) -> Result<usize, usize>
2770     where
2771         F: FnMut(&'a T) -> Ordering,
2772     {
2773         // INVARIANTS:
2774         // - 0 <= left <= left + size = right <= self.len()
2775         // - f returns Less for everything in self[..left]
2776         // - f returns Greater for everything in self[right..]
2777         let mut size = self.len();
2778         let mut left = 0;
2779         let mut right = size;
2780         while left < right {
2781             let mid = left + size / 2;
2782 
2783             // SAFETY: the while condition means `size` is strictly positive, so
2784             // `size/2 < size`. Thus `left + size/2 < left + size`, which
2785             // coupled with the `left + size <= self.len()` invariant means
2786             // we have `left + size/2 < self.len()`, and this is in-bounds.
2787             let cmp = f(unsafe { self.get_unchecked(mid) });
2788 
2789             // The reason why we use if/else control flow rather than match
2790             // is because match reorders comparison operations, which is perf sensitive.
2791             // This is x86 asm for u8: https://rust.godbolt.org/z/8Y8Pra.
2792             if cmp == Less {
2793                 left = mid + 1;
2794             } else if cmp == Greater {
2795                 right = mid;
2796             } else {
2797                 // SAFETY: same as the `get_unchecked` above
2798                 unsafe { crate::intrinsics::assume(mid < self.len()) };
2799                 return Ok(mid);
2800             }
2801 
2802             size = right - left;
2803         }
2804 
2805         // SAFETY: directly true from the overall invariant.
2806         // Note that this is `<=`, unlike the assume in the `Ok` path.
2807         unsafe { crate::intrinsics::assume(left <= self.len()) };
2808         Err(left)
2809     }
2810 
2811     /// Binary searches this slice with a key extraction function.
2812     ///
2813     /// Assumes that the slice is sorted by the key, for instance with
2814     /// [`sort_by_key`] using the same key extraction function.
2815     /// If the slice is not sorted by the key, the returned result is
2816     /// unspecified and meaningless.
2817     ///
2818     /// If the value is found then [`Result::Ok`] is returned, containing the
2819     /// index of the matching element. If there are multiple matches, then any
2820     /// one of the matches could be returned. The index is chosen
2821     /// deterministically, but is subject to change in future versions of Rust.
2822     /// If the value is not found then [`Result::Err`] is returned, containing
2823     /// the index where a matching element could be inserted while maintaining
2824     /// sorted order.
2825     ///
2826     /// See also [`binary_search`], [`binary_search_by`], and [`partition_point`].
2827     ///
2828     /// [`sort_by_key`]: slice::sort_by_key
2829     /// [`binary_search`]: slice::binary_search
2830     /// [`binary_search_by`]: slice::binary_search_by
2831     /// [`partition_point`]: slice::partition_point
2832     ///
2833     /// # Examples
2834     ///
2835     /// Looks up a series of four elements in a slice of pairs sorted by
2836     /// their second elements. The first is found, with a uniquely
2837     /// determined position; the second and third are not found; the
2838     /// fourth could match any position in `[1, 4]`.
2839     ///
2840     /// ```
2841     /// let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
2842     ///          (1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
2843     ///          (1, 21), (2, 34), (4, 55)];
2844     ///
2845     /// assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b),  Ok(9));
2846     /// assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b),   Err(7));
2847     /// assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
2848     /// let r = s.binary_search_by_key(&1, |&(a, b)| b);
2849     /// assert!(match r { Ok(1..=4) => true, _ => false, });
2850     /// ```
2851     // Lint rustdoc::broken_intra_doc_links is allowed as `slice::sort_by_key` is
2852     // in crate `alloc`, and as such doesn't exists yet when building `core`: #74481.
2853     // This breaks links when slice is displayed in core, but changing it to use relative links
2854     // would break when the item is re-exported. So allow the core links to be broken for now.
2855     #[allow(rustdoc::broken_intra_doc_links)]
2856     #[stable(feature = "slice_binary_search_by_key", since = "1.10.0")]
2857     #[inline]
binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize> where F: FnMut(&'a T) -> B, B: Ord,2858     pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, mut f: F) -> Result<usize, usize>
2859     where
2860         F: FnMut(&'a T) -> B,
2861         B: Ord,
2862     {
2863         self.binary_search_by(|k| f(k).cmp(b))
2864     }
2865 
2866     /// Sorts the slice, but might not preserve the order of equal elements.
2867     ///
2868     /// This sort is unstable (i.e., may reorder equal elements), in-place
2869     /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
2870     ///
2871     /// # Current implementation
2872     ///
2873     /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
2874     /// which combines the fast average case of randomized quicksort with the fast worst case of
2875     /// heapsort, while achieving linear time on slices with certain patterns. It uses some
2876     /// randomization to avoid degenerate cases, but with a fixed seed to always provide
2877     /// deterministic behavior.
2878     ///
2879     /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
2880     /// slice consists of several concatenated sorted sequences.
2881     ///
2882     /// # Examples
2883     ///
2884     /// ```
2885     /// let mut v = [-5, 4, 1, -3, 2];
2886     ///
2887     /// v.sort_unstable();
2888     /// assert!(v == [-5, -3, 1, 2, 4]);
2889     /// ```
2890     ///
2891     /// [pdqsort]: https://github.com/orlp/pdqsort
2892     #[stable(feature = "sort_unstable", since = "1.20.0")]
2893     #[inline]
sort_unstable(&mut self) where T: Ord,2894     pub fn sort_unstable(&mut self)
2895     where
2896         T: Ord,
2897     {
2898         sort::quicksort(self, T::lt);
2899     }
2900 
2901     /// Sorts the slice with a comparator function, but might not preserve the order of equal
2902     /// elements.
2903     ///
2904     /// This sort is unstable (i.e., may reorder equal elements), in-place
2905     /// (i.e., does not allocate), and *O*(*n* \* log(*n*)) worst-case.
2906     ///
2907     /// The comparator function must define a total ordering for the elements in the slice. If
2908     /// the ordering is not total, the order of the elements is unspecified. An order is a
2909     /// total order if it is (for all `a`, `b` and `c`):
2910     ///
2911     /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and
2912     /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`.
2913     ///
2914     /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use
2915     /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`.
2916     ///
2917     /// ```
2918     /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
2919     /// floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
2920     /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
2921     /// ```
2922     ///
2923     /// # Current implementation
2924     ///
2925     /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
2926     /// which combines the fast average case of randomized quicksort with the fast worst case of
2927     /// heapsort, while achieving linear time on slices with certain patterns. It uses some
2928     /// randomization to avoid degenerate cases, but with a fixed seed to always provide
2929     /// deterministic behavior.
2930     ///
2931     /// It is typically faster than stable sorting, except in a few special cases, e.g., when the
2932     /// slice consists of several concatenated sorted sequences.
2933     ///
2934     /// # Examples
2935     ///
2936     /// ```
2937     /// let mut v = [5, 4, 1, 3, 2];
2938     /// v.sort_unstable_by(|a, b| a.cmp(b));
2939     /// assert!(v == [1, 2, 3, 4, 5]);
2940     ///
2941     /// // reverse sorting
2942     /// v.sort_unstable_by(|a, b| b.cmp(a));
2943     /// assert!(v == [5, 4, 3, 2, 1]);
2944     /// ```
2945     ///
2946     /// [pdqsort]: https://github.com/orlp/pdqsort
2947     #[stable(feature = "sort_unstable", since = "1.20.0")]
2948     #[inline]
sort_unstable_by<F>(&mut self, mut compare: F) where F: FnMut(&T, &T) -> Ordering,2949     pub fn sort_unstable_by<F>(&mut self, mut compare: F)
2950     where
2951         F: FnMut(&T, &T) -> Ordering,
2952     {
2953         sort::quicksort(self, |a, b| compare(a, b) == Ordering::Less);
2954     }
2955 
2956     /// Sorts the slice with a key extraction function, but might not preserve the order of equal
2957     /// elements.
2958     ///
2959     /// This sort is unstable (i.e., may reorder equal elements), in-place
2960     /// (i.e., does not allocate), and *O*(m \* *n* \* log(*n*)) worst-case, where the key function is
2961     /// *O*(*m*).
2962     ///
2963     /// # Current implementation
2964     ///
2965     /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters,
2966     /// which combines the fast average case of randomized quicksort with the fast worst case of
2967     /// heapsort, while achieving linear time on slices with certain patterns. It uses some
2968     /// randomization to avoid degenerate cases, but with a fixed seed to always provide
2969     /// deterministic behavior.
2970     ///
2971     /// Due to its key calling strategy, [`sort_unstable_by_key`](#method.sort_unstable_by_key)
2972     /// is likely to be slower than [`sort_by_cached_key`](#method.sort_by_cached_key) in
2973     /// cases where the key function is expensive.
2974     ///
2975     /// # Examples
2976     ///
2977     /// ```
2978     /// let mut v = [-5i32, 4, 1, -3, 2];
2979     ///
2980     /// v.sort_unstable_by_key(|k| k.abs());
2981     /// assert!(v == [1, 2, -3, 4, -5]);
2982     /// ```
2983     ///
2984     /// [pdqsort]: https://github.com/orlp/pdqsort
2985     #[stable(feature = "sort_unstable", since = "1.20.0")]
2986     #[inline]
sort_unstable_by_key<K, F>(&mut self, mut f: F) where F: FnMut(&T) -> K, K: Ord,2987     pub fn sort_unstable_by_key<K, F>(&mut self, mut f: F)
2988     where
2989         F: FnMut(&T) -> K,
2990         K: Ord,
2991     {
2992         sort::quicksort(self, |a, b| f(a).lt(&f(b)));
2993     }
2994 
2995     /// Reorder the slice such that the element at `index` is at its final sorted position.
2996     ///
2997     /// This reordering has the additional property that any value at position `i < index` will be
2998     /// less than or equal to any value at a position `j > index`. Additionally, this reordering is
2999     /// unstable (i.e. any number of equal elements may end up at position `index`), in-place
3000     /// (i.e. does not allocate), and runs in *O*(*n*) time.
3001     /// This function is also known as "kth element" in other libraries.
3002     ///
3003     /// It returns a triplet of the following from the reordered slice:
3004     /// the subslice prior to `index`, the element at `index`, and the subslice after `index`;
3005     /// accordingly, the values in those two subslices will respectively all be less-than-or-equal-to
3006     /// and greater-than-or-equal-to the value of the element at `index`.
3007     ///
3008     /// # Current implementation
3009     ///
3010     /// The current algorithm is an introselect implementation based on Pattern Defeating Quicksort, which is also
3011     /// the basis for [`sort_unstable`]. The fallback algorithm is Median of Medians using Tukey's Ninther for
3012     /// pivot selection, which guarantees linear runtime for all inputs.
3013     ///
3014     /// [`sort_unstable`]: slice::sort_unstable
3015     ///
3016     /// # Panics
3017     ///
3018     /// Panics when `index >= len()`, meaning it always panics on empty slices.
3019     ///
3020     /// # Examples
3021     ///
3022     /// ```
3023     /// let mut v = [-5i32, 4, 1, -3, 2];
3024     ///
3025     /// // Find the median
3026     /// v.select_nth_unstable(2);
3027     ///
3028     /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3029     /// // about the specified index.
3030     /// assert!(v == [-3, -5, 1, 2, 4] ||
3031     ///         v == [-5, -3, 1, 2, 4] ||
3032     ///         v == [-3, -5, 1, 4, 2] ||
3033     ///         v == [-5, -3, 1, 4, 2]);
3034     /// ```
3035     #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3036     #[inline]
select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T]) where T: Ord,3037     pub fn select_nth_unstable(&mut self, index: usize) -> (&mut [T], &mut T, &mut [T])
3038     where
3039         T: Ord,
3040     {
3041         select::partition_at_index(self, index, T::lt)
3042     }
3043 
3044     /// Reorder the slice with a comparator function such that the element at `index` is at its
3045     /// final sorted position.
3046     ///
3047     /// This reordering has the additional property that any value at position `i < index` will be
3048     /// less than or equal to any value at a position `j > index` using the comparator function.
3049     /// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
3050     /// position `index`), in-place (i.e. does not allocate), and runs in *O*(*n*) time.
3051     /// This function is also known as "kth element" in other libraries.
3052     ///
3053     /// It returns a triplet of the following from
3054     /// the slice reordered according to the provided comparator function: the subslice prior to
3055     /// `index`, the element at `index`, and the subslice after `index`; accordingly, the values in
3056     /// those two subslices will respectively all be less-than-or-equal-to and greater-than-or-equal-to
3057     /// the value of the element at `index`.
3058     ///
3059     /// # Current implementation
3060     ///
3061     /// The current algorithm is an introselect implementation based on Pattern Defeating Quicksort, which is also
3062     /// the basis for [`sort_unstable`]. The fallback algorithm is Median of Medians using Tukey's Ninther for
3063     /// pivot selection, which guarantees linear runtime for all inputs.
3064     ///
3065     /// [`sort_unstable`]: slice::sort_unstable
3066     ///
3067     /// # Panics
3068     ///
3069     /// Panics when `index >= len()`, meaning it always panics on empty slices.
3070     ///
3071     /// # Examples
3072     ///
3073     /// ```
3074     /// let mut v = [-5i32, 4, 1, -3, 2];
3075     ///
3076     /// // Find the median as if the slice were sorted in descending order.
3077     /// v.select_nth_unstable_by(2, |a, b| b.cmp(a));
3078     ///
3079     /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3080     /// // about the specified index.
3081     /// assert!(v == [2, 4, 1, -5, -3] ||
3082     ///         v == [2, 4, 1, -3, -5] ||
3083     ///         v == [4, 2, 1, -5, -3] ||
3084     ///         v == [4, 2, 1, -3, -5]);
3085     /// ```
3086     #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3087     #[inline]
select_nth_unstable_by<F>( &mut self, index: usize, mut compare: F, ) -> (&mut [T], &mut T, &mut [T]) where F: FnMut(&T, &T) -> Ordering,3088     pub fn select_nth_unstable_by<F>(
3089         &mut self,
3090         index: usize,
3091         mut compare: F,
3092     ) -> (&mut [T], &mut T, &mut [T])
3093     where
3094         F: FnMut(&T, &T) -> Ordering,
3095     {
3096         select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
3097     }
3098 
3099     /// Reorder the slice with a key extraction function such that the element at `index` is at its
3100     /// final sorted position.
3101     ///
3102     /// This reordering has the additional property that any value at position `i < index` will be
3103     /// less than or equal to any value at a position `j > index` using the key extraction function.
3104     /// Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
3105     /// position `index`), in-place (i.e. does not allocate), and runs in *O*(*n*) time.
3106     /// This function is also known as "kth element" in other libraries.
3107     ///
3108     /// It returns a triplet of the following from
3109     /// the slice reordered according to the provided key extraction function: the subslice prior to
3110     /// `index`, the element at `index`, and the subslice after `index`; accordingly, the values in
3111     /// those two subslices will respectively all be less-than-or-equal-to and greater-than-or-equal-to
3112     /// the value of the element at `index`.
3113     ///
3114     /// # Current implementation
3115     ///
3116     /// The current algorithm is an introselect implementation based on Pattern Defeating Quicksort, which is also
3117     /// the basis for [`sort_unstable`]. The fallback algorithm is Median of Medians using Tukey's Ninther for
3118     /// pivot selection, which guarantees linear runtime for all inputs.
3119     ///
3120     /// [`sort_unstable`]: slice::sort_unstable
3121     ///
3122     /// # Panics
3123     ///
3124     /// Panics when `index >= len()`, meaning it always panics on empty slices.
3125     ///
3126     /// # Examples
3127     ///
3128     /// ```
3129     /// let mut v = [-5i32, 4, 1, -3, 2];
3130     ///
3131     /// // Return the median as if the array were sorted according to absolute value.
3132     /// v.select_nth_unstable_by_key(2, |a| a.abs());
3133     ///
3134     /// // We are only guaranteed the slice will be one of the following, based on the way we sort
3135     /// // about the specified index.
3136     /// assert!(v == [1, 2, -3, 4, -5] ||
3137     ///         v == [1, 2, -3, -5, 4] ||
3138     ///         v == [2, 1, -3, 4, -5] ||
3139     ///         v == [2, 1, -3, -5, 4]);
3140     /// ```
3141     #[stable(feature = "slice_select_nth_unstable", since = "1.49.0")]
3142     #[inline]
select_nth_unstable_by_key<K, F>( &mut self, index: usize, mut f: F, ) -> (&mut [T], &mut T, &mut [T]) where F: FnMut(&T) -> K, K: Ord,3143     pub fn select_nth_unstable_by_key<K, F>(
3144         &mut self,
3145         index: usize,
3146         mut f: F,
3147     ) -> (&mut [T], &mut T, &mut [T])
3148     where
3149         F: FnMut(&T) -> K,
3150         K: Ord,
3151     {
3152         select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
3153     }
3154 
3155     /// Moves all consecutive repeated elements to the end of the slice according to the
3156     /// [`PartialEq`] trait implementation.
3157     ///
3158     /// Returns two slices. The first contains no consecutive repeated elements.
3159     /// The second contains all the duplicates in no specified order.
3160     ///
3161     /// If the slice is sorted, the first returned slice contains no duplicates.
3162     ///
3163     /// # Examples
3164     ///
3165     /// ```
3166     /// #![feature(slice_partition_dedup)]
3167     ///
3168     /// let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
3169     ///
3170     /// let (dedup, duplicates) = slice.partition_dedup();
3171     ///
3172     /// assert_eq!(dedup, [1, 2, 3, 2, 1]);
3173     /// assert_eq!(duplicates, [2, 3, 1]);
3174     /// ```
3175     #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3176     #[inline]
partition_dedup(&mut self) -> (&mut [T], &mut [T]) where T: PartialEq,3177     pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])
3178     where
3179         T: PartialEq,
3180     {
3181         self.partition_dedup_by(|a, b| a == b)
3182     }
3183 
3184     /// Moves all but the first of consecutive elements to the end of the slice satisfying
3185     /// a given equality relation.
3186     ///
3187     /// Returns two slices. The first contains no consecutive repeated elements.
3188     /// The second contains all the duplicates in no specified order.
3189     ///
3190     /// The `same_bucket` function is passed references to two elements from the slice and
3191     /// must determine if the elements compare equal. The elements are passed in opposite order
3192     /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is moved
3193     /// at the end of the slice.
3194     ///
3195     /// If the slice is sorted, the first returned slice contains no duplicates.
3196     ///
3197     /// # Examples
3198     ///
3199     /// ```
3200     /// #![feature(slice_partition_dedup)]
3201     ///
3202     /// let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
3203     ///
3204     /// let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
3205     ///
3206     /// assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
3207     /// assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
3208     /// ```
3209     #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3210     #[inline]
partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T]) where F: FnMut(&mut T, &mut T) -> bool,3211     pub fn partition_dedup_by<F>(&mut self, mut same_bucket: F) -> (&mut [T], &mut [T])
3212     where
3213         F: FnMut(&mut T, &mut T) -> bool,
3214     {
3215         // Although we have a mutable reference to `self`, we cannot make
3216         // *arbitrary* changes. The `same_bucket` calls could panic, so we
3217         // must ensure that the slice is in a valid state at all times.
3218         //
3219         // The way that we handle this is by using swaps; we iterate
3220         // over all the elements, swapping as we go so that at the end
3221         // the elements we wish to keep are in the front, and those we
3222         // wish to reject are at the back. We can then split the slice.
3223         // This operation is still `O(n)`.
3224         //
3225         // Example: We start in this state, where `r` represents "next
3226         // read" and `w` represents "next_write".
3227         //
3228         //           r
3229         //     +---+---+---+---+---+---+
3230         //     | 0 | 1 | 1 | 2 | 3 | 3 |
3231         //     +---+---+---+---+---+---+
3232         //           w
3233         //
3234         // Comparing self[r] against self[w-1], this is not a duplicate, so
3235         // we swap self[r] and self[w] (no effect as r==w) and then increment both
3236         // r and w, leaving us with:
3237         //
3238         //               r
3239         //     +---+---+---+---+---+---+
3240         //     | 0 | 1 | 1 | 2 | 3 | 3 |
3241         //     +---+---+---+---+---+---+
3242         //               w
3243         //
3244         // Comparing self[r] against self[w-1], this value is a duplicate,
3245         // so we increment `r` but leave everything else unchanged:
3246         //
3247         //                   r
3248         //     +---+---+---+---+---+---+
3249         //     | 0 | 1 | 1 | 2 | 3 | 3 |
3250         //     +---+---+---+---+---+---+
3251         //               w
3252         //
3253         // Comparing self[r] against self[w-1], this is not a duplicate,
3254         // so swap self[r] and self[w] and advance r and w:
3255         //
3256         //                       r
3257         //     +---+---+---+---+---+---+
3258         //     | 0 | 1 | 2 | 1 | 3 | 3 |
3259         //     +---+---+---+---+---+---+
3260         //                   w
3261         //
3262         // Not a duplicate, repeat:
3263         //
3264         //                           r
3265         //     +---+---+---+---+---+---+
3266         //     | 0 | 1 | 2 | 3 | 1 | 3 |
3267         //     +---+---+---+---+---+---+
3268         //                       w
3269         //
3270         // Duplicate, advance r. End of slice. Split at w.
3271 
3272         let len = self.len();
3273         if len <= 1 {
3274             return (self, &mut []);
3275         }
3276 
3277         let ptr = self.as_mut_ptr();
3278         let mut next_read: usize = 1;
3279         let mut next_write: usize = 1;
3280 
3281         // SAFETY: the `while` condition guarantees `next_read` and `next_write`
3282         // are less than `len`, thus are inside `self`. `prev_ptr_write` points to
3283         // one element before `ptr_write`, but `next_write` starts at 1, so
3284         // `prev_ptr_write` is never less than 0 and is inside the slice.
3285         // This fulfils the requirements for dereferencing `ptr_read`, `prev_ptr_write`
3286         // and `ptr_write`, and for using `ptr.add(next_read)`, `ptr.add(next_write - 1)`
3287         // and `prev_ptr_write.offset(1)`.
3288         //
3289         // `next_write` is also incremented at most once per loop at most meaning
3290         // no element is skipped when it may need to be swapped.
3291         //
3292         // `ptr_read` and `prev_ptr_write` never point to the same element. This
3293         // is required for `&mut *ptr_read`, `&mut *prev_ptr_write` to be safe.
3294         // The explanation is simply that `next_read >= next_write` is always true,
3295         // thus `next_read > next_write - 1` is too.
3296         unsafe {
3297             // Avoid bounds checks by using raw pointers.
3298             while next_read < len {
3299                 let ptr_read = ptr.add(next_read);
3300                 let prev_ptr_write = ptr.add(next_write - 1);
3301                 if !same_bucket(&mut *ptr_read, &mut *prev_ptr_write) {
3302                     if next_read != next_write {
3303                         let ptr_write = prev_ptr_write.add(1);
3304                         mem::swap(&mut *ptr_read, &mut *ptr_write);
3305                     }
3306                     next_write += 1;
3307                 }
3308                 next_read += 1;
3309             }
3310         }
3311 
3312         self.split_at_mut(next_write)
3313     }
3314 
3315     /// Moves all but the first of consecutive elements to the end of the slice that resolve
3316     /// to the same key.
3317     ///
3318     /// Returns two slices. The first contains no consecutive repeated elements.
3319     /// The second contains all the duplicates in no specified order.
3320     ///
3321     /// If the slice is sorted, the first returned slice contains no duplicates.
3322     ///
3323     /// # Examples
3324     ///
3325     /// ```
3326     /// #![feature(slice_partition_dedup)]
3327     ///
3328     /// let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
3329     ///
3330     /// let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
3331     ///
3332     /// assert_eq!(dedup, [10, 20, 30, 20, 11]);
3333     /// assert_eq!(duplicates, [21, 30, 13]);
3334     /// ```
3335     #[unstable(feature = "slice_partition_dedup", issue = "54279")]
3336     #[inline]
partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T]) where F: FnMut(&mut T) -> K, K: PartialEq,3337     pub fn partition_dedup_by_key<K, F>(&mut self, mut key: F) -> (&mut [T], &mut [T])
3338     where
3339         F: FnMut(&mut T) -> K,
3340         K: PartialEq,
3341     {
3342         self.partition_dedup_by(|a, b| key(a) == key(b))
3343     }
3344 
3345     /// Rotates the slice in-place such that the first `mid` elements of the
3346     /// slice move to the end while the last `self.len() - mid` elements move to
3347     /// the front. After calling `rotate_left`, the element previously at index
3348     /// `mid` will become the first element in the slice.
3349     ///
3350     /// # Panics
3351     ///
3352     /// This function will panic if `mid` is greater than the length of the
3353     /// slice. Note that `mid == self.len()` does _not_ panic and is a no-op
3354     /// rotation.
3355     ///
3356     /// # Complexity
3357     ///
3358     /// Takes linear (in `self.len()`) time.
3359     ///
3360     /// # Examples
3361     ///
3362     /// ```
3363     /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3364     /// a.rotate_left(2);
3365     /// assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
3366     /// ```
3367     ///
3368     /// Rotating a subslice:
3369     ///
3370     /// ```
3371     /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3372     /// a[1..5].rotate_left(1);
3373     /// assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
3374     /// ```
3375     #[stable(feature = "slice_rotate", since = "1.26.0")]
rotate_left(&mut self, mid: usize)3376     pub fn rotate_left(&mut self, mid: usize) {
3377         assert!(mid <= self.len());
3378         let k = self.len() - mid;
3379         let p = self.as_mut_ptr();
3380 
3381         // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3382         // valid for reading and writing, as required by `ptr_rotate`.
3383         unsafe {
3384             rotate::ptr_rotate(mid, p.add(mid), k);
3385         }
3386     }
3387 
3388     /// Rotates the slice in-place such that the first `self.len() - k`
3389     /// elements of the slice move to the end while the last `k` elements move
3390     /// to the front. After calling `rotate_right`, the element previously at
3391     /// index `self.len() - k` will become the first element in the slice.
3392     ///
3393     /// # Panics
3394     ///
3395     /// This function will panic if `k` is greater than the length of the
3396     /// slice. Note that `k == self.len()` does _not_ panic and is a no-op
3397     /// rotation.
3398     ///
3399     /// # Complexity
3400     ///
3401     /// Takes linear (in `self.len()`) time.
3402     ///
3403     /// # Examples
3404     ///
3405     /// ```
3406     /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3407     /// a.rotate_right(2);
3408     /// assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
3409     /// ```
3410     ///
3411     /// Rotate a subslice:
3412     ///
3413     /// ```
3414     /// let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
3415     /// a[1..5].rotate_right(1);
3416     /// assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
3417     /// ```
3418     #[stable(feature = "slice_rotate", since = "1.26.0")]
rotate_right(&mut self, k: usize)3419     pub fn rotate_right(&mut self, k: usize) {
3420         assert!(k <= self.len());
3421         let mid = self.len() - k;
3422         let p = self.as_mut_ptr();
3423 
3424         // SAFETY: The range `[p.add(mid) - mid, p.add(mid) + k)` is trivially
3425         // valid for reading and writing, as required by `ptr_rotate`.
3426         unsafe {
3427             rotate::ptr_rotate(mid, p.add(mid), k);
3428         }
3429     }
3430 
3431     /// Fills `self` with elements by cloning `value`.
3432     ///
3433     /// # Examples
3434     ///
3435     /// ```
3436     /// let mut buf = vec![0; 10];
3437     /// buf.fill(1);
3438     /// assert_eq!(buf, vec![1; 10]);
3439     /// ```
3440     #[doc(alias = "memset")]
3441     #[stable(feature = "slice_fill", since = "1.50.0")]
fill(&mut self, value: T) where T: Clone,3442     pub fn fill(&mut self, value: T)
3443     where
3444         T: Clone,
3445     {
3446         specialize::SpecFill::spec_fill(self, value);
3447     }
3448 
3449     /// Fills `self` with elements returned by calling a closure repeatedly.
3450     ///
3451     /// This method uses a closure to create new values. If you'd rather
3452     /// [`Clone`] a given value, use [`fill`]. If you want to use the [`Default`]
3453     /// trait to generate values, you can pass [`Default::default`] as the
3454     /// argument.
3455     ///
3456     /// [`fill`]: slice::fill
3457     ///
3458     /// # Examples
3459     ///
3460     /// ```
3461     /// let mut buf = vec![1; 10];
3462     /// buf.fill_with(Default::default);
3463     /// assert_eq!(buf, vec![0; 10]);
3464     /// ```
3465     #[stable(feature = "slice_fill_with", since = "1.51.0")]
fill_with<F>(&mut self, mut f: F) where F: FnMut() -> T,3466     pub fn fill_with<F>(&mut self, mut f: F)
3467     where
3468         F: FnMut() -> T,
3469     {
3470         for el in self {
3471             *el = f();
3472         }
3473     }
3474 
3475     /// Copies the elements from `src` into `self`.
3476     ///
3477     /// The length of `src` must be the same as `self`.
3478     ///
3479     /// # Panics
3480     ///
3481     /// This function will panic if the two slices have different lengths.
3482     ///
3483     /// # Examples
3484     ///
3485     /// Cloning two elements from a slice into another:
3486     ///
3487     /// ```
3488     /// let src = [1, 2, 3, 4];
3489     /// let mut dst = [0, 0];
3490     ///
3491     /// // Because the slices have to be the same length,
3492     /// // we slice the source slice from four elements
3493     /// // to two. It will panic if we don't do this.
3494     /// dst.clone_from_slice(&src[2..]);
3495     ///
3496     /// assert_eq!(src, [1, 2, 3, 4]);
3497     /// assert_eq!(dst, [3, 4]);
3498     /// ```
3499     ///
3500     /// Rust enforces that there can only be one mutable reference with no
3501     /// immutable references to a particular piece of data in a particular
3502     /// scope. Because of this, attempting to use `clone_from_slice` on a
3503     /// single slice will result in a compile failure:
3504     ///
3505     /// ```compile_fail
3506     /// let mut slice = [1, 2, 3, 4, 5];
3507     ///
3508     /// slice[..2].clone_from_slice(&slice[3..]); // compile fail!
3509     /// ```
3510     ///
3511     /// To work around this, we can use [`split_at_mut`] to create two distinct
3512     /// sub-slices from a slice:
3513     ///
3514     /// ```
3515     /// let mut slice = [1, 2, 3, 4, 5];
3516     ///
3517     /// {
3518     ///     let (left, right) = slice.split_at_mut(2);
3519     ///     left.clone_from_slice(&right[1..]);
3520     /// }
3521     ///
3522     /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3523     /// ```
3524     ///
3525     /// [`copy_from_slice`]: slice::copy_from_slice
3526     /// [`split_at_mut`]: slice::split_at_mut
3527     #[stable(feature = "clone_from_slice", since = "1.7.0")]
3528     #[track_caller]
clone_from_slice(&mut self, src: &[T]) where T: Clone,3529     pub fn clone_from_slice(&mut self, src: &[T])
3530     where
3531         T: Clone,
3532     {
3533         self.spec_clone_from(src);
3534     }
3535 
3536     /// Copies all elements from `src` into `self`, using a memcpy.
3537     ///
3538     /// The length of `src` must be the same as `self`.
3539     ///
3540     /// If `T` does not implement `Copy`, use [`clone_from_slice`].
3541     ///
3542     /// # Panics
3543     ///
3544     /// This function will panic if the two slices have different lengths.
3545     ///
3546     /// # Examples
3547     ///
3548     /// Copying two elements from a slice into another:
3549     ///
3550     /// ```
3551     /// let src = [1, 2, 3, 4];
3552     /// let mut dst = [0, 0];
3553     ///
3554     /// // Because the slices have to be the same length,
3555     /// // we slice the source slice from four elements
3556     /// // to two. It will panic if we don't do this.
3557     /// dst.copy_from_slice(&src[2..]);
3558     ///
3559     /// assert_eq!(src, [1, 2, 3, 4]);
3560     /// assert_eq!(dst, [3, 4]);
3561     /// ```
3562     ///
3563     /// Rust enforces that there can only be one mutable reference with no
3564     /// immutable references to a particular piece of data in a particular
3565     /// scope. Because of this, attempting to use `copy_from_slice` on a
3566     /// single slice will result in a compile failure:
3567     ///
3568     /// ```compile_fail
3569     /// let mut slice = [1, 2, 3, 4, 5];
3570     ///
3571     /// slice[..2].copy_from_slice(&slice[3..]); // compile fail!
3572     /// ```
3573     ///
3574     /// To work around this, we can use [`split_at_mut`] to create two distinct
3575     /// sub-slices from a slice:
3576     ///
3577     /// ```
3578     /// let mut slice = [1, 2, 3, 4, 5];
3579     ///
3580     /// {
3581     ///     let (left, right) = slice.split_at_mut(2);
3582     ///     left.copy_from_slice(&right[1..]);
3583     /// }
3584     ///
3585     /// assert_eq!(slice, [4, 5, 3, 4, 5]);
3586     /// ```
3587     ///
3588     /// [`clone_from_slice`]: slice::clone_from_slice
3589     /// [`split_at_mut`]: slice::split_at_mut
3590     #[doc(alias = "memcpy")]
3591     #[stable(feature = "copy_from_slice", since = "1.9.0")]
3592     #[track_caller]
copy_from_slice(&mut self, src: &[T]) where T: Copy,3593     pub fn copy_from_slice(&mut self, src: &[T])
3594     where
3595         T: Copy,
3596     {
3597         // The panic code path was put into a cold function to not bloat the
3598         // call site.
3599         #[inline(never)]
3600         #[cold]
3601         #[track_caller]
3602         fn len_mismatch_fail(dst_len: usize, src_len: usize) -> ! {
3603             panic!(
3604                 "source slice length ({}) does not match destination slice length ({})",
3605                 src_len, dst_len,
3606             );
3607         }
3608 
3609         if self.len() != src.len() {
3610             len_mismatch_fail(self.len(), src.len());
3611         }
3612 
3613         // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3614         // checked to have the same length. The slices cannot overlap because
3615         // mutable references are exclusive.
3616         unsafe {
3617             ptr::copy_nonoverlapping(src.as_ptr(), self.as_mut_ptr(), self.len());
3618         }
3619     }
3620 
3621     /// Copies elements from one part of the slice to another part of itself,
3622     /// using a memmove.
3623     ///
3624     /// `src` is the range within `self` to copy from. `dest` is the starting
3625     /// index of the range within `self` to copy to, which will have the same
3626     /// length as `src`. The two ranges may overlap. The ends of the two ranges
3627     /// must be less than or equal to `self.len()`.
3628     ///
3629     /// # Panics
3630     ///
3631     /// This function will panic if either range exceeds the end of the slice,
3632     /// or if the end of `src` is before the start.
3633     ///
3634     /// # Examples
3635     ///
3636     /// Copying four bytes within a slice:
3637     ///
3638     /// ```
3639     /// let mut bytes = *b"Hello, World!";
3640     ///
3641     /// bytes.copy_within(1..5, 8);
3642     ///
3643     /// assert_eq!(&bytes, b"Hello, Wello!");
3644     /// ```
3645     #[stable(feature = "copy_within", since = "1.37.0")]
3646     #[track_caller]
copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize) where T: Copy,3647     pub fn copy_within<R: RangeBounds<usize>>(&mut self, src: R, dest: usize)
3648     where
3649         T: Copy,
3650     {
3651         let Range { start: src_start, end: src_end } = slice::range(src, ..self.len());
3652         let count = src_end - src_start;
3653         assert!(dest <= self.len() - count, "dest is out of bounds");
3654         // SAFETY: the conditions for `ptr::copy` have all been checked above,
3655         // as have those for `ptr::add`.
3656         unsafe {
3657             // Derive both `src_ptr` and `dest_ptr` from the same loan
3658             let ptr = self.as_mut_ptr();
3659             let src_ptr = ptr.add(src_start);
3660             let dest_ptr = ptr.add(dest);
3661             ptr::copy(src_ptr, dest_ptr, count);
3662         }
3663     }
3664 
3665     /// Swaps all elements in `self` with those in `other`.
3666     ///
3667     /// The length of `other` must be the same as `self`.
3668     ///
3669     /// # Panics
3670     ///
3671     /// This function will panic if the two slices have different lengths.
3672     ///
3673     /// # Example
3674     ///
3675     /// Swapping two elements across slices:
3676     ///
3677     /// ```
3678     /// let mut slice1 = [0, 0];
3679     /// let mut slice2 = [1, 2, 3, 4];
3680     ///
3681     /// slice1.swap_with_slice(&mut slice2[2..]);
3682     ///
3683     /// assert_eq!(slice1, [3, 4]);
3684     /// assert_eq!(slice2, [1, 2, 0, 0]);
3685     /// ```
3686     ///
3687     /// Rust enforces that there can only be one mutable reference to a
3688     /// particular piece of data in a particular scope. Because of this,
3689     /// attempting to use `swap_with_slice` on a single slice will result in
3690     /// a compile failure:
3691     ///
3692     /// ```compile_fail
3693     /// let mut slice = [1, 2, 3, 4, 5];
3694     /// slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
3695     /// ```
3696     ///
3697     /// To work around this, we can use [`split_at_mut`] to create two distinct
3698     /// mutable sub-slices from a slice:
3699     ///
3700     /// ```
3701     /// let mut slice = [1, 2, 3, 4, 5];
3702     ///
3703     /// {
3704     ///     let (left, right) = slice.split_at_mut(2);
3705     ///     left.swap_with_slice(&mut right[1..]);
3706     /// }
3707     ///
3708     /// assert_eq!(slice, [4, 5, 3, 1, 2]);
3709     /// ```
3710     ///
3711     /// [`split_at_mut`]: slice::split_at_mut
3712     #[stable(feature = "swap_with_slice", since = "1.27.0")]
3713     #[track_caller]
swap_with_slice(&mut self, other: &mut [T])3714     pub fn swap_with_slice(&mut self, other: &mut [T]) {
3715         assert!(self.len() == other.len(), "destination and source slices have different lengths");
3716         // SAFETY: `self` is valid for `self.len()` elements by definition, and `src` was
3717         // checked to have the same length. The slices cannot overlap because
3718         // mutable references are exclusive.
3719         unsafe {
3720             ptr::swap_nonoverlapping(self.as_mut_ptr(), other.as_mut_ptr(), self.len());
3721         }
3722     }
3723 
3724     /// Function to calculate lengths of the middle and trailing slice for `align_to{,_mut}`.
align_to_offsets<U>(&self) -> (usize, usize)3725     fn align_to_offsets<U>(&self) -> (usize, usize) {
3726         // What we gonna do about `rest` is figure out what multiple of `U`s we can put in a
3727         // lowest number of `T`s. And how many `T`s we need for each such "multiple".
3728         //
3729         // Consider for example T=u8 U=u16. Then we can put 1 U in 2 Ts. Simple. Now, consider
3730         // for example a case where size_of::<T> = 16, size_of::<U> = 24. We can put 2 Us in
3731         // place of every 3 Ts in the `rest` slice. A bit more complicated.
3732         //
3733         // Formula to calculate this is:
3734         //
3735         // Us = lcm(size_of::<T>, size_of::<U>) / size_of::<U>
3736         // Ts = lcm(size_of::<T>, size_of::<U>) / size_of::<T>
3737         //
3738         // Expanded and simplified:
3739         //
3740         // Us = size_of::<T> / gcd(size_of::<T>, size_of::<U>)
3741         // Ts = size_of::<U> / gcd(size_of::<T>, size_of::<U>)
3742         //
3743         // Luckily since all this is constant-evaluated... performance here matters not!
3744         const fn gcd(a: usize, b: usize) -> usize {
3745             if b == 0 { a } else { gcd(b, a % b) }
3746         }
3747 
3748         // Explicitly wrap the function call in a const block so it gets
3749         // constant-evaluated even in debug mode.
3750         let gcd: usize = const { gcd(mem::size_of::<T>(), mem::size_of::<U>()) };
3751         let ts: usize = mem::size_of::<U>() / gcd;
3752         let us: usize = mem::size_of::<T>() / gcd;
3753 
3754         // Armed with this knowledge, we can find how many `U`s we can fit!
3755         let us_len = self.len() / ts * us;
3756         // And how many `T`s will be in the trailing slice!
3757         let ts_len = self.len() % ts;
3758         (us_len, ts_len)
3759     }
3760 
3761     /// Transmute the slice to a slice of another type, ensuring alignment of the types is
3762     /// maintained.
3763     ///
3764     /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
3765     /// slice of a new type, and the suffix slice. How exactly the slice is split up is not
3766     /// specified; the middle part may be smaller than necessary. However, if this fails to return a
3767     /// maximal middle part, that is because code is running in a context where performance does not
3768     /// matter, such as a sanitizer attempting to find alignment bugs. Regular code running
3769     /// in a default (debug or release) execution *will* return a maximal middle part.
3770     ///
3771     /// This method has no purpose when either input element `T` or output element `U` are
3772     /// zero-sized and will return the original slice without splitting anything.
3773     ///
3774     /// # Safety
3775     ///
3776     /// This method is essentially a `transmute` with respect to the elements in the returned
3777     /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
3778     ///
3779     /// # Examples
3780     ///
3781     /// Basic usage:
3782     ///
3783     /// ```
3784     /// unsafe {
3785     ///     let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
3786     ///     let (prefix, shorts, suffix) = bytes.align_to::<u16>();
3787     ///     // less_efficient_algorithm_for_bytes(prefix);
3788     ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
3789     ///     // less_efficient_algorithm_for_bytes(suffix);
3790     /// }
3791     /// ```
3792     #[stable(feature = "slice_align_to", since = "1.30.0")]
3793     #[must_use]
align_to<U>(&self) -> (&[T], &[U], &[T])3794     pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T]) {
3795         // Note that most of this function will be constant-evaluated,
3796         if U::IS_ZST || T::IS_ZST {
3797             // handle ZSTs specially, which is – don't handle them at all.
3798             return (self, &[], &[]);
3799         }
3800 
3801         // First, find at what point do we split between the first and 2nd slice. Easy with
3802         // ptr.align_offset.
3803         let ptr = self.as_ptr();
3804         // SAFETY: See the `align_to_mut` method for the detailed safety comment.
3805         let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
3806         if offset > self.len() {
3807             (self, &[], &[])
3808         } else {
3809             let (left, rest) = self.split_at(offset);
3810             let (us_len, ts_len) = rest.align_to_offsets::<U>();
3811             // SAFETY: now `rest` is definitely aligned, so `from_raw_parts` below is okay,
3812             // since the caller guarantees that we can transmute `T` to `U` safely.
3813             unsafe {
3814                 (
3815                     left,
3816                     from_raw_parts(rest.as_ptr() as *const U, us_len),
3817                     from_raw_parts(rest.as_ptr().add(rest.len() - ts_len), ts_len),
3818                 )
3819             }
3820         }
3821     }
3822 
3823     /// Transmute the mutable slice to a mutable slice of another type, ensuring alignment of the
3824     /// types is maintained.
3825     ///
3826     /// This method splits the slice into three distinct slices: prefix, correctly aligned middle
3827     /// slice of a new type, and the suffix slice. How exactly the slice is split up is not
3828     /// specified; the middle part may be smaller than necessary. However, if this fails to return a
3829     /// maximal middle part, that is because code is running in a context where performance does not
3830     /// matter, such as a sanitizer attempting to find alignment bugs. Regular code running
3831     /// in a default (debug or release) execution *will* return a maximal middle part.
3832     ///
3833     /// This method has no purpose when either input element `T` or output element `U` are
3834     /// zero-sized and will return the original slice without splitting anything.
3835     ///
3836     /// # Safety
3837     ///
3838     /// This method is essentially a `transmute` with respect to the elements in the returned
3839     /// middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.
3840     ///
3841     /// # Examples
3842     ///
3843     /// Basic usage:
3844     ///
3845     /// ```
3846     /// unsafe {
3847     ///     let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
3848     ///     let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
3849     ///     // less_efficient_algorithm_for_bytes(prefix);
3850     ///     // more_efficient_algorithm_for_aligned_shorts(shorts);
3851     ///     // less_efficient_algorithm_for_bytes(suffix);
3852     /// }
3853     /// ```
3854     #[stable(feature = "slice_align_to", since = "1.30.0")]
3855     #[must_use]
align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])3856     pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T]) {
3857         // Note that most of this function will be constant-evaluated,
3858         if U::IS_ZST || T::IS_ZST {
3859             // handle ZSTs specially, which is – don't handle them at all.
3860             return (self, &mut [], &mut []);
3861         }
3862 
3863         // First, find at what point do we split between the first and 2nd slice. Easy with
3864         // ptr.align_offset.
3865         let ptr = self.as_ptr();
3866         // SAFETY: Here we are ensuring we will use aligned pointers for U for the
3867         // rest of the method. This is done by passing a pointer to &[T] with an
3868         // alignment targeted for U.
3869         // `crate::ptr::align_offset` is called with a correctly aligned and
3870         // valid pointer `ptr` (it comes from a reference to `self`) and with
3871         // a size that is a power of two (since it comes from the alignment for U),
3872         // satisfying its safety constraints.
3873         let offset = unsafe { crate::ptr::align_offset(ptr, mem::align_of::<U>()) };
3874         if offset > self.len() {
3875             (self, &mut [], &mut [])
3876         } else {
3877             let (left, rest) = self.split_at_mut(offset);
3878             let (us_len, ts_len) = rest.align_to_offsets::<U>();
3879             let rest_len = rest.len();
3880             let mut_ptr = rest.as_mut_ptr();
3881             // We can't use `rest` again after this, that would invalidate its alias `mut_ptr`!
3882             // SAFETY: see comments for `align_to`.
3883             unsafe {
3884                 (
3885                     left,
3886                     from_raw_parts_mut(mut_ptr as *mut U, us_len),
3887                     from_raw_parts_mut(mut_ptr.add(rest_len - ts_len), ts_len),
3888                 )
3889             }
3890         }
3891     }
3892 
3893     /// Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
3894     ///
3895     /// This is a safe wrapper around [`slice::align_to`], so has the same weak
3896     /// postconditions as that method.  You're only assured that
3897     /// `self.len() == prefix.len() + middle.len() * LANES + suffix.len()`.
3898     ///
3899     /// Notably, all of the following are possible:
3900     /// - `prefix.len() >= LANES`.
3901     /// - `middle.is_empty()` despite `self.len() >= 3 * LANES`.
3902     /// - `suffix.len() >= LANES`.
3903     ///
3904     /// That said, this is a safe method, so if you're only writing safe code,
3905     /// then this can at most cause incorrect logic, not unsoundness.
3906     ///
3907     /// # Panics
3908     ///
3909     /// This will panic if the size of the SIMD type is different from
3910     /// `LANES` times that of the scalar.
3911     ///
3912     /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
3913     /// that from ever happening, as only power-of-two numbers of lanes are
3914     /// supported.  It's possible that, in the future, those restrictions might
3915     /// be lifted in a way that would make it possible to see panics from this
3916     /// method for something like `LANES == 3`.
3917     ///
3918     /// # Examples
3919     ///
3920     /// ```
3921     /// #![feature(portable_simd)]
3922     /// use core::simd::SimdFloat;
3923     ///
3924     /// let short = &[1, 2, 3];
3925     /// let (prefix, middle, suffix) = short.as_simd::<4>();
3926     /// assert_eq!(middle, []); // Not enough elements for anything in the middle
3927     ///
3928     /// // They might be split in any possible way between prefix and suffix
3929     /// let it = prefix.iter().chain(suffix).copied();
3930     /// assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
3931     ///
3932     /// fn basic_simd_sum(x: &[f32]) -> f32 {
3933     ///     use std::ops::Add;
3934     ///     use std::simd::f32x4;
3935     ///     let (prefix, middle, suffix) = x.as_simd();
3936     ///     let sums = f32x4::from_array([
3937     ///         prefix.iter().copied().sum(),
3938     ///         0.0,
3939     ///         0.0,
3940     ///         suffix.iter().copied().sum(),
3941     ///     ]);
3942     ///     let sums = middle.iter().copied().fold(sums, f32x4::add);
3943     ///     sums.reduce_sum()
3944     /// }
3945     ///
3946     /// let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
3947     /// assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
3948     /// ```
3949     #[unstable(feature = "portable_simd", issue = "86656")]
3950     #[must_use]
as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T]) where Simd<T, LANES>: AsRef<[T; LANES]>, T: simd::SimdElement, simd::LaneCount<LANES>: simd::SupportedLaneCount,3951     pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
3952     where
3953         Simd<T, LANES>: AsRef<[T; LANES]>,
3954         T: simd::SimdElement,
3955         simd::LaneCount<LANES>: simd::SupportedLaneCount,
3956     {
3957         // These are expected to always match, as vector types are laid out like
3958         // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
3959         // might as well double-check since it'll optimize away anyhow.
3960         assert_eq!(mem::size_of::<Simd<T, LANES>>(), mem::size_of::<[T; LANES]>());
3961 
3962         // SAFETY: The simd types have the same layout as arrays, just with
3963         // potentially-higher alignment, so the de-facto transmutes are sound.
3964         unsafe { self.align_to() }
3965     }
3966 
3967     /// Split a mutable slice into a mutable prefix, a middle of aligned SIMD types,
3968     /// and a mutable suffix.
3969     ///
3970     /// This is a safe wrapper around [`slice::align_to_mut`], so has the same weak
3971     /// postconditions as that method.  You're only assured that
3972     /// `self.len() == prefix.len() + middle.len() * LANES + suffix.len()`.
3973     ///
3974     /// Notably, all of the following are possible:
3975     /// - `prefix.len() >= LANES`.
3976     /// - `middle.is_empty()` despite `self.len() >= 3 * LANES`.
3977     /// - `suffix.len() >= LANES`.
3978     ///
3979     /// That said, this is a safe method, so if you're only writing safe code,
3980     /// then this can at most cause incorrect logic, not unsoundness.
3981     ///
3982     /// This is the mutable version of [`slice::as_simd`]; see that for examples.
3983     ///
3984     /// # Panics
3985     ///
3986     /// This will panic if the size of the SIMD type is different from
3987     /// `LANES` times that of the scalar.
3988     ///
3989     /// At the time of writing, the trait restrictions on `Simd<T, LANES>` keeps
3990     /// that from ever happening, as only power-of-two numbers of lanes are
3991     /// supported.  It's possible that, in the future, those restrictions might
3992     /// be lifted in a way that would make it possible to see panics from this
3993     /// method for something like `LANES == 3`.
3994     #[unstable(feature = "portable_simd", issue = "86656")]
3995     #[must_use]
as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T]) where Simd<T, LANES>: AsMut<[T; LANES]>, T: simd::SimdElement, simd::LaneCount<LANES>: simd::SupportedLaneCount,3996     pub fn as_simd_mut<const LANES: usize>(&mut self) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
3997     where
3998         Simd<T, LANES>: AsMut<[T; LANES]>,
3999         T: simd::SimdElement,
4000         simd::LaneCount<LANES>: simd::SupportedLaneCount,
4001     {
4002         // These are expected to always match, as vector types are laid out like
4003         // arrays per <https://llvm.org/docs/LangRef.html#vector-type>, but we
4004         // might as well double-check since it'll optimize away anyhow.
4005         assert_eq!(mem::size_of::<Simd<T, LANES>>(), mem::size_of::<[T; LANES]>());
4006 
4007         // SAFETY: The simd types have the same layout as arrays, just with
4008         // potentially-higher alignment, so the de-facto transmutes are sound.
4009         unsafe { self.align_to_mut() }
4010     }
4011 
4012     /// Checks if the elements of this slice are sorted.
4013     ///
4014     /// That is, for each element `a` and its following element `b`, `a <= b` must hold. If the
4015     /// slice yields exactly zero or one element, `true` is returned.
4016     ///
4017     /// Note that if `Self::Item` is only `PartialOrd`, but not `Ord`, the above definition
4018     /// implies that this function returns `false` if any two consecutive items are not
4019     /// comparable.
4020     ///
4021     /// # Examples
4022     ///
4023     /// ```
4024     /// #![feature(is_sorted)]
4025     /// let empty: [i32; 0] = [];
4026     ///
4027     /// assert!([1, 2, 2, 9].is_sorted());
4028     /// assert!(![1, 3, 2, 4].is_sorted());
4029     /// assert!([0].is_sorted());
4030     /// assert!(empty.is_sorted());
4031     /// assert!(![0.0, 1.0, f32::NAN].is_sorted());
4032     /// ```
4033     #[inline]
4034     #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
4035     #[must_use]
is_sorted(&self) -> bool where T: PartialOrd,4036     pub fn is_sorted(&self) -> bool
4037     where
4038         T: PartialOrd,
4039     {
4040         self.is_sorted_by(|a, b| a.partial_cmp(b))
4041     }
4042 
4043     /// Checks if the elements of this slice are sorted using the given comparator function.
4044     ///
4045     /// Instead of using `PartialOrd::partial_cmp`, this function uses the given `compare`
4046     /// function to determine the ordering of two elements. Apart from that, it's equivalent to
4047     /// [`is_sorted`]; see its documentation for more information.
4048     ///
4049     /// [`is_sorted`]: slice::is_sorted
4050     #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
4051     #[must_use]
is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool where F: FnMut(&'a T, &'a T) -> Option<Ordering>,4052     pub fn is_sorted_by<'a, F>(&'a self, mut compare: F) -> bool
4053     where
4054         F: FnMut(&'a T, &'a T) -> Option<Ordering>,
4055     {
4056         self.array_windows().all(|[a, b]| compare(a, b).map_or(false, Ordering::is_le))
4057     }
4058 
4059     /// Checks if the elements of this slice are sorted using the given key extraction function.
4060     ///
4061     /// Instead of comparing the slice's elements directly, this function compares the keys of the
4062     /// elements, as determined by `f`. Apart from that, it's equivalent to [`is_sorted`]; see its
4063     /// documentation for more information.
4064     ///
4065     /// [`is_sorted`]: slice::is_sorted
4066     ///
4067     /// # Examples
4068     ///
4069     /// ```
4070     /// #![feature(is_sorted)]
4071     ///
4072     /// assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
4073     /// assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
4074     /// ```
4075     #[inline]
4076     #[unstable(feature = "is_sorted", reason = "new API", issue = "53485")]
4077     #[must_use]
is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool where F: FnMut(&'a T) -> K, K: PartialOrd,4078     pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
4079     where
4080         F: FnMut(&'a T) -> K,
4081         K: PartialOrd,
4082     {
4083         self.iter().is_sorted_by_key(f)
4084     }
4085 
4086     /// Returns the index of the partition point according to the given predicate
4087     /// (the index of the first element of the second partition).
4088     ///
4089     /// The slice is assumed to be partitioned according to the given predicate.
4090     /// This means that all elements for which the predicate returns true are at the start of the slice
4091     /// and all elements for which the predicate returns false are at the end.
4092     /// For example, `[7, 15, 3, 5, 4, 12, 6]` is partitioned under the predicate `x % 2 != 0`
4093     /// (all odd numbers are at the start, all even at the end).
4094     ///
4095     /// If this slice is not partitioned, the returned result is unspecified and meaningless,
4096     /// as this method performs a kind of binary search.
4097     ///
4098     /// See also [`binary_search`], [`binary_search_by`], and [`binary_search_by_key`].
4099     ///
4100     /// [`binary_search`]: slice::binary_search
4101     /// [`binary_search_by`]: slice::binary_search_by
4102     /// [`binary_search_by_key`]: slice::binary_search_by_key
4103     ///
4104     /// # Examples
4105     ///
4106     /// ```
4107     /// let v = [1, 2, 3, 3, 5, 6, 7];
4108     /// let i = v.partition_point(|&x| x < 5);
4109     ///
4110     /// assert_eq!(i, 4);
4111     /// assert!(v[..i].iter().all(|&x| x < 5));
4112     /// assert!(v[i..].iter().all(|&x| !(x < 5)));
4113     /// ```
4114     ///
4115     /// If all elements of the slice match the predicate, including if the slice
4116     /// is empty, then the length of the slice will be returned:
4117     ///
4118     /// ```
4119     /// let a = [2, 4, 8];
4120     /// assert_eq!(a.partition_point(|x| x < &100), a.len());
4121     /// let a: [i32; 0] = [];
4122     /// assert_eq!(a.partition_point(|x| x < &100), 0);
4123     /// ```
4124     ///
4125     /// If you want to insert an item to a sorted vector, while maintaining
4126     /// sort order:
4127     ///
4128     /// ```
4129     /// let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
4130     /// let num = 42;
4131     /// let idx = s.partition_point(|&x| x < num);
4132     /// s.insert(idx, num);
4133     /// assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
4134     /// ```
4135     #[stable(feature = "partition_point", since = "1.52.0")]
4136     #[must_use]
partition_point<P>(&self, mut pred: P) -> usize where P: FnMut(&T) -> bool,4137     pub fn partition_point<P>(&self, mut pred: P) -> usize
4138     where
4139         P: FnMut(&T) -> bool,
4140     {
4141         self.binary_search_by(|x| if pred(x) { Less } else { Greater }).unwrap_or_else(|i| i)
4142     }
4143 
4144     /// Removes the subslice corresponding to the given range
4145     /// and returns a reference to it.
4146     ///
4147     /// Returns `None` and does not modify the slice if the given
4148     /// range is out of bounds.
4149     ///
4150     /// Note that this method only accepts one-sided ranges such as
4151     /// `2..` or `..6`, but not `2..6`.
4152     ///
4153     /// # Examples
4154     ///
4155     /// Taking the first three elements of a slice:
4156     ///
4157     /// ```
4158     /// #![feature(slice_take)]
4159     ///
4160     /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4161     /// let mut first_three = slice.take(..3).unwrap();
4162     ///
4163     /// assert_eq!(slice, &['d']);
4164     /// assert_eq!(first_three, &['a', 'b', 'c']);
4165     /// ```
4166     ///
4167     /// Taking the last two elements of a slice:
4168     ///
4169     /// ```
4170     /// #![feature(slice_take)]
4171     ///
4172     /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4173     /// let mut tail = slice.take(2..).unwrap();
4174     ///
4175     /// assert_eq!(slice, &['a', 'b']);
4176     /// assert_eq!(tail, &['c', 'd']);
4177     /// ```
4178     ///
4179     /// Getting `None` when `range` is out of bounds:
4180     ///
4181     /// ```
4182     /// #![feature(slice_take)]
4183     ///
4184     /// let mut slice: &[_] = &['a', 'b', 'c', 'd'];
4185     ///
4186     /// assert_eq!(None, slice.take(5..));
4187     /// assert_eq!(None, slice.take(..5));
4188     /// assert_eq!(None, slice.take(..=4));
4189     /// let expected: &[char] = &['a', 'b', 'c', 'd'];
4190     /// assert_eq!(Some(expected), slice.take(..4));
4191     /// ```
4192     #[inline]
4193     #[must_use = "method does not modify the slice if the range is out of bounds"]
4194     #[unstable(feature = "slice_take", issue = "62280")]
take<'a, R: OneSidedRange<usize>>(self: &mut &'a Self, range: R) -> Option<&'a Self>4195     pub fn take<'a, R: OneSidedRange<usize>>(self: &mut &'a Self, range: R) -> Option<&'a Self> {
4196         let (direction, split_index) = split_point_of(range)?;
4197         if split_index > self.len() {
4198             return None;
4199         }
4200         let (front, back) = self.split_at(split_index);
4201         match direction {
4202             Direction::Front => {
4203                 *self = back;
4204                 Some(front)
4205             }
4206             Direction::Back => {
4207                 *self = front;
4208                 Some(back)
4209             }
4210         }
4211     }
4212 
4213     /// Removes the subslice corresponding to the given range
4214     /// and returns a mutable reference to it.
4215     ///
4216     /// Returns `None` and does not modify the slice if the given
4217     /// range is out of bounds.
4218     ///
4219     /// Note that this method only accepts one-sided ranges such as
4220     /// `2..` or `..6`, but not `2..6`.
4221     ///
4222     /// # Examples
4223     ///
4224     /// Taking the first three elements of a slice:
4225     ///
4226     /// ```
4227     /// #![feature(slice_take)]
4228     ///
4229     /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4230     /// let mut first_three = slice.take_mut(..3).unwrap();
4231     ///
4232     /// assert_eq!(slice, &mut ['d']);
4233     /// assert_eq!(first_three, &mut ['a', 'b', 'c']);
4234     /// ```
4235     ///
4236     /// Taking the last two elements of a slice:
4237     ///
4238     /// ```
4239     /// #![feature(slice_take)]
4240     ///
4241     /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4242     /// let mut tail = slice.take_mut(2..).unwrap();
4243     ///
4244     /// assert_eq!(slice, &mut ['a', 'b']);
4245     /// assert_eq!(tail, &mut ['c', 'd']);
4246     /// ```
4247     ///
4248     /// Getting `None` when `range` is out of bounds:
4249     ///
4250     /// ```
4251     /// #![feature(slice_take)]
4252     ///
4253     /// let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4254     ///
4255     /// assert_eq!(None, slice.take_mut(5..));
4256     /// assert_eq!(None, slice.take_mut(..5));
4257     /// assert_eq!(None, slice.take_mut(..=4));
4258     /// let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
4259     /// assert_eq!(Some(expected), slice.take_mut(..4));
4260     /// ```
4261     #[inline]
4262     #[must_use = "method does not modify the slice if the range is out of bounds"]
4263     #[unstable(feature = "slice_take", issue = "62280")]
take_mut<'a, R: OneSidedRange<usize>>( self: &mut &'a mut Self, range: R, ) -> Option<&'a mut Self>4264     pub fn take_mut<'a, R: OneSidedRange<usize>>(
4265         self: &mut &'a mut Self,
4266         range: R,
4267     ) -> Option<&'a mut Self> {
4268         let (direction, split_index) = split_point_of(range)?;
4269         if split_index > self.len() {
4270             return None;
4271         }
4272         let (front, back) = mem::take(self).split_at_mut(split_index);
4273         match direction {
4274             Direction::Front => {
4275                 *self = back;
4276                 Some(front)
4277             }
4278             Direction::Back => {
4279                 *self = front;
4280                 Some(back)
4281             }
4282         }
4283     }
4284 
4285     /// Removes the first element of the slice and returns a reference
4286     /// to it.
4287     ///
4288     /// Returns `None` if the slice is empty.
4289     ///
4290     /// # Examples
4291     ///
4292     /// ```
4293     /// #![feature(slice_take)]
4294     ///
4295     /// let mut slice: &[_] = &['a', 'b', 'c'];
4296     /// let first = slice.take_first().unwrap();
4297     ///
4298     /// assert_eq!(slice, &['b', 'c']);
4299     /// assert_eq!(first, &'a');
4300     /// ```
4301     #[inline]
4302     #[unstable(feature = "slice_take", issue = "62280")]
take_first<'a>(self: &mut &'a Self) -> Option<&'a T>4303     pub fn take_first<'a>(self: &mut &'a Self) -> Option<&'a T> {
4304         let (first, rem) = self.split_first()?;
4305         *self = rem;
4306         Some(first)
4307     }
4308 
4309     /// Removes the first element of the slice and returns a mutable
4310     /// reference to it.
4311     ///
4312     /// Returns `None` if the slice is empty.
4313     ///
4314     /// # Examples
4315     ///
4316     /// ```
4317     /// #![feature(slice_take)]
4318     ///
4319     /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4320     /// let first = slice.take_first_mut().unwrap();
4321     /// *first = 'd';
4322     ///
4323     /// assert_eq!(slice, &['b', 'c']);
4324     /// assert_eq!(first, &'d');
4325     /// ```
4326     #[inline]
4327     #[unstable(feature = "slice_take", issue = "62280")]
take_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T>4328     pub fn take_first_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4329         let (first, rem) = mem::take(self).split_first_mut()?;
4330         *self = rem;
4331         Some(first)
4332     }
4333 
4334     /// Removes the last element of the slice and returns a reference
4335     /// to it.
4336     ///
4337     /// Returns `None` if the slice is empty.
4338     ///
4339     /// # Examples
4340     ///
4341     /// ```
4342     /// #![feature(slice_take)]
4343     ///
4344     /// let mut slice: &[_] = &['a', 'b', 'c'];
4345     /// let last = slice.take_last().unwrap();
4346     ///
4347     /// assert_eq!(slice, &['a', 'b']);
4348     /// assert_eq!(last, &'c');
4349     /// ```
4350     #[inline]
4351     #[unstable(feature = "slice_take", issue = "62280")]
take_last<'a>(self: &mut &'a Self) -> Option<&'a T>4352     pub fn take_last<'a>(self: &mut &'a Self) -> Option<&'a T> {
4353         let (last, rem) = self.split_last()?;
4354         *self = rem;
4355         Some(last)
4356     }
4357 
4358     /// Removes the last element of the slice and returns a mutable
4359     /// reference to it.
4360     ///
4361     /// Returns `None` if the slice is empty.
4362     ///
4363     /// # Examples
4364     ///
4365     /// ```
4366     /// #![feature(slice_take)]
4367     ///
4368     /// let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
4369     /// let last = slice.take_last_mut().unwrap();
4370     /// *last = 'd';
4371     ///
4372     /// assert_eq!(slice, &['a', 'b']);
4373     /// assert_eq!(last, &'d');
4374     /// ```
4375     #[inline]
4376     #[unstable(feature = "slice_take", issue = "62280")]
take_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T>4377     pub fn take_last_mut<'a>(self: &mut &'a mut Self) -> Option<&'a mut T> {
4378         let (last, rem) = mem::take(self).split_last_mut()?;
4379         *self = rem;
4380         Some(last)
4381     }
4382 
4383     /// Returns mutable references to many indices at once, without doing any checks.
4384     ///
4385     /// For a safe alternative see [`get_many_mut`].
4386     ///
4387     /// # Safety
4388     ///
4389     /// Calling this method with overlapping or out-of-bounds indices is *[undefined behavior]*
4390     /// even if the resulting references are not used.
4391     ///
4392     /// # Examples
4393     ///
4394     /// ```
4395     /// #![feature(get_many_mut)]
4396     ///
4397     /// let x = &mut [1, 2, 4];
4398     ///
4399     /// unsafe {
4400     ///     let [a, b] = x.get_many_unchecked_mut([0, 2]);
4401     ///     *a *= 10;
4402     ///     *b *= 100;
4403     /// }
4404     /// assert_eq!(x, &[10, 2, 400]);
4405     /// ```
4406     ///
4407     /// [`get_many_mut`]: slice::get_many_mut
4408     /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
4409     #[unstable(feature = "get_many_mut", issue = "104642")]
4410     #[inline]
get_many_unchecked_mut<const N: usize>( &mut self, indices: [usize; N], ) -> [&mut T; N]4411     pub unsafe fn get_many_unchecked_mut<const N: usize>(
4412         &mut self,
4413         indices: [usize; N],
4414     ) -> [&mut T; N] {
4415         // NB: This implementation is written as it is because any variation of
4416         // `indices.map(|i| self.get_unchecked_mut(i))` would make miri unhappy,
4417         // or generate worse code otherwise. This is also why we need to go
4418         // through a raw pointer here.
4419         let slice: *mut [T] = self;
4420         let mut arr: mem::MaybeUninit<[&mut T; N]> = mem::MaybeUninit::uninit();
4421         let arr_ptr = arr.as_mut_ptr();
4422 
4423         // SAFETY: We expect `indices` to contain disjunct values that are
4424         // in bounds of `self`.
4425         unsafe {
4426             for i in 0..N {
4427                 let idx = *indices.get_unchecked(i);
4428                 *(*arr_ptr).get_unchecked_mut(i) = &mut *slice.get_unchecked_mut(idx);
4429             }
4430             arr.assume_init()
4431         }
4432     }
4433 
4434     /// Returns mutable references to many indices at once.
4435     ///
4436     /// Returns an error if any index is out-of-bounds, or if the same index was
4437     /// passed more than once.
4438     ///
4439     /// # Examples
4440     ///
4441     /// ```
4442     /// #![feature(get_many_mut)]
4443     ///
4444     /// let v = &mut [1, 2, 3];
4445     /// if let Ok([a, b]) = v.get_many_mut([0, 2]) {
4446     ///     *a = 413;
4447     ///     *b = 612;
4448     /// }
4449     /// assert_eq!(v, &[413, 2, 612]);
4450     /// ```
4451     #[unstable(feature = "get_many_mut", issue = "104642")]
4452     #[inline]
get_many_mut<const N: usize>( &mut self, indices: [usize; N], ) -> Result<[&mut T; N], GetManyMutError<N>>4453     pub fn get_many_mut<const N: usize>(
4454         &mut self,
4455         indices: [usize; N],
4456     ) -> Result<[&mut T; N], GetManyMutError<N>> {
4457         if !get_many_check_valid(&indices, self.len()) {
4458             return Err(GetManyMutError { _private: () });
4459         }
4460         // SAFETY: The `get_many_check_valid()` call checked that all indices
4461         // are disjunct and in bounds.
4462         unsafe { Ok(self.get_many_unchecked_mut(indices)) }
4463     }
4464 }
4465 
4466 impl<T, const N: usize> [[T; N]] {
4467     /// Takes a `&[[T; N]]`, and flattens it to a `&[T]`.
4468     ///
4469     /// # Panics
4470     ///
4471     /// This panics if the length of the resulting slice would overflow a `usize`.
4472     ///
4473     /// This is only possible when flattening a slice of arrays of zero-sized
4474     /// types, and thus tends to be irrelevant in practice. If
4475     /// `size_of::<T>() > 0`, this will never panic.
4476     ///
4477     /// # Examples
4478     ///
4479     /// ```
4480     /// #![feature(slice_flatten)]
4481     ///
4482     /// assert_eq!([[1, 2, 3], [4, 5, 6]].flatten(), &[1, 2, 3, 4, 5, 6]);
4483     ///
4484     /// assert_eq!(
4485     ///     [[1, 2, 3], [4, 5, 6]].flatten(),
4486     ///     [[1, 2], [3, 4], [5, 6]].flatten(),
4487     /// );
4488     ///
4489     /// let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
4490     /// assert!(slice_of_empty_arrays.flatten().is_empty());
4491     ///
4492     /// let empty_slice_of_arrays: &[[u32; 10]] = &[];
4493     /// assert!(empty_slice_of_arrays.flatten().is_empty());
4494     /// ```
4495     #[unstable(feature = "slice_flatten", issue = "95629")]
flatten(&self) -> &[T]4496     pub const fn flatten(&self) -> &[T] {
4497         let len = if T::IS_ZST {
4498             self.len().checked_mul(N).expect("slice len overflow")
4499         } else {
4500             // SAFETY: `self.len() * N` cannot overflow because `self` is
4501             // already in the address space.
4502             unsafe { self.len().unchecked_mul(N) }
4503         };
4504         // SAFETY: `[T]` is layout-identical to `[T; N]`
4505         unsafe { from_raw_parts(self.as_ptr().cast(), len) }
4506     }
4507 
4508     /// Takes a `&mut [[T; N]]`, and flattens it to a `&mut [T]`.
4509     ///
4510     /// # Panics
4511     ///
4512     /// This panics if the length of the resulting slice would overflow a `usize`.
4513     ///
4514     /// This is only possible when flattening a slice of arrays of zero-sized
4515     /// types, and thus tends to be irrelevant in practice. If
4516     /// `size_of::<T>() > 0`, this will never panic.
4517     ///
4518     /// # Examples
4519     ///
4520     /// ```
4521     /// #![feature(slice_flatten)]
4522     ///
4523     /// fn add_5_to_all(slice: &mut [i32]) {
4524     ///     for i in slice {
4525     ///         *i += 5;
4526     ///     }
4527     /// }
4528     ///
4529     /// let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
4530     /// add_5_to_all(array.flatten_mut());
4531     /// assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
4532     /// ```
4533     #[unstable(feature = "slice_flatten", issue = "95629")]
flatten_mut(&mut self) -> &mut [T]4534     pub fn flatten_mut(&mut self) -> &mut [T] {
4535         let len = if T::IS_ZST {
4536             self.len().checked_mul(N).expect("slice len overflow")
4537         } else {
4538             // SAFETY: `self.len() * N` cannot overflow because `self` is
4539             // already in the address space.
4540             unsafe { self.len().unchecked_mul(N) }
4541         };
4542         // SAFETY: `[T]` is layout-identical to `[T; N]`
4543         unsafe { from_raw_parts_mut(self.as_mut_ptr().cast(), len) }
4544     }
4545 }
4546 
4547 #[cfg(not(test))]
4548 impl [f32] {
4549     /// Sorts the slice of floats.
4550     ///
4551     /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
4552     /// the ordering defined by [`f32::total_cmp`].
4553     ///
4554     /// # Current implementation
4555     ///
4556     /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
4557     ///
4558     /// # Examples
4559     ///
4560     /// ```
4561     /// #![feature(sort_floats)]
4562     /// let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
4563     ///
4564     /// v.sort_floats();
4565     /// let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
4566     /// assert_eq!(&v[..8], &sorted[..8]);
4567     /// assert!(v[8].is_nan());
4568     /// ```
4569     #[unstable(feature = "sort_floats", issue = "93396")]
4570     #[inline]
sort_floats(&mut self)4571     pub fn sort_floats(&mut self) {
4572         self.sort_unstable_by(f32::total_cmp);
4573     }
4574 }
4575 
4576 #[cfg(not(test))]
4577 impl [f64] {
4578     /// Sorts the slice of floats.
4579     ///
4580     /// This sort is in-place (i.e. does not allocate), *O*(*n* \* log(*n*)) worst-case, and uses
4581     /// the ordering defined by [`f64::total_cmp`].
4582     ///
4583     /// # Current implementation
4584     ///
4585     /// This uses the same sorting algorithm as [`sort_unstable_by`](slice::sort_unstable_by).
4586     ///
4587     /// # Examples
4588     ///
4589     /// ```
4590     /// #![feature(sort_floats)]
4591     /// let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
4592     ///
4593     /// v.sort_floats();
4594     /// let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
4595     /// assert_eq!(&v[..8], &sorted[..8]);
4596     /// assert!(v[8].is_nan());
4597     /// ```
4598     #[unstable(feature = "sort_floats", issue = "93396")]
4599     #[inline]
sort_floats(&mut self)4600     pub fn sort_floats(&mut self) {
4601         self.sort_unstable_by(f64::total_cmp);
4602     }
4603 }
4604 
4605 trait CloneFromSpec<T> {
spec_clone_from(&mut self, src: &[T])4606     fn spec_clone_from(&mut self, src: &[T]);
4607 }
4608 
4609 impl<T> CloneFromSpec<T> for [T]
4610 where
4611     T: Clone,
4612 {
4613     #[track_caller]
spec_clone_from(&mut self, src: &[T])4614     default fn spec_clone_from(&mut self, src: &[T]) {
4615         assert!(self.len() == src.len(), "destination and source slices have different lengths");
4616         // NOTE: We need to explicitly slice them to the same length
4617         // to make it easier for the optimizer to elide bounds checking.
4618         // But since it can't be relied on we also have an explicit specialization for T: Copy.
4619         let len = self.len();
4620         let src = &src[..len];
4621         for i in 0..len {
4622             self[i].clone_from(&src[i]);
4623         }
4624     }
4625 }
4626 
4627 impl<T> CloneFromSpec<T> for [T]
4628 where
4629     T: Copy,
4630 {
4631     #[track_caller]
spec_clone_from(&mut self, src: &[T])4632     fn spec_clone_from(&mut self, src: &[T]) {
4633         self.copy_from_slice(src);
4634     }
4635 }
4636 
4637 #[stable(feature = "rust1", since = "1.0.0")]
4638 impl<T> Default for &[T] {
4639     /// Creates an empty slice.
default() -> Self4640     fn default() -> Self {
4641         &[]
4642     }
4643 }
4644 
4645 #[stable(feature = "mut_slice_default", since = "1.5.0")]
4646 impl<T> Default for &mut [T] {
4647     /// Creates a mutable empty slice.
default() -> Self4648     fn default() -> Self {
4649         &mut []
4650     }
4651 }
4652 
4653 #[unstable(feature = "slice_pattern", reason = "stopgap trait for slice patterns", issue = "56345")]
4654 /// Patterns in slices - currently, only used by `strip_prefix` and `strip_suffix`.  At a future
4655 /// point, we hope to generalise `core::str::Pattern` (which at the time of writing is limited to
4656 /// `str`) to slices, and then this trait will be replaced or abolished.
4657 pub trait SlicePattern {
4658     /// The element type of the slice being matched on.
4659     type Item;
4660 
4661     /// Currently, the consumers of `SlicePattern` need a slice.
as_slice(&self) -> &[Self::Item]4662     fn as_slice(&self) -> &[Self::Item];
4663 }
4664 
4665 #[stable(feature = "slice_strip", since = "1.51.0")]
4666 impl<T> SlicePattern for [T] {
4667     type Item = T;
4668 
4669     #[inline]
as_slice(&self) -> &[Self::Item]4670     fn as_slice(&self) -> &[Self::Item] {
4671         self
4672     }
4673 }
4674 
4675 #[stable(feature = "slice_strip", since = "1.51.0")]
4676 impl<T, const N: usize> SlicePattern for [T; N] {
4677     type Item = T;
4678 
4679     #[inline]
as_slice(&self) -> &[Self::Item]4680     fn as_slice(&self) -> &[Self::Item] {
4681         self
4682     }
4683 }
4684 
4685 /// This checks every index against each other, and against `len`.
4686 ///
4687 /// This will do `binomial(N + 1, 2) = N * (N + 1) / 2 = 0, 1, 3, 6, 10, ..`
4688 /// comparison operations.
get_many_check_valid<const N: usize>(indices: &[usize; N], len: usize) -> bool4689 fn get_many_check_valid<const N: usize>(indices: &[usize; N], len: usize) -> bool {
4690     // NB: The optimizer should inline the loops into a sequence
4691     // of instructions without additional branching.
4692     let mut valid = true;
4693     for (i, &idx) in indices.iter().enumerate() {
4694         valid &= idx < len;
4695         for &idx2 in &indices[..i] {
4696             valid &= idx != idx2;
4697         }
4698     }
4699     valid
4700 }
4701 
4702 /// The error type returned by [`get_many_mut<N>`][`slice::get_many_mut`].
4703 ///
4704 /// It indicates one of two possible errors:
4705 /// - An index is out-of-bounds.
4706 /// - The same index appeared multiple times in the array.
4707 ///
4708 /// # Examples
4709 ///
4710 /// ```
4711 /// #![feature(get_many_mut)]
4712 ///
4713 /// let v = &mut [1, 2, 3];
4714 /// assert!(v.get_many_mut([0, 999]).is_err());
4715 /// assert!(v.get_many_mut([1, 1]).is_err());
4716 /// ```
4717 #[unstable(feature = "get_many_mut", issue = "104642")]
4718 // NB: The N here is there to be forward-compatible with adding more details
4719 // to the error type at a later point
4720 pub struct GetManyMutError<const N: usize> {
4721     _private: (),
4722 }
4723 
4724 #[unstable(feature = "get_many_mut", issue = "104642")]
4725 impl<const N: usize> fmt::Debug for GetManyMutError<N> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result4726     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4727         f.debug_struct("GetManyMutError").finish_non_exhaustive()
4728     }
4729 }
4730 
4731 #[unstable(feature = "get_many_mut", issue = "104642")]
4732 impl<const N: usize> fmt::Display for GetManyMutError<N> {
fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result4733     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4734         fmt::Display::fmt("an index is out of bounds or appeared multiple times in the array", f)
4735     }
4736 }
4737