• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //! Compiler intrinsics.
2 //!
3 //! The corresponding definitions are in <https://github.com/rust-lang/rust/blob/master/compiler/rustc_codegen_llvm/src/intrinsic.rs>.
4 //! The corresponding const implementations are in <https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/intrinsics.rs>.
5 //!
6 //! # Const intrinsics
7 //!
8 //! Note: any changes to the constness of intrinsics should be discussed with the language team.
9 //! This includes changes in the stability of the constness.
10 //!
11 //! In order to make an intrinsic usable at compile-time, one needs to copy the implementation
12 //! from <https://github.com/rust-lang/miri/blob/master/src/shims/intrinsics.rs> to
13 //! <https://github.com/rust-lang/rust/blob/master/compiler/rustc_const_eval/src/interpret/intrinsics.rs> and add a
14 //! `#[rustc_const_unstable(feature = "const_such_and_such", issue = "01234")]` to the intrinsic declaration.
15 //!
16 //! If an intrinsic is supposed to be used from a `const fn` with a `rustc_const_stable` attribute,
17 //! the intrinsic's attribute must be `rustc_const_stable`, too. Such a change should not be done
18 //! without T-lang consultation, because it bakes a feature into the language that cannot be
19 //! replicated in user code without compiler support.
20 //!
21 //! # Volatiles
22 //!
23 //! The volatile intrinsics provide operations intended to act on I/O
24 //! memory, which are guaranteed to not be reordered by the compiler
25 //! across other volatile intrinsics. See the LLVM documentation on
26 //! [[volatile]].
27 //!
28 //! [volatile]: https://llvm.org/docs/LangRef.html#volatile-memory-accesses
29 //!
30 //! # Atomics
31 //!
32 //! The atomic intrinsics provide common atomic operations on machine
33 //! words, with multiple possible memory orderings. They obey the same
34 //! semantics as C++11. See the LLVM documentation on [[atomics]].
35 //!
36 //! [atomics]: https://llvm.org/docs/Atomics.html
37 //!
38 //! A quick refresher on memory ordering:
39 //!
40 //! * Acquire - a barrier for acquiring a lock. Subsequent reads and writes
41 //!   take place after the barrier.
42 //! * Release - a barrier for releasing a lock. Preceding reads and writes
43 //!   take place before the barrier.
44 //! * Sequentially consistent - sequentially consistent operations are
45 //!   guaranteed to happen in order. This is the standard mode for working
46 //!   with atomic types and is equivalent to Java's `volatile`.
47 
48 #![unstable(
49     feature = "core_intrinsics",
50     reason = "intrinsics are unlikely to ever be stabilized, instead \
51                       they should be used through stabilized interfaces \
52                       in the rest of the standard library",
53     issue = "none"
54 )]
55 #![allow(missing_docs)]
56 
57 use crate::marker::DiscriminantKind;
58 use crate::marker::Tuple;
59 use crate::mem;
60 
61 pub mod mir;
62 
63 // These imports are used for simplifying intra-doc links
64 #[allow(unused_imports)]
65 #[cfg(all(target_has_atomic = "8", target_has_atomic = "32", target_has_atomic = "ptr"))]
66 use crate::sync::atomic::{self, AtomicBool, AtomicI32, AtomicIsize, AtomicU32, Ordering};
67 
68 #[stable(feature = "drop_in_place", since = "1.8.0")]
69 #[rustc_allowed_through_unstable_modules]
70 #[deprecated(note = "no longer an intrinsic - use `ptr::drop_in_place` directly", since = "1.52.0")]
71 #[inline]
drop_in_place<T: ?Sized>(to_drop: *mut T)72 pub unsafe fn drop_in_place<T: ?Sized>(to_drop: *mut T) {
73     // SAFETY: see `ptr::drop_in_place`
74     unsafe { crate::ptr::drop_in_place(to_drop) }
75 }
76 
77 extern "rust-intrinsic" {
78     // N.B., these intrinsics take raw pointers because they mutate aliased
79     // memory, which is not valid for either `&` or `&mut`.
80 
81     /// Stores a value if the current value is the same as the `old` value.
82     ///
83     /// The stabilized version of this intrinsic is available on the
84     /// [`atomic`] types via the `compare_exchange` method by passing
85     /// [`Ordering::Relaxed`] as both the success and failure parameters.
86     /// For example, [`AtomicBool::compare_exchange`].
87     #[rustc_nounwind]
atomic_cxchg_relaxed_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)88     pub fn atomic_cxchg_relaxed_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
89     /// Stores a value if the current value is the same as the `old` value.
90     ///
91     /// The stabilized version of this intrinsic is available on the
92     /// [`atomic`] types via the `compare_exchange` method by passing
93     /// [`Ordering::Relaxed`] and [`Ordering::Acquire`] as the success and failure parameters.
94     /// For example, [`AtomicBool::compare_exchange`].
95     #[rustc_nounwind]
atomic_cxchg_relaxed_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)96     pub fn atomic_cxchg_relaxed_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
97     /// Stores a value if the current value is the same as the `old` value.
98     ///
99     /// The stabilized version of this intrinsic is available on the
100     /// [`atomic`] types via the `compare_exchange` method by passing
101     /// [`Ordering::Relaxed`] and [`Ordering::SeqCst`] as the success and failure parameters.
102     /// For example, [`AtomicBool::compare_exchange`].
103     #[rustc_nounwind]
atomic_cxchg_relaxed_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)104     pub fn atomic_cxchg_relaxed_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
105     /// Stores a value if the current value is the same as the `old` value.
106     ///
107     /// The stabilized version of this intrinsic is available on the
108     /// [`atomic`] types via the `compare_exchange` method by passing
109     /// [`Ordering::Acquire`] and [`Ordering::Relaxed`] as the success and failure parameters.
110     /// For example, [`AtomicBool::compare_exchange`].
111     #[rustc_nounwind]
atomic_cxchg_acquire_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)112     pub fn atomic_cxchg_acquire_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
113     /// Stores a value if the current value is the same as the `old` value.
114     ///
115     /// The stabilized version of this intrinsic is available on the
116     /// [`atomic`] types via the `compare_exchange` method by passing
117     /// [`Ordering::Acquire`] as both the success and failure parameters.
118     /// For example, [`AtomicBool::compare_exchange`].
119     #[rustc_nounwind]
atomic_cxchg_acquire_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)120     pub fn atomic_cxchg_acquire_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
121     /// Stores a value if the current value is the same as the `old` value.
122     ///
123     /// The stabilized version of this intrinsic is available on the
124     /// [`atomic`] types via the `compare_exchange` method by passing
125     /// [`Ordering::Acquire`] and [`Ordering::SeqCst`] as the success and failure parameters.
126     /// For example, [`AtomicBool::compare_exchange`].
127     #[rustc_nounwind]
atomic_cxchg_acquire_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)128     pub fn atomic_cxchg_acquire_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
129     /// Stores a value if the current value is the same as the `old` value.
130     ///
131     /// The stabilized version of this intrinsic is available on the
132     /// [`atomic`] types via the `compare_exchange` method by passing
133     /// [`Ordering::Release`] and [`Ordering::Relaxed`] as the success and failure parameters.
134     /// For example, [`AtomicBool::compare_exchange`].
135     #[rustc_nounwind]
atomic_cxchg_release_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)136     pub fn atomic_cxchg_release_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
137     /// Stores a value if the current value is the same as the `old` value.
138     ///
139     /// The stabilized version of this intrinsic is available on the
140     /// [`atomic`] types via the `compare_exchange` method by passing
141     /// [`Ordering::Release`] and [`Ordering::Acquire`] as the success and failure parameters.
142     /// For example, [`AtomicBool::compare_exchange`].
143     #[rustc_nounwind]
atomic_cxchg_release_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)144     pub fn atomic_cxchg_release_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
145     /// Stores a value if the current value is the same as the `old` value.
146     ///
147     /// The stabilized version of this intrinsic is available on the
148     /// [`atomic`] types via the `compare_exchange` method by passing
149     /// [`Ordering::Release`] and [`Ordering::SeqCst`] as the success and failure parameters.
150     /// For example, [`AtomicBool::compare_exchange`].
151     #[rustc_nounwind]
atomic_cxchg_release_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)152     pub fn atomic_cxchg_release_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
153     /// Stores a value if the current value is the same as the `old` value.
154     ///
155     /// The stabilized version of this intrinsic is available on the
156     /// [`atomic`] types via the `compare_exchange` method by passing
157     /// [`Ordering::AcqRel`] and [`Ordering::Relaxed`] as the success and failure parameters.
158     /// For example, [`AtomicBool::compare_exchange`].
159     #[rustc_nounwind]
atomic_cxchg_acqrel_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)160     pub fn atomic_cxchg_acqrel_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
161     /// Stores a value if the current value is the same as the `old` value.
162     ///
163     /// The stabilized version of this intrinsic is available on the
164     /// [`atomic`] types via the `compare_exchange` method by passing
165     /// [`Ordering::AcqRel`] and [`Ordering::Acquire`] as the success and failure parameters.
166     /// For example, [`AtomicBool::compare_exchange`].
167     #[rustc_nounwind]
atomic_cxchg_acqrel_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)168     pub fn atomic_cxchg_acqrel_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
169     /// Stores a value if the current value is the same as the `old` value.
170     ///
171     /// The stabilized version of this intrinsic is available on the
172     /// [`atomic`] types via the `compare_exchange` method by passing
173     /// [`Ordering::AcqRel`] and [`Ordering::SeqCst`] as the success and failure parameters.
174     /// For example, [`AtomicBool::compare_exchange`].
175     #[rustc_nounwind]
atomic_cxchg_acqrel_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)176     pub fn atomic_cxchg_acqrel_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
177     /// Stores a value if the current value is the same as the `old` value.
178     ///
179     /// The stabilized version of this intrinsic is available on the
180     /// [`atomic`] types via the `compare_exchange` method by passing
181     /// [`Ordering::SeqCst`] and [`Ordering::Relaxed`] as the success and failure parameters.
182     /// For example, [`AtomicBool::compare_exchange`].
183     #[rustc_nounwind]
atomic_cxchg_seqcst_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)184     pub fn atomic_cxchg_seqcst_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
185     /// Stores a value if the current value is the same as the `old` value.
186     ///
187     /// The stabilized version of this intrinsic is available on the
188     /// [`atomic`] types via the `compare_exchange` method by passing
189     /// [`Ordering::SeqCst`] and [`Ordering::Acquire`] as the success and failure parameters.
190     /// For example, [`AtomicBool::compare_exchange`].
191     #[rustc_nounwind]
atomic_cxchg_seqcst_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)192     pub fn atomic_cxchg_seqcst_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
193     /// Stores a value if the current value is the same as the `old` value.
194     ///
195     /// The stabilized version of this intrinsic is available on the
196     /// [`atomic`] types via the `compare_exchange` method by passing
197     /// [`Ordering::SeqCst`] as both the success and failure parameters.
198     /// For example, [`AtomicBool::compare_exchange`].
199     #[rustc_nounwind]
atomic_cxchg_seqcst_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)200     pub fn atomic_cxchg_seqcst_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
201 
202     /// Stores a value if the current value is the same as the `old` value.
203     ///
204     /// The stabilized version of this intrinsic is available on the
205     /// [`atomic`] types via the `compare_exchange_weak` method by passing
206     /// [`Ordering::Relaxed`] as both the success and failure parameters.
207     /// For example, [`AtomicBool::compare_exchange_weak`].
208     #[rustc_nounwind]
atomic_cxchgweak_relaxed_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)209     pub fn atomic_cxchgweak_relaxed_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
210     /// Stores a value if the current value is the same as the `old` value.
211     ///
212     /// The stabilized version of this intrinsic is available on the
213     /// [`atomic`] types via the `compare_exchange_weak` method by passing
214     /// [`Ordering::Relaxed`] and [`Ordering::Acquire`] as the success and failure parameters.
215     /// For example, [`AtomicBool::compare_exchange_weak`].
216     #[rustc_nounwind]
atomic_cxchgweak_relaxed_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)217     pub fn atomic_cxchgweak_relaxed_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
218     /// Stores a value if the current value is the same as the `old` value.
219     ///
220     /// The stabilized version of this intrinsic is available on the
221     /// [`atomic`] types via the `compare_exchange_weak` method by passing
222     /// [`Ordering::Relaxed`] and [`Ordering::SeqCst`] as the success and failure parameters.
223     /// For example, [`AtomicBool::compare_exchange_weak`].
224     #[rustc_nounwind]
atomic_cxchgweak_relaxed_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)225     pub fn atomic_cxchgweak_relaxed_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
226     /// Stores a value if the current value is the same as the `old` value.
227     ///
228     /// The stabilized version of this intrinsic is available on the
229     /// [`atomic`] types via the `compare_exchange_weak` method by passing
230     /// [`Ordering::Acquire`] and [`Ordering::Relaxed`] as the success and failure parameters.
231     /// For example, [`AtomicBool::compare_exchange_weak`].
232     #[rustc_nounwind]
atomic_cxchgweak_acquire_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)233     pub fn atomic_cxchgweak_acquire_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
234     /// Stores a value if the current value is the same as the `old` value.
235     ///
236     /// The stabilized version of this intrinsic is available on the
237     /// [`atomic`] types via the `compare_exchange_weak` method by passing
238     /// [`Ordering::Acquire`] as both the success and failure parameters.
239     /// For example, [`AtomicBool::compare_exchange_weak`].
240     #[rustc_nounwind]
atomic_cxchgweak_acquire_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)241     pub fn atomic_cxchgweak_acquire_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
242     /// Stores a value if the current value is the same as the `old` value.
243     ///
244     /// The stabilized version of this intrinsic is available on the
245     /// [`atomic`] types via the `compare_exchange_weak` method by passing
246     /// [`Ordering::Acquire`] and [`Ordering::SeqCst`] as the success and failure parameters.
247     /// For example, [`AtomicBool::compare_exchange_weak`].
248     #[rustc_nounwind]
atomic_cxchgweak_acquire_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)249     pub fn atomic_cxchgweak_acquire_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
250     /// Stores a value if the current value is the same as the `old` value.
251     ///
252     /// The stabilized version of this intrinsic is available on the
253     /// [`atomic`] types via the `compare_exchange_weak` method by passing
254     /// [`Ordering::Release`] and [`Ordering::Relaxed`] as the success and failure parameters.
255     /// For example, [`AtomicBool::compare_exchange_weak`].
256     #[rustc_nounwind]
atomic_cxchgweak_release_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)257     pub fn atomic_cxchgweak_release_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
258     /// Stores a value if the current value is the same as the `old` value.
259     ///
260     /// The stabilized version of this intrinsic is available on the
261     /// [`atomic`] types via the `compare_exchange_weak` method by passing
262     /// [`Ordering::Release`] and [`Ordering::Acquire`] as the success and failure parameters.
263     /// For example, [`AtomicBool::compare_exchange_weak`].
264     #[rustc_nounwind]
atomic_cxchgweak_release_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)265     pub fn atomic_cxchgweak_release_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
266     /// Stores a value if the current value is the same as the `old` value.
267     ///
268     /// The stabilized version of this intrinsic is available on the
269     /// [`atomic`] types via the `compare_exchange_weak` method by passing
270     /// [`Ordering::Release`] and [`Ordering::SeqCst`] as the success and failure parameters.
271     /// For example, [`AtomicBool::compare_exchange_weak`].
272     #[rustc_nounwind]
atomic_cxchgweak_release_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)273     pub fn atomic_cxchgweak_release_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
274     /// Stores a value if the current value is the same as the `old` value.
275     ///
276     /// The stabilized version of this intrinsic is available on the
277     /// [`atomic`] types via the `compare_exchange_weak` method by passing
278     /// [`Ordering::AcqRel`] and [`Ordering::Relaxed`] as the success and failure parameters.
279     /// For example, [`AtomicBool::compare_exchange_weak`].
280     #[rustc_nounwind]
atomic_cxchgweak_acqrel_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)281     pub fn atomic_cxchgweak_acqrel_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
282     /// Stores a value if the current value is the same as the `old` value.
283     ///
284     /// The stabilized version of this intrinsic is available on the
285     /// [`atomic`] types via the `compare_exchange_weak` method by passing
286     /// [`Ordering::AcqRel`] and [`Ordering::Acquire`] as the success and failure parameters.
287     /// For example, [`AtomicBool::compare_exchange_weak`].
288     #[rustc_nounwind]
atomic_cxchgweak_acqrel_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)289     pub fn atomic_cxchgweak_acqrel_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
290     /// Stores a value if the current value is the same as the `old` value.
291     ///
292     /// The stabilized version of this intrinsic is available on the
293     /// [`atomic`] types via the `compare_exchange_weak` method by passing
294     /// [`Ordering::AcqRel`] and [`Ordering::SeqCst`] as the success and failure parameters.
295     /// For example, [`AtomicBool::compare_exchange_weak`].
296     #[rustc_nounwind]
atomic_cxchgweak_acqrel_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)297     pub fn atomic_cxchgweak_acqrel_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
298     /// Stores a value if the current value is the same as the `old` value.
299     ///
300     /// The stabilized version of this intrinsic is available on the
301     /// [`atomic`] types via the `compare_exchange_weak` method by passing
302     /// [`Ordering::SeqCst`] and [`Ordering::Relaxed`] as the success and failure parameters.
303     /// For example, [`AtomicBool::compare_exchange_weak`].
304     #[rustc_nounwind]
atomic_cxchgweak_seqcst_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)305     pub fn atomic_cxchgweak_seqcst_relaxed<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
306     /// Stores a value if the current value is the same as the `old` value.
307     ///
308     /// The stabilized version of this intrinsic is available on the
309     /// [`atomic`] types via the `compare_exchange_weak` method by passing
310     /// [`Ordering::SeqCst`] and [`Ordering::Acquire`] as the success and failure parameters.
311     /// For example, [`AtomicBool::compare_exchange_weak`].
312     #[rustc_nounwind]
atomic_cxchgweak_seqcst_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)313     pub fn atomic_cxchgweak_seqcst_acquire<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
314     /// Stores a value if the current value is the same as the `old` value.
315     ///
316     /// The stabilized version of this intrinsic is available on the
317     /// [`atomic`] types via the `compare_exchange_weak` method by passing
318     /// [`Ordering::SeqCst`] as both the success and failure parameters.
319     /// For example, [`AtomicBool::compare_exchange_weak`].
320     #[rustc_nounwind]
atomic_cxchgweak_seqcst_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool)321     pub fn atomic_cxchgweak_seqcst_seqcst<T: Copy>(dst: *mut T, old: T, src: T) -> (T, bool);
322 
323     /// Loads the current value of the pointer.
324     ///
325     /// The stabilized version of this intrinsic is available on the
326     /// [`atomic`] types via the `load` method by passing
327     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::load`].
328     #[rustc_nounwind]
atomic_load_seqcst<T: Copy>(src: *const T) -> T329     pub fn atomic_load_seqcst<T: Copy>(src: *const T) -> T;
330     /// Loads the current value of the pointer.
331     ///
332     /// The stabilized version of this intrinsic is available on the
333     /// [`atomic`] types via the `load` method by passing
334     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::load`].
335     #[rustc_nounwind]
atomic_load_acquire<T: Copy>(src: *const T) -> T336     pub fn atomic_load_acquire<T: Copy>(src: *const T) -> T;
337     /// Loads the current value of the pointer.
338     ///
339     /// The stabilized version of this intrinsic is available on the
340     /// [`atomic`] types via the `load` method by passing
341     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::load`].
342     #[rustc_nounwind]
atomic_load_relaxed<T: Copy>(src: *const T) -> T343     pub fn atomic_load_relaxed<T: Copy>(src: *const T) -> T;
344     #[rustc_nounwind]
atomic_load_unordered<T: Copy>(src: *const T) -> T345     pub fn atomic_load_unordered<T: Copy>(src: *const T) -> T;
346 
347     /// Stores the value at the specified memory location.
348     ///
349     /// The stabilized version of this intrinsic is available on the
350     /// [`atomic`] types via the `store` method by passing
351     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::store`].
352     #[rustc_nounwind]
atomic_store_seqcst<T: Copy>(dst: *mut T, val: T)353     pub fn atomic_store_seqcst<T: Copy>(dst: *mut T, val: T);
354     /// Stores the value at the specified memory location.
355     ///
356     /// The stabilized version of this intrinsic is available on the
357     /// [`atomic`] types via the `store` method by passing
358     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::store`].
359     #[rustc_nounwind]
atomic_store_release<T: Copy>(dst: *mut T, val: T)360     pub fn atomic_store_release<T: Copy>(dst: *mut T, val: T);
361     /// Stores the value at the specified memory location.
362     ///
363     /// The stabilized version of this intrinsic is available on the
364     /// [`atomic`] types via the `store` method by passing
365     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::store`].
366     #[rustc_nounwind]
atomic_store_relaxed<T: Copy>(dst: *mut T, val: T)367     pub fn atomic_store_relaxed<T: Copy>(dst: *mut T, val: T);
368     #[rustc_nounwind]
atomic_store_unordered<T: Copy>(dst: *mut T, val: T)369     pub fn atomic_store_unordered<T: Copy>(dst: *mut T, val: T);
370 
371     /// Stores the value at the specified memory location, returning the old value.
372     ///
373     /// The stabilized version of this intrinsic is available on the
374     /// [`atomic`] types via the `swap` method by passing
375     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::swap`].
376     #[rustc_nounwind]
atomic_xchg_seqcst<T: Copy>(dst: *mut T, src: T) -> T377     pub fn atomic_xchg_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
378     /// Stores the value at the specified memory location, returning the old value.
379     ///
380     /// The stabilized version of this intrinsic is available on the
381     /// [`atomic`] types via the `swap` method by passing
382     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::swap`].
383     #[rustc_nounwind]
atomic_xchg_acquire<T: Copy>(dst: *mut T, src: T) -> T384     pub fn atomic_xchg_acquire<T: Copy>(dst: *mut T, src: T) -> T;
385     /// Stores the value at the specified memory location, returning the old value.
386     ///
387     /// The stabilized version of this intrinsic is available on the
388     /// [`atomic`] types via the `swap` method by passing
389     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::swap`].
390     #[rustc_nounwind]
atomic_xchg_release<T: Copy>(dst: *mut T, src: T) -> T391     pub fn atomic_xchg_release<T: Copy>(dst: *mut T, src: T) -> T;
392     /// Stores the value at the specified memory location, returning the old value.
393     ///
394     /// The stabilized version of this intrinsic is available on the
395     /// [`atomic`] types via the `swap` method by passing
396     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::swap`].
397     #[rustc_nounwind]
atomic_xchg_acqrel<T: Copy>(dst: *mut T, src: T) -> T398     pub fn atomic_xchg_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
399     /// Stores the value at the specified memory location, returning the old value.
400     ///
401     /// The stabilized version of this intrinsic is available on the
402     /// [`atomic`] types via the `swap` method by passing
403     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::swap`].
404     #[rustc_nounwind]
atomic_xchg_relaxed<T: Copy>(dst: *mut T, src: T) -> T405     pub fn atomic_xchg_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
406 
407     /// Adds to the current value, returning the previous value.
408     ///
409     /// The stabilized version of this intrinsic is available on the
410     /// [`atomic`] types via the `fetch_add` method by passing
411     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicIsize::fetch_add`].
412     #[rustc_nounwind]
atomic_xadd_seqcst<T: Copy>(dst: *mut T, src: T) -> T413     pub fn atomic_xadd_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
414     /// Adds to the current value, returning the previous value.
415     ///
416     /// The stabilized version of this intrinsic is available on the
417     /// [`atomic`] types via the `fetch_add` method by passing
418     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicIsize::fetch_add`].
419     #[rustc_nounwind]
atomic_xadd_acquire<T: Copy>(dst: *mut T, src: T) -> T420     pub fn atomic_xadd_acquire<T: Copy>(dst: *mut T, src: T) -> T;
421     /// Adds to the current value, returning the previous value.
422     ///
423     /// The stabilized version of this intrinsic is available on the
424     /// [`atomic`] types via the `fetch_add` method by passing
425     /// [`Ordering::Release`] as the `order`. For example, [`AtomicIsize::fetch_add`].
426     #[rustc_nounwind]
atomic_xadd_release<T: Copy>(dst: *mut T, src: T) -> T427     pub fn atomic_xadd_release<T: Copy>(dst: *mut T, src: T) -> T;
428     /// Adds to the current value, returning the previous value.
429     ///
430     /// The stabilized version of this intrinsic is available on the
431     /// [`atomic`] types via the `fetch_add` method by passing
432     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicIsize::fetch_add`].
433     #[rustc_nounwind]
atomic_xadd_acqrel<T: Copy>(dst: *mut T, src: T) -> T434     pub fn atomic_xadd_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
435     /// Adds to the current value, returning the previous value.
436     ///
437     /// The stabilized version of this intrinsic is available on the
438     /// [`atomic`] types via the `fetch_add` method by passing
439     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicIsize::fetch_add`].
440     #[rustc_nounwind]
atomic_xadd_relaxed<T: Copy>(dst: *mut T, src: T) -> T441     pub fn atomic_xadd_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
442 
443     /// Subtract from the current value, returning the previous value.
444     ///
445     /// The stabilized version of this intrinsic is available on the
446     /// [`atomic`] types via the `fetch_sub` method by passing
447     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
448     #[rustc_nounwind]
atomic_xsub_seqcst<T: Copy>(dst: *mut T, src: T) -> T449     pub fn atomic_xsub_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
450     /// Subtract from the current value, returning the previous value.
451     ///
452     /// The stabilized version of this intrinsic is available on the
453     /// [`atomic`] types via the `fetch_sub` method by passing
454     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
455     #[rustc_nounwind]
atomic_xsub_acquire<T: Copy>(dst: *mut T, src: T) -> T456     pub fn atomic_xsub_acquire<T: Copy>(dst: *mut T, src: T) -> T;
457     /// Subtract from the current value, returning the previous value.
458     ///
459     /// The stabilized version of this intrinsic is available on the
460     /// [`atomic`] types via the `fetch_sub` method by passing
461     /// [`Ordering::Release`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
462     #[rustc_nounwind]
atomic_xsub_release<T: Copy>(dst: *mut T, src: T) -> T463     pub fn atomic_xsub_release<T: Copy>(dst: *mut T, src: T) -> T;
464     /// Subtract from the current value, returning the previous value.
465     ///
466     /// The stabilized version of this intrinsic is available on the
467     /// [`atomic`] types via the `fetch_sub` method by passing
468     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
469     #[rustc_nounwind]
atomic_xsub_acqrel<T: Copy>(dst: *mut T, src: T) -> T470     pub fn atomic_xsub_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
471     /// Subtract from the current value, returning the previous value.
472     ///
473     /// The stabilized version of this intrinsic is available on the
474     /// [`atomic`] types via the `fetch_sub` method by passing
475     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicIsize::fetch_sub`].
476     #[rustc_nounwind]
atomic_xsub_relaxed<T: Copy>(dst: *mut T, src: T) -> T477     pub fn atomic_xsub_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
478 
479     /// Bitwise and with the current value, returning the previous value.
480     ///
481     /// The stabilized version of this intrinsic is available on the
482     /// [`atomic`] types via the `fetch_and` method by passing
483     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_and`].
484     #[rustc_nounwind]
atomic_and_seqcst<T: Copy>(dst: *mut T, src: T) -> T485     pub fn atomic_and_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
486     /// Bitwise and with the current value, returning the previous value.
487     ///
488     /// The stabilized version of this intrinsic is available on the
489     /// [`atomic`] types via the `fetch_and` method by passing
490     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_and`].
491     #[rustc_nounwind]
atomic_and_acquire<T: Copy>(dst: *mut T, src: T) -> T492     pub fn atomic_and_acquire<T: Copy>(dst: *mut T, src: T) -> T;
493     /// Bitwise and with the current value, returning the previous value.
494     ///
495     /// The stabilized version of this intrinsic is available on the
496     /// [`atomic`] types via the `fetch_and` method by passing
497     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_and`].
498     #[rustc_nounwind]
atomic_and_release<T: Copy>(dst: *mut T, src: T) -> T499     pub fn atomic_and_release<T: Copy>(dst: *mut T, src: T) -> T;
500     /// Bitwise and with the current value, returning the previous value.
501     ///
502     /// The stabilized version of this intrinsic is available on the
503     /// [`atomic`] types via the `fetch_and` method by passing
504     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_and`].
505     #[rustc_nounwind]
atomic_and_acqrel<T: Copy>(dst: *mut T, src: T) -> T506     pub fn atomic_and_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
507     /// Bitwise and with the current value, returning the previous value.
508     ///
509     /// The stabilized version of this intrinsic is available on the
510     /// [`atomic`] types via the `fetch_and` method by passing
511     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_and`].
512     #[rustc_nounwind]
atomic_and_relaxed<T: Copy>(dst: *mut T, src: T) -> T513     pub fn atomic_and_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
514 
515     /// Bitwise nand with the current value, returning the previous value.
516     ///
517     /// The stabilized version of this intrinsic is available on the
518     /// [`AtomicBool`] type via the `fetch_nand` method by passing
519     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_nand`].
520     #[rustc_nounwind]
atomic_nand_seqcst<T: Copy>(dst: *mut T, src: T) -> T521     pub fn atomic_nand_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
522     /// Bitwise nand with the current value, returning the previous value.
523     ///
524     /// The stabilized version of this intrinsic is available on the
525     /// [`AtomicBool`] type via the `fetch_nand` method by passing
526     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_nand`].
527     #[rustc_nounwind]
atomic_nand_acquire<T: Copy>(dst: *mut T, src: T) -> T528     pub fn atomic_nand_acquire<T: Copy>(dst: *mut T, src: T) -> T;
529     /// Bitwise nand with the current value, returning the previous value.
530     ///
531     /// The stabilized version of this intrinsic is available on the
532     /// [`AtomicBool`] type via the `fetch_nand` method by passing
533     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_nand`].
534     #[rustc_nounwind]
atomic_nand_release<T: Copy>(dst: *mut T, src: T) -> T535     pub fn atomic_nand_release<T: Copy>(dst: *mut T, src: T) -> T;
536     /// Bitwise nand with the current value, returning the previous value.
537     ///
538     /// The stabilized version of this intrinsic is available on the
539     /// [`AtomicBool`] type via the `fetch_nand` method by passing
540     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_nand`].
541     #[rustc_nounwind]
atomic_nand_acqrel<T: Copy>(dst: *mut T, src: T) -> T542     pub fn atomic_nand_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
543     /// Bitwise nand with the current value, returning the previous value.
544     ///
545     /// The stabilized version of this intrinsic is available on the
546     /// [`AtomicBool`] type via the `fetch_nand` method by passing
547     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_nand`].
548     #[rustc_nounwind]
atomic_nand_relaxed<T: Copy>(dst: *mut T, src: T) -> T549     pub fn atomic_nand_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
550 
551     /// Bitwise or with the current value, returning the previous value.
552     ///
553     /// The stabilized version of this intrinsic is available on the
554     /// [`atomic`] types via the `fetch_or` method by passing
555     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_or`].
556     #[rustc_nounwind]
atomic_or_seqcst<T: Copy>(dst: *mut T, src: T) -> T557     pub fn atomic_or_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
558     /// Bitwise or with the current value, returning the previous value.
559     ///
560     /// The stabilized version of this intrinsic is available on the
561     /// [`atomic`] types via the `fetch_or` method by passing
562     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_or`].
563     #[rustc_nounwind]
atomic_or_acquire<T: Copy>(dst: *mut T, src: T) -> T564     pub fn atomic_or_acquire<T: Copy>(dst: *mut T, src: T) -> T;
565     /// Bitwise or with the current value, returning the previous value.
566     ///
567     /// The stabilized version of this intrinsic is available on the
568     /// [`atomic`] types via the `fetch_or` method by passing
569     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_or`].
570     #[rustc_nounwind]
atomic_or_release<T: Copy>(dst: *mut T, src: T) -> T571     pub fn atomic_or_release<T: Copy>(dst: *mut T, src: T) -> T;
572     /// Bitwise or with the current value, returning the previous value.
573     ///
574     /// The stabilized version of this intrinsic is available on the
575     /// [`atomic`] types via the `fetch_or` method by passing
576     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_or`].
577     #[rustc_nounwind]
atomic_or_acqrel<T: Copy>(dst: *mut T, src: T) -> T578     pub fn atomic_or_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
579     /// Bitwise or with the current value, returning the previous value.
580     ///
581     /// The stabilized version of this intrinsic is available on the
582     /// [`atomic`] types via the `fetch_or` method by passing
583     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_or`].
584     #[rustc_nounwind]
atomic_or_relaxed<T: Copy>(dst: *mut T, src: T) -> T585     pub fn atomic_or_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
586 
587     /// Bitwise xor with the current value, returning the previous value.
588     ///
589     /// The stabilized version of this intrinsic is available on the
590     /// [`atomic`] types via the `fetch_xor` method by passing
591     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicBool::fetch_xor`].
592     #[rustc_nounwind]
atomic_xor_seqcst<T: Copy>(dst: *mut T, src: T) -> T593     pub fn atomic_xor_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
594     /// Bitwise xor with the current value, returning the previous value.
595     ///
596     /// The stabilized version of this intrinsic is available on the
597     /// [`atomic`] types via the `fetch_xor` method by passing
598     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicBool::fetch_xor`].
599     #[rustc_nounwind]
atomic_xor_acquire<T: Copy>(dst: *mut T, src: T) -> T600     pub fn atomic_xor_acquire<T: Copy>(dst: *mut T, src: T) -> T;
601     /// Bitwise xor with the current value, returning the previous value.
602     ///
603     /// The stabilized version of this intrinsic is available on the
604     /// [`atomic`] types via the `fetch_xor` method by passing
605     /// [`Ordering::Release`] as the `order`. For example, [`AtomicBool::fetch_xor`].
606     #[rustc_nounwind]
atomic_xor_release<T: Copy>(dst: *mut T, src: T) -> T607     pub fn atomic_xor_release<T: Copy>(dst: *mut T, src: T) -> T;
608     /// Bitwise xor with the current value, returning the previous value.
609     ///
610     /// The stabilized version of this intrinsic is available on the
611     /// [`atomic`] types via the `fetch_xor` method by passing
612     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicBool::fetch_xor`].
613     #[rustc_nounwind]
atomic_xor_acqrel<T: Copy>(dst: *mut T, src: T) -> T614     pub fn atomic_xor_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
615     /// Bitwise xor with the current value, returning the previous value.
616     ///
617     /// The stabilized version of this intrinsic is available on the
618     /// [`atomic`] types via the `fetch_xor` method by passing
619     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicBool::fetch_xor`].
620     #[rustc_nounwind]
atomic_xor_relaxed<T: Copy>(dst: *mut T, src: T) -> T621     pub fn atomic_xor_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
622 
623     /// Maximum with the current value using a signed comparison.
624     ///
625     /// The stabilized version of this intrinsic is available on the
626     /// [`atomic`] signed integer types via the `fetch_max` method by passing
627     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicI32::fetch_max`].
628     #[rustc_nounwind]
atomic_max_seqcst<T: Copy>(dst: *mut T, src: T) -> T629     pub fn atomic_max_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
630     /// Maximum with the current value using a signed comparison.
631     ///
632     /// The stabilized version of this intrinsic is available on the
633     /// [`atomic`] signed integer types via the `fetch_max` method by passing
634     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicI32::fetch_max`].
635     #[rustc_nounwind]
atomic_max_acquire<T: Copy>(dst: *mut T, src: T) -> T636     pub fn atomic_max_acquire<T: Copy>(dst: *mut T, src: T) -> T;
637     /// Maximum with the current value using a signed comparison.
638     ///
639     /// The stabilized version of this intrinsic is available on the
640     /// [`atomic`] signed integer types via the `fetch_max` method by passing
641     /// [`Ordering::Release`] as the `order`. For example, [`AtomicI32::fetch_max`].
642     #[rustc_nounwind]
atomic_max_release<T: Copy>(dst: *mut T, src: T) -> T643     pub fn atomic_max_release<T: Copy>(dst: *mut T, src: T) -> T;
644     /// Maximum with the current value using a signed comparison.
645     ///
646     /// The stabilized version of this intrinsic is available on the
647     /// [`atomic`] signed integer types via the `fetch_max` method by passing
648     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicI32::fetch_max`].
649     #[rustc_nounwind]
atomic_max_acqrel<T: Copy>(dst: *mut T, src: T) -> T650     pub fn atomic_max_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
651     /// Maximum with the current value.
652     ///
653     /// The stabilized version of this intrinsic is available on the
654     /// [`atomic`] signed integer types via the `fetch_max` method by passing
655     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicI32::fetch_max`].
656     #[rustc_nounwind]
atomic_max_relaxed<T: Copy>(dst: *mut T, src: T) -> T657     pub fn atomic_max_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
658 
659     /// Minimum with the current value using a signed comparison.
660     ///
661     /// The stabilized version of this intrinsic is available on the
662     /// [`atomic`] signed integer types via the `fetch_min` method by passing
663     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicI32::fetch_min`].
664     #[rustc_nounwind]
atomic_min_seqcst<T: Copy>(dst: *mut T, src: T) -> T665     pub fn atomic_min_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
666     /// Minimum with the current value using a signed comparison.
667     ///
668     /// The stabilized version of this intrinsic is available on the
669     /// [`atomic`] signed integer types via the `fetch_min` method by passing
670     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicI32::fetch_min`].
671     #[rustc_nounwind]
atomic_min_acquire<T: Copy>(dst: *mut T, src: T) -> T672     pub fn atomic_min_acquire<T: Copy>(dst: *mut T, src: T) -> T;
673     /// Minimum with the current value using a signed comparison.
674     ///
675     /// The stabilized version of this intrinsic is available on the
676     /// [`atomic`] signed integer types via the `fetch_min` method by passing
677     /// [`Ordering::Release`] as the `order`. For example, [`AtomicI32::fetch_min`].
678     #[rustc_nounwind]
atomic_min_release<T: Copy>(dst: *mut T, src: T) -> T679     pub fn atomic_min_release<T: Copy>(dst: *mut T, src: T) -> T;
680     /// Minimum with the current value using a signed comparison.
681     ///
682     /// The stabilized version of this intrinsic is available on the
683     /// [`atomic`] signed integer types via the `fetch_min` method by passing
684     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicI32::fetch_min`].
atomic_min_acqrel<T: Copy>(dst: *mut T, src: T) -> T685     pub fn atomic_min_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
686     /// Minimum with the current value using a signed comparison.
687     ///
688     /// The stabilized version of this intrinsic is available on the
689     /// [`atomic`] signed integer types via the `fetch_min` method by passing
690     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicI32::fetch_min`].
691     #[rustc_nounwind]
atomic_min_relaxed<T: Copy>(dst: *mut T, src: T) -> T692     pub fn atomic_min_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
693 
694     /// Minimum with the current value using an unsigned comparison.
695     ///
696     /// The stabilized version of this intrinsic is available on the
697     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
698     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicU32::fetch_min`].
699     #[rustc_nounwind]
atomic_umin_seqcst<T: Copy>(dst: *mut T, src: T) -> T700     pub fn atomic_umin_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
701     /// Minimum with the current value using an unsigned comparison.
702     ///
703     /// The stabilized version of this intrinsic is available on the
704     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
705     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicU32::fetch_min`].
706     #[rustc_nounwind]
atomic_umin_acquire<T: Copy>(dst: *mut T, src: T) -> T707     pub fn atomic_umin_acquire<T: Copy>(dst: *mut T, src: T) -> T;
708     /// Minimum with the current value using an unsigned comparison.
709     ///
710     /// The stabilized version of this intrinsic is available on the
711     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
712     /// [`Ordering::Release`] as the `order`. For example, [`AtomicU32::fetch_min`].
713     #[rustc_nounwind]
atomic_umin_release<T: Copy>(dst: *mut T, src: T) -> T714     pub fn atomic_umin_release<T: Copy>(dst: *mut T, src: T) -> T;
715     /// Minimum with the current value using an unsigned comparison.
716     ///
717     /// The stabilized version of this intrinsic is available on the
718     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
719     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicU32::fetch_min`].
720     #[rustc_nounwind]
atomic_umin_acqrel<T: Copy>(dst: *mut T, src: T) -> T721     pub fn atomic_umin_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
722     /// Minimum with the current value using an unsigned comparison.
723     ///
724     /// The stabilized version of this intrinsic is available on the
725     /// [`atomic`] unsigned integer types via the `fetch_min` method by passing
726     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicU32::fetch_min`].
727     #[rustc_nounwind]
atomic_umin_relaxed<T: Copy>(dst: *mut T, src: T) -> T728     pub fn atomic_umin_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
729 
730     /// Maximum with the current value using an unsigned comparison.
731     ///
732     /// The stabilized version of this intrinsic is available on the
733     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
734     /// [`Ordering::SeqCst`] as the `order`. For example, [`AtomicU32::fetch_max`].
735     #[rustc_nounwind]
atomic_umax_seqcst<T: Copy>(dst: *mut T, src: T) -> T736     pub fn atomic_umax_seqcst<T: Copy>(dst: *mut T, src: T) -> T;
737     /// Maximum with the current value using an unsigned comparison.
738     ///
739     /// The stabilized version of this intrinsic is available on the
740     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
741     /// [`Ordering::Acquire`] as the `order`. For example, [`AtomicU32::fetch_max`].
742     #[rustc_nounwind]
atomic_umax_acquire<T: Copy>(dst: *mut T, src: T) -> T743     pub fn atomic_umax_acquire<T: Copy>(dst: *mut T, src: T) -> T;
744     /// Maximum with the current value using an unsigned comparison.
745     ///
746     /// The stabilized version of this intrinsic is available on the
747     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
748     /// [`Ordering::Release`] as the `order`. For example, [`AtomicU32::fetch_max`].
749     #[rustc_nounwind]
atomic_umax_release<T: Copy>(dst: *mut T, src: T) -> T750     pub fn atomic_umax_release<T: Copy>(dst: *mut T, src: T) -> T;
751     /// Maximum with the current value using an unsigned comparison.
752     ///
753     /// The stabilized version of this intrinsic is available on the
754     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
755     /// [`Ordering::AcqRel`] as the `order`. For example, [`AtomicU32::fetch_max`].
756     #[rustc_nounwind]
atomic_umax_acqrel<T: Copy>(dst: *mut T, src: T) -> T757     pub fn atomic_umax_acqrel<T: Copy>(dst: *mut T, src: T) -> T;
758     /// Maximum with the current value using an unsigned comparison.
759     ///
760     /// The stabilized version of this intrinsic is available on the
761     /// [`atomic`] unsigned integer types via the `fetch_max` method by passing
762     /// [`Ordering::Relaxed`] as the `order`. For example, [`AtomicU32::fetch_max`].
763     #[rustc_nounwind]
atomic_umax_relaxed<T: Copy>(dst: *mut T, src: T) -> T764     pub fn atomic_umax_relaxed<T: Copy>(dst: *mut T, src: T) -> T;
765 
766     /// An atomic fence.
767     ///
768     /// The stabilized version of this intrinsic is available in
769     /// [`atomic::fence`] by passing [`Ordering::SeqCst`]
770     /// as the `order`.
771     #[rustc_nounwind]
atomic_fence_seqcst()772     pub fn atomic_fence_seqcst();
773     /// An atomic fence.
774     ///
775     /// The stabilized version of this intrinsic is available in
776     /// [`atomic::fence`] by passing [`Ordering::Acquire`]
777     /// as the `order`.
778     #[rustc_nounwind]
atomic_fence_acquire()779     pub fn atomic_fence_acquire();
780     /// An atomic fence.
781     ///
782     /// The stabilized version of this intrinsic is available in
783     /// [`atomic::fence`] by passing [`Ordering::Release`]
784     /// as the `order`.
785     #[rustc_nounwind]
atomic_fence_release()786     pub fn atomic_fence_release();
787     /// An atomic fence.
788     ///
789     /// The stabilized version of this intrinsic is available in
790     /// [`atomic::fence`] by passing [`Ordering::AcqRel`]
791     /// as the `order`.
792     #[rustc_nounwind]
atomic_fence_acqrel()793     pub fn atomic_fence_acqrel();
794 
795     /// A compiler-only memory barrier.
796     ///
797     /// Memory accesses will never be reordered across this barrier by the
798     /// compiler, but no instructions will be emitted for it. This is
799     /// appropriate for operations on the same thread that may be preempted,
800     /// such as when interacting with signal handlers.
801     ///
802     /// The stabilized version of this intrinsic is available in
803     /// [`atomic::compiler_fence`] by passing [`Ordering::SeqCst`]
804     /// as the `order`.
805     #[rustc_nounwind]
atomic_singlethreadfence_seqcst()806     pub fn atomic_singlethreadfence_seqcst();
807     /// A compiler-only memory barrier.
808     ///
809     /// Memory accesses will never be reordered across this barrier by the
810     /// compiler, but no instructions will be emitted for it. This is
811     /// appropriate for operations on the same thread that may be preempted,
812     /// such as when interacting with signal handlers.
813     ///
814     /// The stabilized version of this intrinsic is available in
815     /// [`atomic::compiler_fence`] by passing [`Ordering::Acquire`]
816     /// as the `order`.
817     #[rustc_nounwind]
atomic_singlethreadfence_acquire()818     pub fn atomic_singlethreadfence_acquire();
819     /// A compiler-only memory barrier.
820     ///
821     /// Memory accesses will never be reordered across this barrier by the
822     /// compiler, but no instructions will be emitted for it. This is
823     /// appropriate for operations on the same thread that may be preempted,
824     /// such as when interacting with signal handlers.
825     ///
826     /// The stabilized version of this intrinsic is available in
827     /// [`atomic::compiler_fence`] by passing [`Ordering::Release`]
828     /// as the `order`.
829     #[rustc_nounwind]
atomic_singlethreadfence_release()830     pub fn atomic_singlethreadfence_release();
831     /// A compiler-only memory barrier.
832     ///
833     /// Memory accesses will never be reordered across this barrier by the
834     /// compiler, but no instructions will be emitted for it. This is
835     /// appropriate for operations on the same thread that may be preempted,
836     /// such as when interacting with signal handlers.
837     ///
838     /// The stabilized version of this intrinsic is available in
839     /// [`atomic::compiler_fence`] by passing [`Ordering::AcqRel`]
840     /// as the `order`.
841     #[rustc_nounwind]
atomic_singlethreadfence_acqrel()842     pub fn atomic_singlethreadfence_acqrel();
843 
844     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
845     /// if supported; otherwise, it is a no-op.
846     /// Prefetches have no effect on the behavior of the program but can change its performance
847     /// characteristics.
848     ///
849     /// The `locality` argument must be a constant integer and is a temporal locality specifier
850     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
851     ///
852     /// This intrinsic does not have a stable counterpart.
853     #[rustc_nounwind]
prefetch_read_data<T>(data: *const T, locality: i32)854     pub fn prefetch_read_data<T>(data: *const T, locality: i32);
855     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
856     /// if supported; otherwise, it is a no-op.
857     /// Prefetches have no effect on the behavior of the program but can change its performance
858     /// characteristics.
859     ///
860     /// The `locality` argument must be a constant integer and is a temporal locality specifier
861     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
862     ///
863     /// This intrinsic does not have a stable counterpart.
864     #[rustc_nounwind]
prefetch_write_data<T>(data: *const T, locality: i32)865     pub fn prefetch_write_data<T>(data: *const T, locality: i32);
866     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
867     /// if supported; otherwise, it is a no-op.
868     /// Prefetches have no effect on the behavior of the program but can change its performance
869     /// characteristics.
870     ///
871     /// The `locality` argument must be a constant integer and is a temporal locality specifier
872     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
873     ///
874     /// This intrinsic does not have a stable counterpart.
875     #[rustc_nounwind]
prefetch_read_instruction<T>(data: *const T, locality: i32)876     pub fn prefetch_read_instruction<T>(data: *const T, locality: i32);
877     /// The `prefetch` intrinsic is a hint to the code generator to insert a prefetch instruction
878     /// if supported; otherwise, it is a no-op.
879     /// Prefetches have no effect on the behavior of the program but can change its performance
880     /// characteristics.
881     ///
882     /// The `locality` argument must be a constant integer and is a temporal locality specifier
883     /// ranging from (0) - no locality, to (3) - extremely local keep in cache.
884     ///
885     /// This intrinsic does not have a stable counterpart.
886     #[rustc_nounwind]
prefetch_write_instruction<T>(data: *const T, locality: i32)887     pub fn prefetch_write_instruction<T>(data: *const T, locality: i32);
888 
889     /// Magic intrinsic that derives its meaning from attributes
890     /// attached to the function.
891     ///
892     /// For example, dataflow uses this to inject static assertions so
893     /// that `rustc_peek(potentially_uninitialized)` would actually
894     /// double-check that dataflow did indeed compute that it is
895     /// uninitialized at that point in the control flow.
896     ///
897     /// This intrinsic should not be used outside of the compiler.
898     #[rustc_safe_intrinsic]
899     #[rustc_nounwind]
rustc_peek<T>(_: T) -> T900     pub fn rustc_peek<T>(_: T) -> T;
901 
902     /// Aborts the execution of the process.
903     ///
904     /// Note that, unlike most intrinsics, this is safe to call;
905     /// it does not require an `unsafe` block.
906     /// Therefore, implementations must not require the user to uphold
907     /// any safety invariants.
908     ///
909     /// [`std::process::abort`](../../std/process/fn.abort.html) is to be preferred if possible,
910     /// as its behavior is more user-friendly and more stable.
911     ///
912     /// The current implementation of `intrinsics::abort` is to invoke an invalid instruction,
913     /// on most platforms.
914     /// On Unix, the
915     /// process will probably terminate with a signal like `SIGABRT`, `SIGILL`, `SIGTRAP`, `SIGSEGV` or
916     /// `SIGBUS`.  The precise behaviour is not guaranteed and not stable.
917     #[rustc_safe_intrinsic]
918     #[rustc_nounwind]
abort() -> !919     pub fn abort() -> !;
920 
921     /// Informs the optimizer that this point in the code is not reachable,
922     /// enabling further optimizations.
923     ///
924     /// N.B., this is very different from the `unreachable!()` macro: Unlike the
925     /// macro, which panics when it is executed, it is *undefined behavior* to
926     /// reach code marked with this function.
927     ///
928     /// The stabilized version of this intrinsic is [`core::hint::unreachable_unchecked`].
929     #[rustc_const_stable(feature = "const_unreachable_unchecked", since = "1.57.0")]
930     #[rustc_nounwind]
unreachable() -> !931     pub fn unreachable() -> !;
932 
933     /// Informs the optimizer that a condition is always true.
934     /// If the condition is false, the behavior is undefined.
935     ///
936     /// No code is generated for this intrinsic, but the optimizer will try
937     /// to preserve it (and its condition) between passes, which may interfere
938     /// with optimization of surrounding code and reduce performance. It should
939     /// not be used if the invariant can be discovered by the optimizer on its
940     /// own, or if it does not enable any significant optimizations.
941     ///
942     /// This intrinsic does not have a stable counterpart.
943     #[rustc_const_unstable(feature = "const_assume", issue = "76972")]
944     #[rustc_nounwind]
assume(b: bool)945     pub fn assume(b: bool);
946 
947     /// Hints to the compiler that branch condition is likely to be true.
948     /// Returns the value passed to it.
949     ///
950     /// Any use other than with `if` statements will probably not have an effect.
951     ///
952     /// Note that, unlike most intrinsics, this is safe to call;
953     /// it does not require an `unsafe` block.
954     /// Therefore, implementations must not require the user to uphold
955     /// any safety invariants.
956     ///
957     /// This intrinsic does not have a stable counterpart.
958     #[rustc_const_unstable(feature = "const_likely", issue = "none")]
959     #[rustc_safe_intrinsic]
960     #[rustc_nounwind]
likely(b: bool) -> bool961     pub fn likely(b: bool) -> bool;
962 
963     /// Hints to the compiler that branch condition is likely to be false.
964     /// Returns the value passed to it.
965     ///
966     /// Any use other than with `if` statements will probably not have an effect.
967     ///
968     /// Note that, unlike most intrinsics, this is safe to call;
969     /// it does not require an `unsafe` block.
970     /// Therefore, implementations must not require the user to uphold
971     /// any safety invariants.
972     ///
973     /// This intrinsic does not have a stable counterpart.
974     #[rustc_const_unstable(feature = "const_likely", issue = "none")]
975     #[rustc_safe_intrinsic]
976     #[rustc_nounwind]
unlikely(b: bool) -> bool977     pub fn unlikely(b: bool) -> bool;
978 
979     /// Executes a breakpoint trap, for inspection by a debugger.
980     ///
981     /// This intrinsic does not have a stable counterpart.
982     #[rustc_nounwind]
breakpoint()983     pub fn breakpoint();
984 
985     /// The size of a type in bytes.
986     ///
987     /// Note that, unlike most intrinsics, this is safe to call;
988     /// it does not require an `unsafe` block.
989     /// Therefore, implementations must not require the user to uphold
990     /// any safety invariants.
991     ///
992     /// More specifically, this is the offset in bytes between successive
993     /// items of the same type, including alignment padding.
994     ///
995     /// The stabilized version of this intrinsic is [`core::mem::size_of`].
996     #[rustc_const_stable(feature = "const_size_of", since = "1.40.0")]
997     #[rustc_safe_intrinsic]
998     #[rustc_nounwind]
size_of<T>() -> usize999     pub fn size_of<T>() -> usize;
1000 
1001     /// The minimum alignment of a type.
1002     ///
1003     /// Note that, unlike most intrinsics, this is safe to call;
1004     /// it does not require an `unsafe` block.
1005     /// Therefore, implementations must not require the user to uphold
1006     /// any safety invariants.
1007     ///
1008     /// The stabilized version of this intrinsic is [`core::mem::align_of`].
1009     #[rustc_const_stable(feature = "const_min_align_of", since = "1.40.0")]
1010     #[rustc_safe_intrinsic]
1011     #[rustc_nounwind]
min_align_of<T>() -> usize1012     pub fn min_align_of<T>() -> usize;
1013     /// The preferred alignment of a type.
1014     ///
1015     /// This intrinsic does not have a stable counterpart.
1016     /// It's "tracking issue" is [#91971](https://github.com/rust-lang/rust/issues/91971).
1017     #[rustc_const_unstable(feature = "const_pref_align_of", issue = "91971")]
1018     #[rustc_nounwind]
pref_align_of<T>() -> usize1019     pub fn pref_align_of<T>() -> usize;
1020 
1021     /// The size of the referenced value in bytes.
1022     ///
1023     /// The stabilized version of this intrinsic is [`mem::size_of_val`].
1024     #[rustc_const_unstable(feature = "const_size_of_val", issue = "46571")]
1025     #[rustc_nounwind]
size_of_val<T: ?Sized>(_: *const T) -> usize1026     pub fn size_of_val<T: ?Sized>(_: *const T) -> usize;
1027     /// The required alignment of the referenced value.
1028     ///
1029     /// The stabilized version of this intrinsic is [`core::mem::align_of_val`].
1030     #[rustc_const_unstable(feature = "const_align_of_val", issue = "46571")]
1031     #[rustc_nounwind]
min_align_of_val<T: ?Sized>(_: *const T) -> usize1032     pub fn min_align_of_val<T: ?Sized>(_: *const T) -> usize;
1033 
1034     /// Gets a static string slice containing the name of a type.
1035     ///
1036     /// Note that, unlike most intrinsics, this is safe to call;
1037     /// it does not require an `unsafe` block.
1038     /// Therefore, implementations must not require the user to uphold
1039     /// any safety invariants.
1040     ///
1041     /// The stabilized version of this intrinsic is [`core::any::type_name`].
1042     #[rustc_const_unstable(feature = "const_type_name", issue = "63084")]
1043     #[rustc_safe_intrinsic]
1044     #[rustc_nounwind]
type_name<T: ?Sized>() -> &'static str1045     pub fn type_name<T: ?Sized>() -> &'static str;
1046 
1047     /// Gets an identifier which is globally unique to the specified type. This
1048     /// function will return the same value for a type regardless of whichever
1049     /// crate it is invoked in.
1050     ///
1051     /// Note that, unlike most intrinsics, this is safe to call;
1052     /// it does not require an `unsafe` block.
1053     /// Therefore, implementations must not require the user to uphold
1054     /// any safety invariants.
1055     ///
1056     /// The stabilized version of this intrinsic is [`core::any::TypeId::of`].
1057     #[rustc_const_unstable(feature = "const_type_id", issue = "77125")]
1058     #[rustc_safe_intrinsic]
1059     #[rustc_nounwind]
1060     #[cfg(bootstrap)]
type_id<T: ?Sized + 'static>() -> u641061     pub fn type_id<T: ?Sized + 'static>() -> u64;
1062 
1063     /// Gets an identifier which is globally unique to the specified type. This
1064     /// function will return the same value for a type regardless of whichever
1065     /// crate it is invoked in.
1066     ///
1067     /// Note that, unlike most intrinsics, this is safe to call;
1068     /// it does not require an `unsafe` block.
1069     /// Therefore, implementations must not require the user to uphold
1070     /// any safety invariants.
1071     ///
1072     /// The stabilized version of this intrinsic is [`core::any::TypeId::of`].
1073     #[rustc_const_unstable(feature = "const_type_id", issue = "77125")]
1074     #[rustc_safe_intrinsic]
1075     #[rustc_nounwind]
1076     #[cfg(not(bootstrap))]
type_id<T: ?Sized + 'static>() -> u1281077     pub fn type_id<T: ?Sized + 'static>() -> u128;
1078 
1079     /// A guard for unsafe functions that cannot ever be executed if `T` is uninhabited:
1080     /// This will statically either panic, or do nothing.
1081     ///
1082     /// This intrinsic does not have a stable counterpart.
1083     #[rustc_const_stable(feature = "const_assert_type", since = "1.59.0")]
1084     #[rustc_safe_intrinsic]
1085     #[rustc_nounwind]
assert_inhabited<T>()1086     pub fn assert_inhabited<T>();
1087 
1088     /// A guard for unsafe functions that cannot ever be executed if `T` does not permit
1089     /// zero-initialization: This will statically either panic, or do nothing.
1090     ///
1091     /// This intrinsic does not have a stable counterpart.
1092     #[rustc_const_unstable(feature = "const_assert_type2", issue = "none")]
1093     #[rustc_safe_intrinsic]
1094     #[rustc_nounwind]
assert_zero_valid<T>()1095     pub fn assert_zero_valid<T>();
1096 
1097     /// A guard for `std::mem::uninitialized`. This will statically either panic, or do nothing.
1098     ///
1099     /// This intrinsic does not have a stable counterpart.
1100     #[rustc_const_unstable(feature = "const_assert_type2", issue = "none")]
1101     #[rustc_safe_intrinsic]
1102     #[rustc_nounwind]
assert_mem_uninitialized_valid<T>()1103     pub fn assert_mem_uninitialized_valid<T>();
1104 
1105     /// Gets a reference to a static `Location` indicating where it was called.
1106     ///
1107     /// Note that, unlike most intrinsics, this is safe to call;
1108     /// it does not require an `unsafe` block.
1109     /// Therefore, implementations must not require the user to uphold
1110     /// any safety invariants.
1111     ///
1112     /// Consider using [`core::panic::Location::caller`] instead.
1113     #[rustc_const_unstable(feature = "const_caller_location", issue = "76156")]
1114     #[rustc_safe_intrinsic]
1115     #[rustc_nounwind]
caller_location() -> &'static crate::panic::Location<'static>1116     pub fn caller_location() -> &'static crate::panic::Location<'static>;
1117 
1118     /// Moves a value out of scope without running drop glue.
1119     ///
1120     /// This exists solely for [`mem::forget_unsized`]; normal `forget` uses
1121     /// `ManuallyDrop` instead.
1122     ///
1123     /// Note that, unlike most intrinsics, this is safe to call;
1124     /// it does not require an `unsafe` block.
1125     /// Therefore, implementations must not require the user to uphold
1126     /// any safety invariants.
1127     #[rustc_const_unstable(feature = "const_intrinsic_forget", issue = "none")]
1128     #[rustc_safe_intrinsic]
1129     #[rustc_nounwind]
forget<T: ?Sized>(_: T)1130     pub fn forget<T: ?Sized>(_: T);
1131 
1132     /// Reinterprets the bits of a value of one type as another type.
1133     ///
1134     /// Both types must have the same size. Compilation will fail if this is not guaranteed.
1135     ///
1136     /// `transmute` is semantically equivalent to a bitwise move of one type
1137     /// into another. It copies the bits from the source value into the
1138     /// destination value, then forgets the original. Note that source and destination
1139     /// are passed by-value, which means if `Src` or `Dst` contain padding, that padding
1140     /// is *not* guaranteed to be preserved by `transmute`.
1141     ///
1142     /// Both the argument and the result must be [valid](../../nomicon/what-unsafe-does.html) at
1143     /// their given type. Violating this condition leads to [undefined behavior][ub]. The compiler
1144     /// will generate code *assuming that you, the programmer, ensure that there will never be
1145     /// undefined behavior*. It is therefore your responsibility to guarantee that every value
1146     /// passed to `transmute` is valid at both types `Src` and `Dst`. Failing to uphold this condition
1147     /// may lead to unexpected and unstable compilation results. This makes `transmute` **incredibly
1148     /// unsafe**. `transmute` should be the absolute last resort.
1149     ///
1150     /// Transmuting pointers to integers in a `const` context is [undefined behavior][ub].
1151     /// Any attempt to use the resulting value for integer operations will abort const-evaluation.
1152     /// (And even outside `const`, such transmutation is touching on many unspecified aspects of the
1153     /// Rust memory model and should be avoided. See below for alternatives.)
1154     ///
1155     /// Because `transmute` is a by-value operation, alignment of the *transmuted values
1156     /// themselves* is not a concern. As with any other function, the compiler already ensures
1157     /// both `Src` and `Dst` are properly aligned. However, when transmuting values that *point
1158     /// elsewhere* (such as pointers, references, boxes…), the caller has to ensure proper
1159     /// alignment of the pointed-to values.
1160     ///
1161     /// The [nomicon](../../nomicon/transmutes.html) has additional documentation.
1162     ///
1163     /// [ub]: ../../reference/behavior-considered-undefined.html
1164     ///
1165     /// # Examples
1166     ///
1167     /// There are a few things that `transmute` is really useful for.
1168     ///
1169     /// Turning a pointer into a function pointer. This is *not* portable to
1170     /// machines where function pointers and data pointers have different sizes.
1171     ///
1172     /// ```
1173     /// fn foo() -> i32 {
1174     ///     0
1175     /// }
1176     /// // Crucially, we `as`-cast to a raw pointer before `transmute`ing to a function pointer.
1177     /// // This avoids an integer-to-pointer `transmute`, which can be problematic.
1178     /// // Transmuting between raw pointers and function pointers (i.e., two pointer types) is fine.
1179     /// let pointer = foo as *const ();
1180     /// let function = unsafe {
1181     ///     std::mem::transmute::<*const (), fn() -> i32>(pointer)
1182     /// };
1183     /// assert_eq!(function(), 0);
1184     /// ```
1185     ///
1186     /// Extending a lifetime, or shortening an invariant lifetime. This is
1187     /// advanced, very unsafe Rust!
1188     ///
1189     /// ```
1190     /// struct R<'a>(&'a i32);
1191     /// unsafe fn extend_lifetime<'b>(r: R<'b>) -> R<'static> {
1192     ///     std::mem::transmute::<R<'b>, R<'static>>(r)
1193     /// }
1194     ///
1195     /// unsafe fn shorten_invariant_lifetime<'b, 'c>(r: &'b mut R<'static>)
1196     ///                                              -> &'b mut R<'c> {
1197     ///     std::mem::transmute::<&'b mut R<'static>, &'b mut R<'c>>(r)
1198     /// }
1199     /// ```
1200     ///
1201     /// # Alternatives
1202     ///
1203     /// Don't despair: many uses of `transmute` can be achieved through other means.
1204     /// Below are common applications of `transmute` which can be replaced with safer
1205     /// constructs.
1206     ///
1207     /// Turning raw bytes (`[u8; SZ]`) into `u32`, `f64`, etc.:
1208     ///
1209     /// ```
1210     /// let raw_bytes = [0x78, 0x56, 0x34, 0x12];
1211     ///
1212     /// let num = unsafe {
1213     ///     std::mem::transmute::<[u8; 4], u32>(raw_bytes)
1214     /// };
1215     ///
1216     /// // use `u32::from_ne_bytes` instead
1217     /// let num = u32::from_ne_bytes(raw_bytes);
1218     /// // or use `u32::from_le_bytes` or `u32::from_be_bytes` to specify the endianness
1219     /// let num = u32::from_le_bytes(raw_bytes);
1220     /// assert_eq!(num, 0x12345678);
1221     /// let num = u32::from_be_bytes(raw_bytes);
1222     /// assert_eq!(num, 0x78563412);
1223     /// ```
1224     ///
1225     /// Turning a pointer into a `usize`:
1226     ///
1227     /// ```no_run
1228     /// let ptr = &0;
1229     /// let ptr_num_transmute = unsafe {
1230     ///     std::mem::transmute::<&i32, usize>(ptr)
1231     /// };
1232     ///
1233     /// // Use an `as` cast instead
1234     /// let ptr_num_cast = ptr as *const i32 as usize;
1235     /// ```
1236     ///
1237     /// Note that using `transmute` to turn a pointer to a `usize` is (as noted above) [undefined
1238     /// behavior][ub] in `const` contexts. Also outside of consts, this operation might not behave
1239     /// as expected -- this is touching on many unspecified aspects of the Rust memory model.
1240     /// Depending on what the code is doing, the following alternatives are preferable to
1241     /// pointer-to-integer transmutation:
1242     /// - If the code just wants to store data of arbitrary type in some buffer and needs to pick a
1243     ///   type for that buffer, it can use [`MaybeUninit`][mem::MaybeUninit].
1244     /// - If the code actually wants to work on the address the pointer points to, it can use `as`
1245     ///   casts or [`ptr.addr()`][pointer::addr].
1246     ///
1247     /// Turning a `*mut T` into an `&mut T`:
1248     ///
1249     /// ```
1250     /// let ptr: *mut i32 = &mut 0;
1251     /// let ref_transmuted = unsafe {
1252     ///     std::mem::transmute::<*mut i32, &mut i32>(ptr)
1253     /// };
1254     ///
1255     /// // Use a reborrow instead
1256     /// let ref_casted = unsafe { &mut *ptr };
1257     /// ```
1258     ///
1259     /// Turning an `&mut T` into an `&mut U`:
1260     ///
1261     /// ```
1262     /// let ptr = &mut 0;
1263     /// let val_transmuted = unsafe {
1264     ///     std::mem::transmute::<&mut i32, &mut u32>(ptr)
1265     /// };
1266     ///
1267     /// // Now, put together `as` and reborrowing - note the chaining of `as`
1268     /// // `as` is not transitive
1269     /// let val_casts = unsafe { &mut *(ptr as *mut i32 as *mut u32) };
1270     /// ```
1271     ///
1272     /// Turning an `&str` into a `&[u8]`:
1273     ///
1274     /// ```
1275     /// // this is not a good way to do this.
1276     /// let slice = unsafe { std::mem::transmute::<&str, &[u8]>("Rust") };
1277     /// assert_eq!(slice, &[82, 117, 115, 116]);
1278     ///
1279     /// // You could use `str::as_bytes`
1280     /// let slice = "Rust".as_bytes();
1281     /// assert_eq!(slice, &[82, 117, 115, 116]);
1282     ///
1283     /// // Or, just use a byte string, if you have control over the string
1284     /// // literal
1285     /// assert_eq!(b"Rust", &[82, 117, 115, 116]);
1286     /// ```
1287     ///
1288     /// Turning a `Vec<&T>` into a `Vec<Option<&T>>`.
1289     ///
1290     /// To transmute the inner type of the contents of a container, you must make sure to not
1291     /// violate any of the container's invariants. For `Vec`, this means that both the size
1292     /// *and alignment* of the inner types have to match. Other containers might rely on the
1293     /// size of the type, alignment, or even the `TypeId`, in which case transmuting wouldn't
1294     /// be possible at all without violating the container invariants.
1295     ///
1296     /// ```
1297     /// let store = [0, 1, 2, 3];
1298     /// let v_orig = store.iter().collect::<Vec<&i32>>();
1299     ///
1300     /// // clone the vector as we will reuse them later
1301     /// let v_clone = v_orig.clone();
1302     ///
1303     /// // Using transmute: this relies on the unspecified data layout of `Vec`, which is a
1304     /// // bad idea and could cause Undefined Behavior.
1305     /// // However, it is no-copy.
1306     /// let v_transmuted = unsafe {
1307     ///     std::mem::transmute::<Vec<&i32>, Vec<Option<&i32>>>(v_clone)
1308     /// };
1309     ///
1310     /// let v_clone = v_orig.clone();
1311     ///
1312     /// // This is the suggested, safe way.
1313     /// // It does copy the entire vector, though, into a new array.
1314     /// let v_collected = v_clone.into_iter()
1315     ///                          .map(Some)
1316     ///                          .collect::<Vec<Option<&i32>>>();
1317     ///
1318     /// let v_clone = v_orig.clone();
1319     ///
1320     /// // This is the proper no-copy, unsafe way of "transmuting" a `Vec`, without relying on the
1321     /// // data layout. Instead of literally calling `transmute`, we perform a pointer cast, but
1322     /// // in terms of converting the original inner type (`&i32`) to the new one (`Option<&i32>`),
1323     /// // this has all the same caveats. Besides the information provided above, also consult the
1324     /// // [`from_raw_parts`] documentation.
1325     /// let v_from_raw = unsafe {
1326     // FIXME Update this when vec_into_raw_parts is stabilized
1327     ///     // Ensure the original vector is not dropped.
1328     ///     let mut v_clone = std::mem::ManuallyDrop::new(v_clone);
1329     ///     Vec::from_raw_parts(v_clone.as_mut_ptr() as *mut Option<&i32>,
1330     ///                         v_clone.len(),
1331     ///                         v_clone.capacity())
1332     /// };
1333     /// ```
1334     ///
1335     /// [`from_raw_parts`]: ../../std/vec/struct.Vec.html#method.from_raw_parts
1336     ///
1337     /// Implementing `split_at_mut`:
1338     ///
1339     /// ```
1340     /// use std::{slice, mem};
1341     ///
1342     /// // There are multiple ways to do this, and there are multiple problems
1343     /// // with the following (transmute) way.
1344     /// fn split_at_mut_transmute<T>(slice: &mut [T], mid: usize)
1345     ///                              -> (&mut [T], &mut [T]) {
1346     ///     let len = slice.len();
1347     ///     assert!(mid <= len);
1348     ///     unsafe {
1349     ///         let slice2 = mem::transmute::<&mut [T], &mut [T]>(slice);
1350     ///         // first: transmute is not type safe; all it checks is that T and
1351     ///         // U are of the same size. Second, right here, you have two
1352     ///         // mutable references pointing to the same memory.
1353     ///         (&mut slice[0..mid], &mut slice2[mid..len])
1354     ///     }
1355     /// }
1356     ///
1357     /// // This gets rid of the type safety problems; `&mut *` will *only* give
1358     /// // you an `&mut T` from an `&mut T` or `*mut T`.
1359     /// fn split_at_mut_casts<T>(slice: &mut [T], mid: usize)
1360     ///                          -> (&mut [T], &mut [T]) {
1361     ///     let len = slice.len();
1362     ///     assert!(mid <= len);
1363     ///     unsafe {
1364     ///         let slice2 = &mut *(slice as *mut [T]);
1365     ///         // however, you still have two mutable references pointing to
1366     ///         // the same memory.
1367     ///         (&mut slice[0..mid], &mut slice2[mid..len])
1368     ///     }
1369     /// }
1370     ///
1371     /// // This is how the standard library does it. This is the best method, if
1372     /// // you need to do something like this
1373     /// fn split_at_stdlib<T>(slice: &mut [T], mid: usize)
1374     ///                       -> (&mut [T], &mut [T]) {
1375     ///     let len = slice.len();
1376     ///     assert!(mid <= len);
1377     ///     unsafe {
1378     ///         let ptr = slice.as_mut_ptr();
1379     ///         // This now has three mutable references pointing at the same
1380     ///         // memory. `slice`, the rvalue ret.0, and the rvalue ret.1.
1381     ///         // `slice` is never used after `let ptr = ...`, and so one can
1382     ///         // treat it as "dead", and therefore, you only have two real
1383     ///         // mutable slices.
1384     ///         (slice::from_raw_parts_mut(ptr, mid),
1385     ///          slice::from_raw_parts_mut(ptr.add(mid), len - mid))
1386     ///     }
1387     /// }
1388     /// ```
1389     #[stable(feature = "rust1", since = "1.0.0")]
1390     #[rustc_allowed_through_unstable_modules]
1391     #[rustc_const_stable(feature = "const_transmute", since = "1.56.0")]
1392     #[rustc_diagnostic_item = "transmute"]
1393     #[rustc_nounwind]
transmute<Src, Dst>(src: Src) -> Dst1394     pub fn transmute<Src, Dst>(src: Src) -> Dst;
1395 
1396     /// Like [`transmute`], but even less checked at compile-time: rather than
1397     /// giving an error for `size_of::<Src>() != size_of::<Dst>()`, it's
1398     /// **Undefined Behaviour** at runtime.
1399     ///
1400     /// Prefer normal `transmute` where possible, for the extra checking, since
1401     /// both do exactly the same thing at runtime, if they both compile.
1402     ///
1403     /// This is not expected to ever be exposed directly to users, rather it
1404     /// may eventually be exposed through some more-constrained API.
1405     #[rustc_const_stable(feature = "const_transmute", since = "1.56.0")]
1406     #[rustc_nounwind]
transmute_unchecked<Src, Dst>(src: Src) -> Dst1407     pub fn transmute_unchecked<Src, Dst>(src: Src) -> Dst;
1408 
1409     /// Returns `true` if the actual type given as `T` requires drop
1410     /// glue; returns `false` if the actual type provided for `T`
1411     /// implements `Copy`.
1412     ///
1413     /// If the actual type neither requires drop glue nor implements
1414     /// `Copy`, then the return value of this function is unspecified.
1415     ///
1416     /// Note that, unlike most intrinsics, this is safe to call;
1417     /// it does not require an `unsafe` block.
1418     /// Therefore, implementations must not require the user to uphold
1419     /// any safety invariants.
1420     ///
1421     /// The stabilized version of this intrinsic is [`mem::needs_drop`](crate::mem::needs_drop).
1422     #[rustc_const_stable(feature = "const_needs_drop", since = "1.40.0")]
1423     #[rustc_safe_intrinsic]
1424     #[rustc_nounwind]
needs_drop<T: ?Sized>() -> bool1425     pub fn needs_drop<T: ?Sized>() -> bool;
1426 
1427     /// Calculates the offset from a pointer.
1428     ///
1429     /// This is implemented as an intrinsic to avoid converting to and from an
1430     /// integer, since the conversion would throw away aliasing information.
1431     ///
1432     /// This can only be used with `Ptr` as a raw pointer type (`*mut` or `*const`)
1433     /// to a `Sized` pointee and with `Delta` as `usize` or `isize`.  Any other
1434     /// instantiations may arbitrarily misbehave, and that's *not* a compiler bug.
1435     ///
1436     /// # Safety
1437     ///
1438     /// Both the starting and resulting pointer must be either in bounds or one
1439     /// byte past the end of an allocated object. If either pointer is out of
1440     /// bounds or arithmetic overflow occurs then any further use of the
1441     /// returned value will result in undefined behavior.
1442     ///
1443     /// The stabilized version of this intrinsic is [`pointer::offset`].
1444     #[must_use = "returns a new pointer rather than modifying its argument"]
1445     #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
1446     #[rustc_nounwind]
offset<Ptr, Delta>(dst: Ptr, offset: Delta) -> Ptr1447     pub fn offset<Ptr, Delta>(dst: Ptr, offset: Delta) -> Ptr;
1448 
1449     /// Calculates the offset from a pointer, potentially wrapping.
1450     ///
1451     /// This is implemented as an intrinsic to avoid converting to and from an
1452     /// integer, since the conversion inhibits certain optimizations.
1453     ///
1454     /// # Safety
1455     ///
1456     /// Unlike the `offset` intrinsic, this intrinsic does not restrict the
1457     /// resulting pointer to point into or one byte past the end of an allocated
1458     /// object, and it wraps with two's complement arithmetic. The resulting
1459     /// value is not necessarily valid to be used to actually access memory.
1460     ///
1461     /// The stabilized version of this intrinsic is [`pointer::wrapping_offset`].
1462     #[must_use = "returns a new pointer rather than modifying its argument"]
1463     #[rustc_const_stable(feature = "const_ptr_offset", since = "1.61.0")]
1464     #[rustc_nounwind]
arith_offset<T>(dst: *const T, offset: isize) -> *const T1465     pub fn arith_offset<T>(dst: *const T, offset: isize) -> *const T;
1466 
1467     /// Masks out bits of the pointer according to a mask.
1468     ///
1469     /// Note that, unlike most intrinsics, this is safe to call;
1470     /// it does not require an `unsafe` block.
1471     /// Therefore, implementations must not require the user to uphold
1472     /// any safety invariants.
1473     ///
1474     /// Consider using [`pointer::mask`] instead.
1475     #[rustc_safe_intrinsic]
1476     #[rustc_nounwind]
ptr_mask<T>(ptr: *const T, mask: usize) -> *const T1477     pub fn ptr_mask<T>(ptr: *const T, mask: usize) -> *const T;
1478 
1479     /// Equivalent to the appropriate `llvm.memcpy.p0i8.0i8.*` intrinsic, with
1480     /// a size of `count` * `size_of::<T>()` and an alignment of
1481     /// `min_align_of::<T>()`
1482     ///
1483     /// The volatile parameter is set to `true`, so it will not be optimized out
1484     /// unless size is equal to zero.
1485     ///
1486     /// This intrinsic does not have a stable counterpart.
1487     #[rustc_nounwind]
volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T, count: usize)1488     pub fn volatile_copy_nonoverlapping_memory<T>(dst: *mut T, src: *const T, count: usize);
1489     /// Equivalent to the appropriate `llvm.memmove.p0i8.0i8.*` intrinsic, with
1490     /// a size of `count * size_of::<T>()` and an alignment of
1491     /// `min_align_of::<T>()`
1492     ///
1493     /// The volatile parameter is set to `true`, so it will not be optimized out
1494     /// unless size is equal to zero.
1495     ///
1496     /// This intrinsic does not have a stable counterpart.
1497     #[rustc_nounwind]
volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize)1498     pub fn volatile_copy_memory<T>(dst: *mut T, src: *const T, count: usize);
1499     /// Equivalent to the appropriate `llvm.memset.p0i8.*` intrinsic, with a
1500     /// size of `count * size_of::<T>()` and an alignment of
1501     /// `min_align_of::<T>()`.
1502     ///
1503     /// The volatile parameter is set to `true`, so it will not be optimized out
1504     /// unless size is equal to zero.
1505     ///
1506     /// This intrinsic does not have a stable counterpart.
1507     #[rustc_nounwind]
volatile_set_memory<T>(dst: *mut T, val: u8, count: usize)1508     pub fn volatile_set_memory<T>(dst: *mut T, val: u8, count: usize);
1509 
1510     /// Performs a volatile load from the `src` pointer.
1511     ///
1512     /// The stabilized version of this intrinsic is [`core::ptr::read_volatile`].
1513     #[rustc_nounwind]
volatile_load<T>(src: *const T) -> T1514     pub fn volatile_load<T>(src: *const T) -> T;
1515     /// Performs a volatile store to the `dst` pointer.
1516     ///
1517     /// The stabilized version of this intrinsic is [`core::ptr::write_volatile`].
1518     #[rustc_nounwind]
volatile_store<T>(dst: *mut T, val: T)1519     pub fn volatile_store<T>(dst: *mut T, val: T);
1520 
1521     /// Performs a volatile load from the `src` pointer
1522     /// The pointer is not required to be aligned.
1523     ///
1524     /// This intrinsic does not have a stable counterpart.
1525     #[rustc_nounwind]
unaligned_volatile_load<T>(src: *const T) -> T1526     pub fn unaligned_volatile_load<T>(src: *const T) -> T;
1527     /// Performs a volatile store to the `dst` pointer.
1528     /// The pointer is not required to be aligned.
1529     ///
1530     /// This intrinsic does not have a stable counterpart.
1531     #[rustc_nounwind]
unaligned_volatile_store<T>(dst: *mut T, val: T)1532     pub fn unaligned_volatile_store<T>(dst: *mut T, val: T);
1533 
1534     /// Returns the square root of an `f32`
1535     ///
1536     /// The stabilized version of this intrinsic is
1537     /// [`f32::sqrt`](../../std/primitive.f32.html#method.sqrt)
1538     #[rustc_nounwind]
sqrtf32(x: f32) -> f321539     pub fn sqrtf32(x: f32) -> f32;
1540     /// Returns the square root of an `f64`
1541     ///
1542     /// The stabilized version of this intrinsic is
1543     /// [`f64::sqrt`](../../std/primitive.f64.html#method.sqrt)
1544     #[rustc_nounwind]
sqrtf64(x: f64) -> f641545     pub fn sqrtf64(x: f64) -> f64;
1546 
1547     /// Raises an `f32` to an integer power.
1548     ///
1549     /// The stabilized version of this intrinsic is
1550     /// [`f32::powi`](../../std/primitive.f32.html#method.powi)
1551     #[rustc_nounwind]
powif32(a: f32, x: i32) -> f321552     pub fn powif32(a: f32, x: i32) -> f32;
1553     /// Raises an `f64` to an integer power.
1554     ///
1555     /// The stabilized version of this intrinsic is
1556     /// [`f64::powi`](../../std/primitive.f64.html#method.powi)
1557     #[rustc_nounwind]
powif64(a: f64, x: i32) -> f641558     pub fn powif64(a: f64, x: i32) -> f64;
1559 
1560     /// Returns the sine of an `f32`.
1561     ///
1562     /// The stabilized version of this intrinsic is
1563     /// [`f32::sin`](../../std/primitive.f32.html#method.sin)
1564     #[rustc_nounwind]
sinf32(x: f32) -> f321565     pub fn sinf32(x: f32) -> f32;
1566     /// Returns the sine of an `f64`.
1567     ///
1568     /// The stabilized version of this intrinsic is
1569     /// [`f64::sin`](../../std/primitive.f64.html#method.sin)
1570     #[rustc_nounwind]
sinf64(x: f64) -> f641571     pub fn sinf64(x: f64) -> f64;
1572 
1573     /// Returns the cosine of an `f32`.
1574     ///
1575     /// The stabilized version of this intrinsic is
1576     /// [`f32::cos`](../../std/primitive.f32.html#method.cos)
1577     #[rustc_nounwind]
cosf32(x: f32) -> f321578     pub fn cosf32(x: f32) -> f32;
1579     /// Returns the cosine of an `f64`.
1580     ///
1581     /// The stabilized version of this intrinsic is
1582     /// [`f64::cos`](../../std/primitive.f64.html#method.cos)
1583     #[rustc_nounwind]
cosf64(x: f64) -> f641584     pub fn cosf64(x: f64) -> f64;
1585 
1586     /// Raises an `f32` to an `f32` power.
1587     ///
1588     /// The stabilized version of this intrinsic is
1589     /// [`f32::powf`](../../std/primitive.f32.html#method.powf)
1590     #[rustc_nounwind]
powf32(a: f32, x: f32) -> f321591     pub fn powf32(a: f32, x: f32) -> f32;
1592     /// Raises an `f64` to an `f64` power.
1593     ///
1594     /// The stabilized version of this intrinsic is
1595     /// [`f64::powf`](../../std/primitive.f64.html#method.powf)
1596     #[rustc_nounwind]
powf64(a: f64, x: f64) -> f641597     pub fn powf64(a: f64, x: f64) -> f64;
1598 
1599     /// Returns the exponential of an `f32`.
1600     ///
1601     /// The stabilized version of this intrinsic is
1602     /// [`f32::exp`](../../std/primitive.f32.html#method.exp)
1603     #[rustc_nounwind]
expf32(x: f32) -> f321604     pub fn expf32(x: f32) -> f32;
1605     /// Returns the exponential of an `f64`.
1606     ///
1607     /// The stabilized version of this intrinsic is
1608     /// [`f64::exp`](../../std/primitive.f64.html#method.exp)
1609     #[rustc_nounwind]
expf64(x: f64) -> f641610     pub fn expf64(x: f64) -> f64;
1611 
1612     /// Returns 2 raised to the power of an `f32`.
1613     ///
1614     /// The stabilized version of this intrinsic is
1615     /// [`f32::exp2`](../../std/primitive.f32.html#method.exp2)
1616     #[rustc_nounwind]
exp2f32(x: f32) -> f321617     pub fn exp2f32(x: f32) -> f32;
1618     /// Returns 2 raised to the power of an `f64`.
1619     ///
1620     /// The stabilized version of this intrinsic is
1621     /// [`f64::exp2`](../../std/primitive.f64.html#method.exp2)
1622     #[rustc_nounwind]
exp2f64(x: f64) -> f641623     pub fn exp2f64(x: f64) -> f64;
1624 
1625     /// Returns the natural logarithm of an `f32`.
1626     ///
1627     /// The stabilized version of this intrinsic is
1628     /// [`f32::ln`](../../std/primitive.f32.html#method.ln)
1629     #[rustc_nounwind]
logf32(x: f32) -> f321630     pub fn logf32(x: f32) -> f32;
1631     /// Returns the natural logarithm of an `f64`.
1632     ///
1633     /// The stabilized version of this intrinsic is
1634     /// [`f64::ln`](../../std/primitive.f64.html#method.ln)
1635     #[rustc_nounwind]
logf64(x: f64) -> f641636     pub fn logf64(x: f64) -> f64;
1637 
1638     /// Returns the base 10 logarithm of an `f32`.
1639     ///
1640     /// The stabilized version of this intrinsic is
1641     /// [`f32::log10`](../../std/primitive.f32.html#method.log10)
1642     #[rustc_nounwind]
log10f32(x: f32) -> f321643     pub fn log10f32(x: f32) -> f32;
1644     /// Returns the base 10 logarithm of an `f64`.
1645     ///
1646     /// The stabilized version of this intrinsic is
1647     /// [`f64::log10`](../../std/primitive.f64.html#method.log10)
1648     #[rustc_nounwind]
log10f64(x: f64) -> f641649     pub fn log10f64(x: f64) -> f64;
1650 
1651     /// Returns the base 2 logarithm of an `f32`.
1652     ///
1653     /// The stabilized version of this intrinsic is
1654     /// [`f32::log2`](../../std/primitive.f32.html#method.log2)
1655     #[rustc_nounwind]
log2f32(x: f32) -> f321656     pub fn log2f32(x: f32) -> f32;
1657     /// Returns the base 2 logarithm of an `f64`.
1658     ///
1659     /// The stabilized version of this intrinsic is
1660     /// [`f64::log2`](../../std/primitive.f64.html#method.log2)
1661     #[rustc_nounwind]
log2f64(x: f64) -> f641662     pub fn log2f64(x: f64) -> f64;
1663 
1664     /// Returns `a * b + c` for `f32` values.
1665     ///
1666     /// The stabilized version of this intrinsic is
1667     /// [`f32::mul_add`](../../std/primitive.f32.html#method.mul_add)
1668     #[rustc_nounwind]
fmaf32(a: f32, b: f32, c: f32) -> f321669     pub fn fmaf32(a: f32, b: f32, c: f32) -> f32;
1670     /// Returns `a * b + c` for `f64` values.
1671     ///
1672     /// The stabilized version of this intrinsic is
1673     /// [`f64::mul_add`](../../std/primitive.f64.html#method.mul_add)
1674     #[rustc_nounwind]
fmaf64(a: f64, b: f64, c: f64) -> f641675     pub fn fmaf64(a: f64, b: f64, c: f64) -> f64;
1676 
1677     /// Returns the absolute value of an `f32`.
1678     ///
1679     /// The stabilized version of this intrinsic is
1680     /// [`f32::abs`](../../std/primitive.f32.html#method.abs)
1681     #[rustc_nounwind]
fabsf32(x: f32) -> f321682     pub fn fabsf32(x: f32) -> f32;
1683     /// Returns the absolute value of an `f64`.
1684     ///
1685     /// The stabilized version of this intrinsic is
1686     /// [`f64::abs`](../../std/primitive.f64.html#method.abs)
1687     #[rustc_nounwind]
fabsf64(x: f64) -> f641688     pub fn fabsf64(x: f64) -> f64;
1689 
1690     /// Returns the minimum of two `f32` values.
1691     ///
1692     /// Note that, unlike most intrinsics, this is safe to call;
1693     /// it does not require an `unsafe` block.
1694     /// Therefore, implementations must not require the user to uphold
1695     /// any safety invariants.
1696     ///
1697     /// The stabilized version of this intrinsic is
1698     /// [`f32::min`]
1699     #[rustc_safe_intrinsic]
1700     #[rustc_nounwind]
minnumf32(x: f32, y: f32) -> f321701     pub fn minnumf32(x: f32, y: f32) -> f32;
1702     /// Returns the minimum of two `f64` values.
1703     ///
1704     /// Note that, unlike most intrinsics, this is safe to call;
1705     /// it does not require an `unsafe` block.
1706     /// Therefore, implementations must not require the user to uphold
1707     /// any safety invariants.
1708     ///
1709     /// The stabilized version of this intrinsic is
1710     /// [`f64::min`]
1711     #[rustc_safe_intrinsic]
1712     #[rustc_nounwind]
minnumf64(x: f64, y: f64) -> f641713     pub fn minnumf64(x: f64, y: f64) -> f64;
1714     /// Returns the maximum of two `f32` values.
1715     ///
1716     /// Note that, unlike most intrinsics, this is safe to call;
1717     /// it does not require an `unsafe` block.
1718     /// Therefore, implementations must not require the user to uphold
1719     /// any safety invariants.
1720     ///
1721     /// The stabilized version of this intrinsic is
1722     /// [`f32::max`]
1723     #[rustc_safe_intrinsic]
1724     #[rustc_nounwind]
maxnumf32(x: f32, y: f32) -> f321725     pub fn maxnumf32(x: f32, y: f32) -> f32;
1726     /// Returns the maximum of two `f64` values.
1727     ///
1728     /// Note that, unlike most intrinsics, this is safe to call;
1729     /// it does not require an `unsafe` block.
1730     /// Therefore, implementations must not require the user to uphold
1731     /// any safety invariants.
1732     ///
1733     /// The stabilized version of this intrinsic is
1734     /// [`f64::max`]
1735     #[rustc_safe_intrinsic]
1736     #[rustc_nounwind]
maxnumf64(x: f64, y: f64) -> f641737     pub fn maxnumf64(x: f64, y: f64) -> f64;
1738 
1739     /// Copies the sign from `y` to `x` for `f32` values.
1740     ///
1741     /// The stabilized version of this intrinsic is
1742     /// [`f32::copysign`](../../std/primitive.f32.html#method.copysign)
1743     #[rustc_nounwind]
copysignf32(x: f32, y: f32) -> f321744     pub fn copysignf32(x: f32, y: f32) -> f32;
1745     /// Copies the sign from `y` to `x` for `f64` values.
1746     ///
1747     /// The stabilized version of this intrinsic is
1748     /// [`f64::copysign`](../../std/primitive.f64.html#method.copysign)
1749     #[rustc_nounwind]
copysignf64(x: f64, y: f64) -> f641750     pub fn copysignf64(x: f64, y: f64) -> f64;
1751 
1752     /// Returns the largest integer less than or equal to an `f32`.
1753     ///
1754     /// The stabilized version of this intrinsic is
1755     /// [`f32::floor`](../../std/primitive.f32.html#method.floor)
1756     #[rustc_nounwind]
floorf32(x: f32) -> f321757     pub fn floorf32(x: f32) -> f32;
1758     /// Returns the largest integer less than or equal to an `f64`.
1759     ///
1760     /// The stabilized version of this intrinsic is
1761     /// [`f64::floor`](../../std/primitive.f64.html#method.floor)
1762     #[rustc_nounwind]
floorf64(x: f64) -> f641763     pub fn floorf64(x: f64) -> f64;
1764 
1765     /// Returns the smallest integer greater than or equal to an `f32`.
1766     ///
1767     /// The stabilized version of this intrinsic is
1768     /// [`f32::ceil`](../../std/primitive.f32.html#method.ceil)
1769     #[rustc_nounwind]
ceilf32(x: f32) -> f321770     pub fn ceilf32(x: f32) -> f32;
1771     /// Returns the smallest integer greater than or equal to an `f64`.
1772     ///
1773     /// The stabilized version of this intrinsic is
1774     /// [`f64::ceil`](../../std/primitive.f64.html#method.ceil)
1775     #[rustc_nounwind]
ceilf64(x: f64) -> f641776     pub fn ceilf64(x: f64) -> f64;
1777 
1778     /// Returns the integer part of an `f32`.
1779     ///
1780     /// The stabilized version of this intrinsic is
1781     /// [`f32::trunc`](../../std/primitive.f32.html#method.trunc)
1782     #[rustc_nounwind]
truncf32(x: f32) -> f321783     pub fn truncf32(x: f32) -> f32;
1784     /// Returns the integer part of an `f64`.
1785     ///
1786     /// The stabilized version of this intrinsic is
1787     /// [`f64::trunc`](../../std/primitive.f64.html#method.trunc)
1788     #[rustc_nounwind]
truncf64(x: f64) -> f641789     pub fn truncf64(x: f64) -> f64;
1790 
1791     /// Returns the nearest integer to an `f32`. May raise an inexact floating-point exception
1792     /// if the argument is not an integer.
1793     ///
1794     /// The stabilized version of this intrinsic is
1795     /// [`f32::round_ties_even`](../../std/primitive.f32.html#method.round_ties_even)
1796     #[rustc_nounwind]
rintf32(x: f32) -> f321797     pub fn rintf32(x: f32) -> f32;
1798     /// Returns the nearest integer to an `f64`. May raise an inexact floating-point exception
1799     /// if the argument is not an integer.
1800     ///
1801     /// The stabilized version of this intrinsic is
1802     /// [`f64::round_ties_even`](../../std/primitive.f64.html#method.round_ties_even)
1803     #[rustc_nounwind]
rintf64(x: f64) -> f641804     pub fn rintf64(x: f64) -> f64;
1805 
1806     /// Returns the nearest integer to an `f32`.
1807     ///
1808     /// This intrinsic does not have a stable counterpart.
1809     #[rustc_nounwind]
nearbyintf32(x: f32) -> f321810     pub fn nearbyintf32(x: f32) -> f32;
1811     /// Returns the nearest integer to an `f64`.
1812     ///
1813     /// This intrinsic does not have a stable counterpart.
1814     #[rustc_nounwind]
nearbyintf64(x: f64) -> f641815     pub fn nearbyintf64(x: f64) -> f64;
1816 
1817     /// Returns the nearest integer to an `f32`. Rounds half-way cases away from zero.
1818     ///
1819     /// The stabilized version of this intrinsic is
1820     /// [`f32::round`](../../std/primitive.f32.html#method.round)
1821     #[rustc_nounwind]
roundf32(x: f32) -> f321822     pub fn roundf32(x: f32) -> f32;
1823     /// Returns the nearest integer to an `f64`. Rounds half-way cases away from zero.
1824     ///
1825     /// The stabilized version of this intrinsic is
1826     /// [`f64::round`](../../std/primitive.f64.html#method.round)
1827     #[rustc_nounwind]
roundf64(x: f64) -> f641828     pub fn roundf64(x: f64) -> f64;
1829 
1830     /// Returns the nearest integer to an `f32`. Rounds half-way cases to the number
1831     /// with an even least significant digit.
1832     ///
1833     /// This intrinsic does not have a stable counterpart.
1834     #[rustc_nounwind]
roundevenf32(x: f32) -> f321835     pub fn roundevenf32(x: f32) -> f32;
1836     /// Returns the nearest integer to an `f64`. Rounds half-way cases to the number
1837     /// with an even least significant digit.
1838     ///
1839     /// This intrinsic does not have a stable counterpart.
1840     #[rustc_nounwind]
roundevenf64(x: f64) -> f641841     pub fn roundevenf64(x: f64) -> f64;
1842 
1843     /// Float addition that allows optimizations based on algebraic rules.
1844     /// May assume inputs are finite.
1845     ///
1846     /// This intrinsic does not have a stable counterpart.
1847     #[rustc_nounwind]
fadd_fast<T: Copy>(a: T, b: T) -> T1848     pub fn fadd_fast<T: Copy>(a: T, b: T) -> T;
1849 
1850     /// Float subtraction that allows optimizations based on algebraic rules.
1851     /// May assume inputs are finite.
1852     ///
1853     /// This intrinsic does not have a stable counterpart.
1854     #[rustc_nounwind]
fsub_fast<T: Copy>(a: T, b: T) -> T1855     pub fn fsub_fast<T: Copy>(a: T, b: T) -> T;
1856 
1857     /// Float multiplication that allows optimizations based on algebraic rules.
1858     /// May assume inputs are finite.
1859     ///
1860     /// This intrinsic does not have a stable counterpart.
1861     #[rustc_nounwind]
fmul_fast<T: Copy>(a: T, b: T) -> T1862     pub fn fmul_fast<T: Copy>(a: T, b: T) -> T;
1863 
1864     /// Float division that allows optimizations based on algebraic rules.
1865     /// May assume inputs are finite.
1866     ///
1867     /// This intrinsic does not have a stable counterpart.
1868     #[rustc_nounwind]
fdiv_fast<T: Copy>(a: T, b: T) -> T1869     pub fn fdiv_fast<T: Copy>(a: T, b: T) -> T;
1870 
1871     /// Float remainder that allows optimizations based on algebraic rules.
1872     /// May assume inputs are finite.
1873     ///
1874     /// This intrinsic does not have a stable counterpart.
1875     #[rustc_nounwind]
frem_fast<T: Copy>(a: T, b: T) -> T1876     pub fn frem_fast<T: Copy>(a: T, b: T) -> T;
1877 
1878     /// Convert with LLVM’s fptoui/fptosi, which may return undef for values out of range
1879     /// (<https://github.com/rust-lang/rust/issues/10184>)
1880     ///
1881     /// Stabilized as [`f32::to_int_unchecked`] and [`f64::to_int_unchecked`].
1882     #[rustc_nounwind]
float_to_int_unchecked<Float: Copy, Int: Copy>(value: Float) -> Int1883     pub fn float_to_int_unchecked<Float: Copy, Int: Copy>(value: Float) -> Int;
1884 
1885     /// Returns the number of bits set in an integer type `T`
1886     ///
1887     /// Note that, unlike most intrinsics, this is safe to call;
1888     /// it does not require an `unsafe` block.
1889     /// Therefore, implementations must not require the user to uphold
1890     /// any safety invariants.
1891     ///
1892     /// The stabilized versions of this intrinsic are available on the integer
1893     /// primitives via the `count_ones` method. For example,
1894     /// [`u32::count_ones`]
1895     #[rustc_const_stable(feature = "const_ctpop", since = "1.40.0")]
1896     #[rustc_safe_intrinsic]
1897     #[rustc_nounwind]
ctpop<T: Copy>(x: T) -> T1898     pub fn ctpop<T: Copy>(x: T) -> T;
1899 
1900     /// Returns the number of leading unset bits (zeroes) in an integer type `T`.
1901     ///
1902     /// Note that, unlike most intrinsics, this is safe to call;
1903     /// it does not require an `unsafe` block.
1904     /// Therefore, implementations must not require the user to uphold
1905     /// any safety invariants.
1906     ///
1907     /// The stabilized versions of this intrinsic are available on the integer
1908     /// primitives via the `leading_zeros` method. For example,
1909     /// [`u32::leading_zeros`]
1910     ///
1911     /// # Examples
1912     ///
1913     /// ```
1914     /// #![feature(core_intrinsics)]
1915     ///
1916     /// use std::intrinsics::ctlz;
1917     ///
1918     /// let x = 0b0001_1100_u8;
1919     /// let num_leading = ctlz(x);
1920     /// assert_eq!(num_leading, 3);
1921     /// ```
1922     ///
1923     /// An `x` with value `0` will return the bit width of `T`.
1924     ///
1925     /// ```
1926     /// #![feature(core_intrinsics)]
1927     ///
1928     /// use std::intrinsics::ctlz;
1929     ///
1930     /// let x = 0u16;
1931     /// let num_leading = ctlz(x);
1932     /// assert_eq!(num_leading, 16);
1933     /// ```
1934     #[rustc_const_stable(feature = "const_ctlz", since = "1.40.0")]
1935     #[rustc_safe_intrinsic]
1936     #[rustc_nounwind]
ctlz<T: Copy>(x: T) -> T1937     pub fn ctlz<T: Copy>(x: T) -> T;
1938 
1939     /// Like `ctlz`, but extra-unsafe as it returns `undef` when
1940     /// given an `x` with value `0`.
1941     ///
1942     /// This intrinsic does not have a stable counterpart.
1943     ///
1944     /// # Examples
1945     ///
1946     /// ```
1947     /// #![feature(core_intrinsics)]
1948     ///
1949     /// use std::intrinsics::ctlz_nonzero;
1950     ///
1951     /// let x = 0b0001_1100_u8;
1952     /// let num_leading = unsafe { ctlz_nonzero(x) };
1953     /// assert_eq!(num_leading, 3);
1954     /// ```
1955     #[rustc_const_stable(feature = "constctlz", since = "1.50.0")]
1956     #[rustc_nounwind]
ctlz_nonzero<T: Copy>(x: T) -> T1957     pub fn ctlz_nonzero<T: Copy>(x: T) -> T;
1958 
1959     /// Returns the number of trailing unset bits (zeroes) in an integer type `T`.
1960     ///
1961     /// Note that, unlike most intrinsics, this is safe to call;
1962     /// it does not require an `unsafe` block.
1963     /// Therefore, implementations must not require the user to uphold
1964     /// any safety invariants.
1965     ///
1966     /// The stabilized versions of this intrinsic are available on the integer
1967     /// primitives via the `trailing_zeros` method. For example,
1968     /// [`u32::trailing_zeros`]
1969     ///
1970     /// # Examples
1971     ///
1972     /// ```
1973     /// #![feature(core_intrinsics)]
1974     ///
1975     /// use std::intrinsics::cttz;
1976     ///
1977     /// let x = 0b0011_1000_u8;
1978     /// let num_trailing = cttz(x);
1979     /// assert_eq!(num_trailing, 3);
1980     /// ```
1981     ///
1982     /// An `x` with value `0` will return the bit width of `T`:
1983     ///
1984     /// ```
1985     /// #![feature(core_intrinsics)]
1986     ///
1987     /// use std::intrinsics::cttz;
1988     ///
1989     /// let x = 0u16;
1990     /// let num_trailing = cttz(x);
1991     /// assert_eq!(num_trailing, 16);
1992     /// ```
1993     #[rustc_const_stable(feature = "const_cttz", since = "1.40.0")]
1994     #[rustc_safe_intrinsic]
1995     #[rustc_nounwind]
cttz<T: Copy>(x: T) -> T1996     pub fn cttz<T: Copy>(x: T) -> T;
1997 
1998     /// Like `cttz`, but extra-unsafe as it returns `undef` when
1999     /// given an `x` with value `0`.
2000     ///
2001     /// This intrinsic does not have a stable counterpart.
2002     ///
2003     /// # Examples
2004     ///
2005     /// ```
2006     /// #![feature(core_intrinsics)]
2007     ///
2008     /// use std::intrinsics::cttz_nonzero;
2009     ///
2010     /// let x = 0b0011_1000_u8;
2011     /// let num_trailing = unsafe { cttz_nonzero(x) };
2012     /// assert_eq!(num_trailing, 3);
2013     /// ```
2014     #[rustc_const_stable(feature = "const_cttz_nonzero", since = "1.53.0")]
2015     #[rustc_nounwind]
cttz_nonzero<T: Copy>(x: T) -> T2016     pub fn cttz_nonzero<T: Copy>(x: T) -> T;
2017 
2018     /// Reverses the bytes in an integer type `T`.
2019     ///
2020     /// Note that, unlike most intrinsics, this is safe to call;
2021     /// it does not require an `unsafe` block.
2022     /// Therefore, implementations must not require the user to uphold
2023     /// any safety invariants.
2024     ///
2025     /// The stabilized versions of this intrinsic are available on the integer
2026     /// primitives via the `swap_bytes` method. For example,
2027     /// [`u32::swap_bytes`]
2028     #[rustc_const_stable(feature = "const_bswap", since = "1.40.0")]
2029     #[rustc_safe_intrinsic]
2030     #[rustc_nounwind]
bswap<T: Copy>(x: T) -> T2031     pub fn bswap<T: Copy>(x: T) -> T;
2032 
2033     /// Reverses the bits in an integer type `T`.
2034     ///
2035     /// Note that, unlike most intrinsics, this is safe to call;
2036     /// it does not require an `unsafe` block.
2037     /// Therefore, implementations must not require the user to uphold
2038     /// any safety invariants.
2039     ///
2040     /// The stabilized versions of this intrinsic are available on the integer
2041     /// primitives via the `reverse_bits` method. For example,
2042     /// [`u32::reverse_bits`]
2043     #[rustc_const_stable(feature = "const_bitreverse", since = "1.40.0")]
2044     #[rustc_safe_intrinsic]
2045     #[rustc_nounwind]
bitreverse<T: Copy>(x: T) -> T2046     pub fn bitreverse<T: Copy>(x: T) -> T;
2047 
2048     /// Performs checked integer addition.
2049     ///
2050     /// Note that, unlike most intrinsics, this is safe to call;
2051     /// it does not require an `unsafe` block.
2052     /// Therefore, implementations must not require the user to uphold
2053     /// any safety invariants.
2054     ///
2055     /// The stabilized versions of this intrinsic are available on the integer
2056     /// primitives via the `overflowing_add` method. For example,
2057     /// [`u32::overflowing_add`]
2058     #[rustc_const_stable(feature = "const_int_overflow", since = "1.40.0")]
2059     #[rustc_safe_intrinsic]
2060     #[rustc_nounwind]
add_with_overflow<T: Copy>(x: T, y: T) -> (T, bool)2061     pub fn add_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
2062 
2063     /// Performs checked integer subtraction
2064     ///
2065     /// Note that, unlike most intrinsics, this is safe to call;
2066     /// it does not require an `unsafe` block.
2067     /// Therefore, implementations must not require the user to uphold
2068     /// any safety invariants.
2069     ///
2070     /// The stabilized versions of this intrinsic are available on the integer
2071     /// primitives via the `overflowing_sub` method. For example,
2072     /// [`u32::overflowing_sub`]
2073     #[rustc_const_stable(feature = "const_int_overflow", since = "1.40.0")]
2074     #[rustc_safe_intrinsic]
2075     #[rustc_nounwind]
sub_with_overflow<T: Copy>(x: T, y: T) -> (T, bool)2076     pub fn sub_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
2077 
2078     /// Performs checked integer multiplication
2079     ///
2080     /// Note that, unlike most intrinsics, this is safe to call;
2081     /// it does not require an `unsafe` block.
2082     /// Therefore, implementations must not require the user to uphold
2083     /// any safety invariants.
2084     ///
2085     /// The stabilized versions of this intrinsic are available on the integer
2086     /// primitives via the `overflowing_mul` method. For example,
2087     /// [`u32::overflowing_mul`]
2088     #[rustc_const_stable(feature = "const_int_overflow", since = "1.40.0")]
2089     #[rustc_safe_intrinsic]
2090     #[rustc_nounwind]
mul_with_overflow<T: Copy>(x: T, y: T) -> (T, bool)2091     pub fn mul_with_overflow<T: Copy>(x: T, y: T) -> (T, bool);
2092 
2093     /// Performs an exact division, resulting in undefined behavior where
2094     /// `x % y != 0` or `y == 0` or `x == T::MIN && y == -1`
2095     ///
2096     /// This intrinsic does not have a stable counterpart.
2097     #[rustc_const_unstable(feature = "const_exact_div", issue = "none")]
2098     #[rustc_nounwind]
exact_div<T: Copy>(x: T, y: T) -> T2099     pub fn exact_div<T: Copy>(x: T, y: T) -> T;
2100 
2101     /// Performs an unchecked division, resulting in undefined behavior
2102     /// where `y == 0` or `x == T::MIN && y == -1`
2103     ///
2104     /// Safe wrappers for this intrinsic are available on the integer
2105     /// primitives via the `checked_div` method. For example,
2106     /// [`u32::checked_div`]
2107     #[rustc_const_stable(feature = "const_int_unchecked_div", since = "1.52.0")]
2108     #[rustc_nounwind]
unchecked_div<T: Copy>(x: T, y: T) -> T2109     pub fn unchecked_div<T: Copy>(x: T, y: T) -> T;
2110     /// Returns the remainder of an unchecked division, resulting in
2111     /// undefined behavior when `y == 0` or `x == T::MIN && y == -1`
2112     ///
2113     /// Safe wrappers for this intrinsic are available on the integer
2114     /// primitives via the `checked_rem` method. For example,
2115     /// [`u32::checked_rem`]
2116     #[rustc_const_stable(feature = "const_int_unchecked_rem", since = "1.52.0")]
2117     #[rustc_nounwind]
unchecked_rem<T: Copy>(x: T, y: T) -> T2118     pub fn unchecked_rem<T: Copy>(x: T, y: T) -> T;
2119 
2120     /// Performs an unchecked left shift, resulting in undefined behavior when
2121     /// `y < 0` or `y >= N`, where N is the width of T in bits.
2122     ///
2123     /// Safe wrappers for this intrinsic are available on the integer
2124     /// primitives via the `checked_shl` method. For example,
2125     /// [`u32::checked_shl`]
2126     #[rustc_const_stable(feature = "const_int_unchecked", since = "1.40.0")]
2127     #[rustc_nounwind]
unchecked_shl<T: Copy>(x: T, y: T) -> T2128     pub fn unchecked_shl<T: Copy>(x: T, y: T) -> T;
2129     /// Performs an unchecked right shift, resulting in undefined behavior when
2130     /// `y < 0` or `y >= N`, where N is the width of T in bits.
2131     ///
2132     /// Safe wrappers for this intrinsic are available on the integer
2133     /// primitives via the `checked_shr` method. For example,
2134     /// [`u32::checked_shr`]
2135     #[rustc_const_stable(feature = "const_int_unchecked", since = "1.40.0")]
2136     #[rustc_nounwind]
unchecked_shr<T: Copy>(x: T, y: T) -> T2137     pub fn unchecked_shr<T: Copy>(x: T, y: T) -> T;
2138 
2139     /// Returns the result of an unchecked addition, resulting in
2140     /// undefined behavior when `x + y > T::MAX` or `x + y < T::MIN`.
2141     ///
2142     /// This intrinsic does not have a stable counterpart.
2143     #[rustc_const_unstable(feature = "const_int_unchecked_arith", issue = "none")]
2144     #[rustc_nounwind]
unchecked_add<T: Copy>(x: T, y: T) -> T2145     pub fn unchecked_add<T: Copy>(x: T, y: T) -> T;
2146 
2147     /// Returns the result of an unchecked subtraction, resulting in
2148     /// undefined behavior when `x - y > T::MAX` or `x - y < T::MIN`.
2149     ///
2150     /// This intrinsic does not have a stable counterpart.
2151     #[rustc_const_unstable(feature = "const_int_unchecked_arith", issue = "none")]
2152     #[rustc_nounwind]
unchecked_sub<T: Copy>(x: T, y: T) -> T2153     pub fn unchecked_sub<T: Copy>(x: T, y: T) -> T;
2154 
2155     /// Returns the result of an unchecked multiplication, resulting in
2156     /// undefined behavior when `x * y > T::MAX` or `x * y < T::MIN`.
2157     ///
2158     /// This intrinsic does not have a stable counterpart.
2159     #[rustc_const_unstable(feature = "const_int_unchecked_arith", issue = "none")]
2160     #[rustc_nounwind]
unchecked_mul<T: Copy>(x: T, y: T) -> T2161     pub fn unchecked_mul<T: Copy>(x: T, y: T) -> T;
2162 
2163     /// Performs rotate left.
2164     ///
2165     /// Note that, unlike most intrinsics, this is safe to call;
2166     /// it does not require an `unsafe` block.
2167     /// Therefore, implementations must not require the user to uphold
2168     /// any safety invariants.
2169     ///
2170     /// The stabilized versions of this intrinsic are available on the integer
2171     /// primitives via the `rotate_left` method. For example,
2172     /// [`u32::rotate_left`]
2173     #[rustc_const_stable(feature = "const_int_rotate", since = "1.40.0")]
2174     #[rustc_safe_intrinsic]
2175     #[rustc_nounwind]
rotate_left<T: Copy>(x: T, y: T) -> T2176     pub fn rotate_left<T: Copy>(x: T, y: T) -> T;
2177 
2178     /// Performs rotate right.
2179     ///
2180     /// Note that, unlike most intrinsics, this is safe to call;
2181     /// it does not require an `unsafe` block.
2182     /// Therefore, implementations must not require the user to uphold
2183     /// any safety invariants.
2184     ///
2185     /// The stabilized versions of this intrinsic are available on the integer
2186     /// primitives via the `rotate_right` method. For example,
2187     /// [`u32::rotate_right`]
2188     #[rustc_const_stable(feature = "const_int_rotate", since = "1.40.0")]
2189     #[rustc_safe_intrinsic]
2190     #[rustc_nounwind]
rotate_right<T: Copy>(x: T, y: T) -> T2191     pub fn rotate_right<T: Copy>(x: T, y: T) -> T;
2192 
2193     /// Returns (a + b) mod 2<sup>N</sup>, where N is the width of T in bits.
2194     ///
2195     /// Note that, unlike most intrinsics, this is safe to call;
2196     /// it does not require an `unsafe` block.
2197     /// Therefore, implementations must not require the user to uphold
2198     /// any safety invariants.
2199     ///
2200     /// The stabilized versions of this intrinsic are available on the integer
2201     /// primitives via the `wrapping_add` method. For example,
2202     /// [`u32::wrapping_add`]
2203     #[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
2204     #[rustc_safe_intrinsic]
2205     #[rustc_nounwind]
wrapping_add<T: Copy>(a: T, b: T) -> T2206     pub fn wrapping_add<T: Copy>(a: T, b: T) -> T;
2207     /// Returns (a - b) mod 2<sup>N</sup>, where N is the width of T in bits.
2208     ///
2209     /// Note that, unlike most intrinsics, this is safe to call;
2210     /// it does not require an `unsafe` block.
2211     /// Therefore, implementations must not require the user to uphold
2212     /// any safety invariants.
2213     ///
2214     /// The stabilized versions of this intrinsic are available on the integer
2215     /// primitives via the `wrapping_sub` method. For example,
2216     /// [`u32::wrapping_sub`]
2217     #[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
2218     #[rustc_safe_intrinsic]
2219     #[rustc_nounwind]
wrapping_sub<T: Copy>(a: T, b: T) -> T2220     pub fn wrapping_sub<T: Copy>(a: T, b: T) -> T;
2221     /// Returns (a * b) mod 2<sup>N</sup>, where N is the width of T in bits.
2222     ///
2223     /// Note that, unlike most intrinsics, this is safe to call;
2224     /// it does not require an `unsafe` block.
2225     /// Therefore, implementations must not require the user to uphold
2226     /// any safety invariants.
2227     ///
2228     /// The stabilized versions of this intrinsic are available on the integer
2229     /// primitives via the `wrapping_mul` method. For example,
2230     /// [`u32::wrapping_mul`]
2231     #[rustc_const_stable(feature = "const_int_wrapping", since = "1.40.0")]
2232     #[rustc_safe_intrinsic]
2233     #[rustc_nounwind]
wrapping_mul<T: Copy>(a: T, b: T) -> T2234     pub fn wrapping_mul<T: Copy>(a: T, b: T) -> T;
2235 
2236     /// Computes `a + b`, saturating at numeric bounds.
2237     ///
2238     /// Note that, unlike most intrinsics, this is safe to call;
2239     /// it does not require an `unsafe` block.
2240     /// Therefore, implementations must not require the user to uphold
2241     /// any safety invariants.
2242     ///
2243     /// The stabilized versions of this intrinsic are available on the integer
2244     /// primitives via the `saturating_add` method. For example,
2245     /// [`u32::saturating_add`]
2246     #[rustc_const_stable(feature = "const_int_saturating", since = "1.40.0")]
2247     #[rustc_safe_intrinsic]
2248     #[rustc_nounwind]
saturating_add<T: Copy>(a: T, b: T) -> T2249     pub fn saturating_add<T: Copy>(a: T, b: T) -> T;
2250     /// Computes `a - b`, saturating at numeric bounds.
2251     ///
2252     /// Note that, unlike most intrinsics, this is safe to call;
2253     /// it does not require an `unsafe` block.
2254     /// Therefore, implementations must not require the user to uphold
2255     /// any safety invariants.
2256     ///
2257     /// The stabilized versions of this intrinsic are available on the integer
2258     /// primitives via the `saturating_sub` method. For example,
2259     /// [`u32::saturating_sub`]
2260     #[rustc_const_stable(feature = "const_int_saturating", since = "1.40.0")]
2261     #[rustc_safe_intrinsic]
2262     #[rustc_nounwind]
saturating_sub<T: Copy>(a: T, b: T) -> T2263     pub fn saturating_sub<T: Copy>(a: T, b: T) -> T;
2264 
2265     /// This is an implementation detail of [`crate::ptr::read`] and should
2266     /// not be used anywhere else.  See its comments for why this exists.
2267     ///
2268     /// This intrinsic can *only* be called where the pointer is a local without
2269     /// projections (`read_via_copy(ptr)`, not `read_via_copy(*ptr)`) so that it
2270     /// trivially obeys runtime-MIR rules about derefs in operands.
2271     #[rustc_const_stable(feature = "const_ptr_read", since = "1.71.0")]
2272     #[rustc_nounwind]
read_via_copy<T>(ptr: *const T) -> T2273     pub fn read_via_copy<T>(ptr: *const T) -> T;
2274 
2275     /// This is an implementation detail of [`crate::ptr::write`] and should
2276     /// not be used anywhere else.  See its comments for why this exists.
2277     ///
2278     /// This intrinsic can *only* be called where the pointer is a local without
2279     /// projections (`write_via_move(ptr, x)`, not `write_via_move(*ptr, x)`) so
2280     /// that it trivially obeys runtime-MIR rules about derefs in operands.
2281     #[rustc_const_unstable(feature = "const_ptr_write", issue = "86302")]
2282     #[rustc_nounwind]
write_via_move<T>(ptr: *mut T, value: T)2283     pub fn write_via_move<T>(ptr: *mut T, value: T);
2284 
2285     /// Returns the value of the discriminant for the variant in 'v';
2286     /// if `T` has no discriminant, returns `0`.
2287     ///
2288     /// Note that, unlike most intrinsics, this is safe to call;
2289     /// it does not require an `unsafe` block.
2290     /// Therefore, implementations must not require the user to uphold
2291     /// any safety invariants.
2292     ///
2293     /// The stabilized version of this intrinsic is [`core::mem::discriminant`].
2294     #[rustc_const_unstable(feature = "const_discriminant", issue = "69821")]
2295     #[rustc_safe_intrinsic]
2296     #[rustc_nounwind]
discriminant_value<T>(v: &T) -> <T as DiscriminantKind>::Discriminant2297     pub fn discriminant_value<T>(v: &T) -> <T as DiscriminantKind>::Discriminant;
2298 
2299     /// Returns the number of variants of the type `T` cast to a `usize`;
2300     /// if `T` has no variants, returns `0`. Uninhabited variants will be counted.
2301     ///
2302     /// Note that, unlike most intrinsics, this is safe to call;
2303     /// it does not require an `unsafe` block.
2304     /// Therefore, implementations must not require the user to uphold
2305     /// any safety invariants.
2306     ///
2307     /// The to-be-stabilized version of this intrinsic is [`mem::variant_count`].
2308     #[rustc_const_unstable(feature = "variant_count", issue = "73662")]
2309     #[rustc_safe_intrinsic]
2310     #[rustc_nounwind]
variant_count<T>() -> usize2311     pub fn variant_count<T>() -> usize;
2312 
2313     /// Rust's "try catch" construct which invokes the function pointer `try_fn`
2314     /// with the data pointer `data`.
2315     ///
2316     /// The third argument is a function called if a panic occurs. This function
2317     /// takes the data pointer and a pointer to the target-specific exception
2318     /// object that was caught. For more information see the compiler's
2319     /// source as well as std's catch implementation.
2320     ///
2321     /// `catch_fn` must not unwind.
2322     #[rustc_nounwind]
2323     pub fn r#try(try_fn: fn(*mut u8), data: *mut u8, catch_fn: fn(*mut u8, *mut u8)) -> i32;
2324 
2325     /// Emits a `!nontemporal` store according to LLVM (see their docs).
2326     /// Probably will never become stable.
2327     #[rustc_nounwind]
nontemporal_store<T>(ptr: *mut T, val: T)2328     pub fn nontemporal_store<T>(ptr: *mut T, val: T);
2329 
2330     /// See documentation of `<*const T>::offset_from` for details.
2331     #[rustc_const_stable(feature = "const_ptr_offset_from", since = "1.65.0")]
2332     #[rustc_nounwind]
ptr_offset_from<T>(ptr: *const T, base: *const T) -> isize2333     pub fn ptr_offset_from<T>(ptr: *const T, base: *const T) -> isize;
2334 
2335     /// See documentation of `<*const T>::sub_ptr` for details.
2336     #[rustc_const_unstable(feature = "const_ptr_sub_ptr", issue = "95892")]
2337     #[rustc_nounwind]
ptr_offset_from_unsigned<T>(ptr: *const T, base: *const T) -> usize2338     pub fn ptr_offset_from_unsigned<T>(ptr: *const T, base: *const T) -> usize;
2339 
2340     /// See documentation of `<*const T>::guaranteed_eq` for details.
2341     /// Returns `2` if the result is unknown.
2342     /// Returns `1` if the pointers are guaranteed equal
2343     /// Returns `0` if the pointers are guaranteed inequal
2344     ///
2345     /// Note that, unlike most intrinsics, this is safe to call;
2346     /// it does not require an `unsafe` block.
2347     /// Therefore, implementations must not require the user to uphold
2348     /// any safety invariants.
2349     #[rustc_const_unstable(feature = "const_raw_ptr_comparison", issue = "53020")]
2350     #[rustc_safe_intrinsic]
2351     #[rustc_nounwind]
ptr_guaranteed_cmp<T>(ptr: *const T, other: *const T) -> u82352     pub fn ptr_guaranteed_cmp<T>(ptr: *const T, other: *const T) -> u8;
2353 
2354     /// Allocates a block of memory at compile time.
2355     /// At runtime, just returns a null pointer.
2356     ///
2357     /// # Safety
2358     ///
2359     /// - The `align` argument must be a power of two.
2360     ///    - At compile time, a compile error occurs if this constraint is violated.
2361     ///    - At runtime, it is not checked.
2362     #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
2363     #[rustc_nounwind]
const_allocate(size: usize, align: usize) -> *mut u82364     pub fn const_allocate(size: usize, align: usize) -> *mut u8;
2365 
2366     /// Deallocates a memory which allocated by `intrinsics::const_allocate` at compile time.
2367     /// At runtime, does nothing.
2368     ///
2369     /// # Safety
2370     ///
2371     /// - The `align` argument must be a power of two.
2372     ///    - At compile time, a compile error occurs if this constraint is violated.
2373     ///    - At runtime, it is not checked.
2374     /// - If the `ptr` is created in an another const, this intrinsic doesn't deallocate it.
2375     /// - If the `ptr` is pointing to a local variable, this intrinsic doesn't deallocate it.
2376     #[rustc_const_unstable(feature = "const_heap", issue = "79597")]
2377     #[rustc_nounwind]
const_deallocate(ptr: *mut u8, size: usize, align: usize)2378     pub fn const_deallocate(ptr: *mut u8, size: usize, align: usize);
2379 
2380     /// Determines whether the raw bytes of the two values are equal.
2381     ///
2382     /// This is particularly handy for arrays, since it allows things like just
2383     /// comparing `i96`s instead of forcing `alloca`s for `[6 x i16]`.
2384     ///
2385     /// Above some backend-decided threshold this will emit calls to `memcmp`,
2386     /// like slice equality does, instead of causing massive code size.
2387     ///
2388     /// Since this works by comparing the underlying bytes, the actual `T` is
2389     /// not particularly important.  It will be used for its size and alignment,
2390     /// but any validity restrictions will be ignored, not enforced.
2391     ///
2392     /// # Safety
2393     ///
2394     /// It's UB to call this if any of the *bytes* in `*a` or `*b` are uninitialized or carry a
2395     /// pointer value.
2396     /// Note that this is a stricter criterion than just the *values* being
2397     /// fully-initialized: if `T` has padding, it's UB to call this intrinsic.
2398     ///
2399     /// (The implementation is allowed to branch on the results of comparisons,
2400     /// which is UB if any of their inputs are `undef`.)
2401     #[rustc_const_unstable(feature = "const_intrinsic_raw_eq", issue = "none")]
2402     #[rustc_nounwind]
raw_eq<T>(a: &T, b: &T) -> bool2403     pub fn raw_eq<T>(a: &T, b: &T) -> bool;
2404 
2405     /// See documentation of [`std::hint::black_box`] for details.
2406     ///
2407     /// [`std::hint::black_box`]: crate::hint::black_box
2408     #[rustc_const_unstable(feature = "const_black_box", issue = "none")]
2409     #[rustc_safe_intrinsic]
2410     #[rustc_nounwind]
black_box<T>(dummy: T) -> T2411     pub fn black_box<T>(dummy: T) -> T;
2412 
2413     /// `ptr` must point to a vtable.
2414     /// The intrinsic will return the size stored in that vtable.
2415     #[rustc_nounwind]
vtable_size(ptr: *const ()) -> usize2416     pub fn vtable_size(ptr: *const ()) -> usize;
2417 
2418     /// `ptr` must point to a vtable.
2419     /// The intrinsic will return the alignment stored in that vtable.
2420     #[rustc_nounwind]
vtable_align(ptr: *const ()) -> usize2421     pub fn vtable_align(ptr: *const ()) -> usize;
2422 
2423     /// Selects which function to call depending on the context.
2424     ///
2425     /// If this function is evaluated at compile-time, then a call to this
2426     /// intrinsic will be replaced with a call to `called_in_const`. It gets
2427     /// replaced with a call to `called_at_rt` otherwise.
2428     ///
2429     /// # Type Requirements
2430     ///
2431     /// The two functions must be both function items. They cannot be function
2432     /// pointers or closures. The first function must be a `const fn`.
2433     ///
2434     /// `arg` will be the tupled arguments that will be passed to either one of
2435     /// the two functions, therefore, both functions must accept the same type of
2436     /// arguments. Both functions must return RET.
2437     ///
2438     /// # Safety
2439     ///
2440     /// The two functions must behave observably equivalent. Safe code in other
2441     /// crates may assume that calling a `const fn` at compile-time and at run-time
2442     /// produces the same result. A function that produces a different result when
2443     /// evaluated at run-time, or has any other observable side-effects, is
2444     /// *unsound*.
2445     ///
2446     /// Here is an example of how this could cause a problem:
2447     /// ```no_run
2448     /// #![feature(const_eval_select)]
2449     /// #![feature(core_intrinsics)]
2450     /// use std::hint::unreachable_unchecked;
2451     /// use std::intrinsics::const_eval_select;
2452     ///
2453     /// // Crate A
2454     /// pub const fn inconsistent() -> i32 {
2455     ///     fn runtime() -> i32 { 1 }
2456     ///     const fn compiletime() -> i32 { 2 }
2457     ///
2458     ///     unsafe {
2459     //          // ⚠ This code violates the required equivalence of `compiletime`
2460     ///         // and `runtime`.
2461     ///         const_eval_select((), compiletime, runtime)
2462     ///     }
2463     /// }
2464     ///
2465     /// // Crate B
2466     /// const X: i32 = inconsistent();
2467     /// let x = inconsistent();
2468     /// if x != X { unsafe { unreachable_unchecked(); }}
2469     /// ```
2470     ///
2471     /// This code causes Undefined Behavior when being run, since the
2472     /// `unreachable_unchecked` is actually being reached. The bug is in *crate A*,
2473     /// which violates the principle that a `const fn` must behave the same at
2474     /// compile-time and at run-time. The unsafe code in crate B is fine.
2475     #[rustc_const_unstable(feature = "const_eval_select", issue = "none")]
const_eval_select<ARG: Tuple, F, G, RET>( arg: ARG, called_in_const: F, called_at_rt: G, ) -> RET where G: FnOnce<ARG, Output = RET>, F: FnOnce<ARG, Output = RET>2476     pub fn const_eval_select<ARG: Tuple, F, G, RET>(
2477         arg: ARG,
2478         called_in_const: F,
2479         called_at_rt: G,
2480     ) -> RET
2481     where
2482         G: FnOnce<ARG, Output = RET>,
2483         F: FnOnce<ARG, Output = RET>;
2484 
2485     /// This method creates a pointer to any `Some` value. If the argument is
2486     /// `None`, an invalid within-bounds pointer (that is still acceptable for
2487     /// constructing an empty slice) is returned.
2488     #[rustc_nounwind]
option_payload_ptr<T>(arg: *const Option<T>) -> *const T2489     pub fn option_payload_ptr<T>(arg: *const Option<T>) -> *const T;
2490 }
2491 
2492 // Some functions are defined here because they accidentally got made
2493 // available in this module on stable. See <https://github.com/rust-lang/rust/issues/15702>.
2494 // (`transmute` also falls into this category, but it cannot be wrapped due to the
2495 // check that `T` and `U` have the same size.)
2496 
2497 /// Check that the preconditions of an unsafe function are followed, if debug_assertions are on,
2498 /// and only at runtime.
2499 ///
2500 /// This macro should be called as `assert_unsafe_precondition!([Generics](name: Type) => Expression)`
2501 /// where the names specified will be moved into the macro as captured variables, and defines an item
2502 /// to call `const_eval_select` on. The tokens inside the square brackets are used to denote generics
2503 /// for the function declarations and can be omitted if there is no generics.
2504 ///
2505 /// # Safety
2506 ///
2507 /// Invoking this macro is only sound if the following code is already UB when the passed
2508 /// expression evaluates to false.
2509 ///
2510 /// This macro expands to a check at runtime if debug_assertions is set. It has no effect at
2511 /// compile time, but the semantics of the contained `const_eval_select` must be the same at
2512 /// runtime and at compile time. Thus if the expression evaluates to false, this macro produces
2513 /// different behavior at compile time and at runtime, and invoking it is incorrect.
2514 ///
2515 /// So in a sense it is UB if this macro is useful, but we expect callers of `unsafe fn` to make
2516 /// the occasional mistake, and this check should help them figure things out.
2517 #[allow_internal_unstable(const_eval_select)] // permit this to be called in stably-const fn
2518 macro_rules! assert_unsafe_precondition {
2519     ($name:expr, $([$($tt:tt)*])?($($i:ident:$ty:ty),*$(,)?) => $e:expr) => {
2520         if cfg!(debug_assertions) {
2521             // allow non_snake_case to allow capturing const generics
2522             #[allow(non_snake_case)]
2523             #[inline(always)]
2524             fn runtime$(<$($tt)*>)?($($i:$ty),*) {
2525                 if !$e {
2526                     // don't unwind to reduce impact on code size
2527                     ::core::panicking::panic_nounwind(
2528                         concat!("unsafe precondition(s) violated: ", $name)
2529                     );
2530                 }
2531             }
2532             #[allow(non_snake_case)]
2533             #[inline]
2534             const fn comptime$(<$($tt)*>)?($(_:$ty),*) {}
2535 
2536             ::core::intrinsics::const_eval_select(($($i,)*), comptime, runtime);
2537         }
2538     };
2539 }
2540 pub(crate) use assert_unsafe_precondition;
2541 
2542 /// Checks whether `ptr` is properly aligned with respect to
2543 /// `align_of::<T>()`.
is_aligned_and_not_null<T>(ptr: *const T) -> bool2544 pub(crate) fn is_aligned_and_not_null<T>(ptr: *const T) -> bool {
2545     !ptr.is_null() && ptr.is_aligned()
2546 }
2547 
2548 /// Checks whether an allocation of `len` instances of `T` exceeds
2549 /// the maximum allowed allocation size.
is_valid_allocation_size<T>(len: usize) -> bool2550 pub(crate) fn is_valid_allocation_size<T>(len: usize) -> bool {
2551     let max_len = const {
2552         let size = crate::mem::size_of::<T>();
2553         if size == 0 { usize::MAX } else { isize::MAX as usize / size }
2554     };
2555     len <= max_len
2556 }
2557 
2558 /// Checks whether the regions of memory starting at `src` and `dst` of size
2559 /// `count * size_of::<T>()` do *not* overlap.
is_nonoverlapping<T>(src: *const T, dst: *const T, count: usize) -> bool2560 pub(crate) fn is_nonoverlapping<T>(src: *const T, dst: *const T, count: usize) -> bool {
2561     let src_usize = src.addr();
2562     let dst_usize = dst.addr();
2563     let size = mem::size_of::<T>()
2564         .checked_mul(count)
2565         .expect("is_nonoverlapping: `size_of::<T>() * count` overflows a usize");
2566     let diff = if src_usize > dst_usize { src_usize - dst_usize } else { dst_usize - src_usize };
2567     // If the absolute distance between the ptrs is at least as big as the size of the buffer,
2568     // they do not overlap.
2569     diff >= size
2570 }
2571 
2572 /// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
2573 /// and destination must *not* overlap.
2574 ///
2575 /// For regions of memory which might overlap, use [`copy`] instead.
2576 ///
2577 /// `copy_nonoverlapping` is semantically equivalent to C's [`memcpy`], but
2578 /// with the argument order swapped.
2579 ///
2580 /// The copy is "untyped" in the sense that data may be uninitialized or otherwise violate the
2581 /// requirements of `T`. The initialization state is preserved exactly.
2582 ///
2583 /// [`memcpy`]: https://en.cppreference.com/w/c/string/byte/memcpy
2584 ///
2585 /// # Safety
2586 ///
2587 /// Behavior is undefined if any of the following conditions are violated:
2588 ///
2589 /// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
2590 ///
2591 /// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
2592 ///
2593 /// * Both `src` and `dst` must be properly aligned.
2594 ///
2595 /// * The region of memory beginning at `src` with a size of `count *
2596 ///   size_of::<T>()` bytes must *not* overlap with the region of memory
2597 ///   beginning at `dst` with the same size.
2598 ///
2599 /// Like [`read`], `copy_nonoverlapping` creates a bitwise copy of `T`, regardless of
2600 /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using *both* the values
2601 /// in the region beginning at `*src` and the region beginning at `*dst` can
2602 /// [violate memory safety][read-ownership].
2603 ///
2604 /// Note that even if the effectively copied size (`count * size_of::<T>()`) is
2605 /// `0`, the pointers must be non-null and properly aligned.
2606 ///
2607 /// [`read`]: crate::ptr::read
2608 /// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
2609 /// [valid]: crate::ptr#safety
2610 ///
2611 /// # Examples
2612 ///
2613 /// Manually implement [`Vec::append`]:
2614 ///
2615 /// ```
2616 /// use std::ptr;
2617 ///
2618 /// /// Moves all the elements of `src` into `dst`, leaving `src` empty.
2619 /// fn append<T>(dst: &mut Vec<T>, src: &mut Vec<T>) {
2620 ///     let src_len = src.len();
2621 ///     let dst_len = dst.len();
2622 ///
2623 ///     // Ensure that `dst` has enough capacity to hold all of `src`.
2624 ///     dst.reserve(src_len);
2625 ///
2626 ///     unsafe {
2627 ///         // The call to add is always safe because `Vec` will never
2628 ///         // allocate more than `isize::MAX` bytes.
2629 ///         let dst_ptr = dst.as_mut_ptr().add(dst_len);
2630 ///         let src_ptr = src.as_ptr();
2631 ///
2632 ///         // Truncate `src` without dropping its contents. We do this first,
2633 ///         // to avoid problems in case something further down panics.
2634 ///         src.set_len(0);
2635 ///
2636 ///         // The two regions cannot overlap because mutable references do
2637 ///         // not alias, and two different vectors cannot own the same
2638 ///         // memory.
2639 ///         ptr::copy_nonoverlapping(src_ptr, dst_ptr, src_len);
2640 ///
2641 ///         // Notify `dst` that it now holds the contents of `src`.
2642 ///         dst.set_len(dst_len + src_len);
2643 ///     }
2644 /// }
2645 ///
2646 /// let mut a = vec!['r'];
2647 /// let mut b = vec!['u', 's', 't'];
2648 ///
2649 /// append(&mut a, &mut b);
2650 ///
2651 /// assert_eq!(a, &['r', 'u', 's', 't']);
2652 /// assert!(b.is_empty());
2653 /// ```
2654 ///
2655 /// [`Vec::append`]: ../../std/vec/struct.Vec.html#method.append
2656 #[doc(alias = "memcpy")]
2657 #[stable(feature = "rust1", since = "1.0.0")]
2658 #[rustc_allowed_through_unstable_modules]
2659 #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.63.0")]
2660 #[inline(always)]
2661 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize)2662 pub const unsafe fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize) {
2663     extern "rust-intrinsic" {
2664         #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.63.0")]
2665         #[rustc_nounwind]
2666         pub fn copy_nonoverlapping<T>(src: *const T, dst: *mut T, count: usize);
2667     }
2668 
2669     // SAFETY: the safety contract for `copy_nonoverlapping` must be
2670     // upheld by the caller.
2671     unsafe {
2672         assert_unsafe_precondition!(
2673             "ptr::copy_nonoverlapping requires that both pointer arguments are aligned and non-null \
2674             and the specified memory ranges do not overlap",
2675             [T](src: *const T, dst: *mut T, count: usize) =>
2676             is_aligned_and_not_null(src)
2677                 && is_aligned_and_not_null(dst)
2678                 && is_nonoverlapping(src, dst, count)
2679         );
2680         copy_nonoverlapping(src, dst, count)
2681     }
2682 }
2683 
2684 /// Copies `count * size_of::<T>()` bytes from `src` to `dst`. The source
2685 /// and destination may overlap.
2686 ///
2687 /// If the source and destination will *never* overlap,
2688 /// [`copy_nonoverlapping`] can be used instead.
2689 ///
2690 /// `copy` is semantically equivalent to C's [`memmove`], but with the argument
2691 /// order swapped. Copying takes place as if the bytes were copied from `src`
2692 /// to a temporary array and then copied from the array to `dst`.
2693 ///
2694 /// The copy is "untyped" in the sense that data may be uninitialized or otherwise violate the
2695 /// requirements of `T`. The initialization state is preserved exactly.
2696 ///
2697 /// [`memmove`]: https://en.cppreference.com/w/c/string/byte/memmove
2698 ///
2699 /// # Safety
2700 ///
2701 /// Behavior is undefined if any of the following conditions are violated:
2702 ///
2703 /// * `src` must be [valid] for reads of `count * size_of::<T>()` bytes.
2704 ///
2705 /// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
2706 ///
2707 /// * Both `src` and `dst` must be properly aligned.
2708 ///
2709 /// Like [`read`], `copy` creates a bitwise copy of `T`, regardless of
2710 /// whether `T` is [`Copy`]. If `T` is not [`Copy`], using both the values
2711 /// in the region beginning at `*src` and the region beginning at `*dst` can
2712 /// [violate memory safety][read-ownership].
2713 ///
2714 /// Note that even if the effectively copied size (`count * size_of::<T>()`) is
2715 /// `0`, the pointers must be non-null and properly aligned.
2716 ///
2717 /// [`read`]: crate::ptr::read
2718 /// [read-ownership]: crate::ptr::read#ownership-of-the-returned-value
2719 /// [valid]: crate::ptr#safety
2720 ///
2721 /// # Examples
2722 ///
2723 /// Efficiently create a Rust vector from an unsafe buffer:
2724 ///
2725 /// ```
2726 /// use std::ptr;
2727 ///
2728 /// /// # Safety
2729 /// ///
2730 /// /// * `ptr` must be correctly aligned for its type and non-zero.
2731 /// /// * `ptr` must be valid for reads of `elts` contiguous elements of type `T`.
2732 /// /// * Those elements must not be used after calling this function unless `T: Copy`.
2733 /// # #[allow(dead_code)]
2734 /// unsafe fn from_buf_raw<T>(ptr: *const T, elts: usize) -> Vec<T> {
2735 ///     let mut dst = Vec::with_capacity(elts);
2736 ///
2737 ///     // SAFETY: Our precondition ensures the source is aligned and valid,
2738 ///     // and `Vec::with_capacity` ensures that we have usable space to write them.
2739 ///     ptr::copy(ptr, dst.as_mut_ptr(), elts);
2740 ///
2741 ///     // SAFETY: We created it with this much capacity earlier,
2742 ///     // and the previous `copy` has initialized these elements.
2743 ///     dst.set_len(elts);
2744 ///     dst
2745 /// }
2746 /// ```
2747 #[doc(alias = "memmove")]
2748 #[stable(feature = "rust1", since = "1.0.0")]
2749 #[rustc_allowed_through_unstable_modules]
2750 #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.63.0")]
2751 #[inline(always)]
2752 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
copy<T>(src: *const T, dst: *mut T, count: usize)2753 pub const unsafe fn copy<T>(src: *const T, dst: *mut T, count: usize) {
2754     extern "rust-intrinsic" {
2755         #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.63.0")]
2756         #[rustc_nounwind]
2757         fn copy<T>(src: *const T, dst: *mut T, count: usize);
2758     }
2759 
2760     // SAFETY: the safety contract for `copy` must be upheld by the caller.
2761     unsafe {
2762         assert_unsafe_precondition!(
2763             "ptr::copy requires that both pointer arguments are aligned and non-null",
2764             [T](src: *const T, dst: *mut T) =>
2765             is_aligned_and_not_null(src) && is_aligned_and_not_null(dst)
2766         );
2767         copy(src, dst, count)
2768     }
2769 }
2770 
2771 /// Sets `count * size_of::<T>()` bytes of memory starting at `dst` to
2772 /// `val`.
2773 ///
2774 /// `write_bytes` is similar to C's [`memset`], but sets `count *
2775 /// size_of::<T>()` bytes to `val`.
2776 ///
2777 /// [`memset`]: https://en.cppreference.com/w/c/string/byte/memset
2778 ///
2779 /// # Safety
2780 ///
2781 /// Behavior is undefined if any of the following conditions are violated:
2782 ///
2783 /// * `dst` must be [valid] for writes of `count * size_of::<T>()` bytes.
2784 ///
2785 /// * `dst` must be properly aligned.
2786 ///
2787 /// Note that even if the effectively copied size (`count * size_of::<T>()`) is
2788 /// `0`, the pointer must be non-null and properly aligned.
2789 ///
2790 /// Additionally, note that changing `*dst` in this way can easily lead to undefined behavior (UB)
2791 /// later if the written bytes are not a valid representation of some `T`. For instance, the
2792 /// following is an **incorrect** use of this function:
2793 ///
2794 /// ```rust,no_run
2795 /// unsafe {
2796 ///     let mut value: u8 = 0;
2797 ///     let ptr: *mut bool = &mut value as *mut u8 as *mut bool;
2798 ///     let _bool = ptr.read(); // This is fine, `ptr` points to a valid `bool`.
2799 ///     ptr.write_bytes(42u8, 1); // This function itself does not cause UB...
2800 ///     let _bool = ptr.read(); // ...but it makes this operation UB! ⚠️
2801 /// }
2802 /// ```
2803 ///
2804 /// [valid]: crate::ptr#safety
2805 ///
2806 /// # Examples
2807 ///
2808 /// Basic usage:
2809 ///
2810 /// ```
2811 /// use std::ptr;
2812 ///
2813 /// let mut vec = vec![0u32; 4];
2814 /// unsafe {
2815 ///     let vec_ptr = vec.as_mut_ptr();
2816 ///     ptr::write_bytes(vec_ptr, 0xfe, 2);
2817 /// }
2818 /// assert_eq!(vec, [0xfefefefe, 0xfefefefe, 0, 0]);
2819 /// ```
2820 #[doc(alias = "memset")]
2821 #[stable(feature = "rust1", since = "1.0.0")]
2822 #[rustc_allowed_through_unstable_modules]
2823 #[rustc_const_unstable(feature = "const_ptr_write", issue = "86302")]
2824 #[inline(always)]
2825 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
write_bytes<T>(dst: *mut T, val: u8, count: usize)2826 pub const unsafe fn write_bytes<T>(dst: *mut T, val: u8, count: usize) {
2827     extern "rust-intrinsic" {
2828         #[rustc_const_unstable(feature = "const_ptr_write", issue = "86302")]
2829         #[rustc_nounwind]
2830         fn write_bytes<T>(dst: *mut T, val: u8, count: usize);
2831     }
2832 
2833     // SAFETY: the safety contract for `write_bytes` must be upheld by the caller.
2834     unsafe {
2835         assert_unsafe_precondition!(
2836             "ptr::write_bytes requires that the destination pointer is aligned and non-null",
2837             [T](dst: *mut T) => is_aligned_and_not_null(dst)
2838         );
2839         write_bytes(dst, val, count)
2840     }
2841 }
2842