• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * Copyright 2020-2022 Huawei Technologies Co., Ltd
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "plugin/device/cpu/kernel/unique_with_pad_cpu_kernel.h"
18 #include "plugin/device/cpu/hal/device/cpu_device_address.h"
19 
20 namespace mindspore {
21 namespace kernel {
Resize(const std::vector<KernelTensor * > & inputs,const std::vector<KernelTensor * > & outputs)22 int UniqueWithPadCpuKernelMod::Resize(const std::vector<KernelTensor *> &inputs,
23                                       const std::vector<KernelTensor *> &outputs) {
24   if (auto ret = KernelMod::Resize(inputs, outputs); ret != KRET_OK) {
25     return ret;
26   }
27   CHECK_KERNEL_INPUTS_NUM(inputs.size(), kUniqueWithPadInputsNum, kernel_name_);
28   CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kUniqueWithPadOutputsNum, kernel_name_);
29   auto input_shape = inputs[0]->GetShapeVector();
30   input_size_ = static_cast<size_t>(input_shape[0]);
31   batch_size_ = 1;
32   if (batch_rank_ > 0) {
33     auto pad_shape = inputs[kPadNumIndex]->GetShapeVector();
34     auto pad_nums = std::accumulate(pad_shape.begin(), pad_shape.end(), 1, std::multiplies<int64_t>());
35     batch_size_ = LongToSize(
36       std::accumulate(input_shape.begin(), input_shape.begin() + batch_rank_, 1, std::multiplies<int64_t>()));
37     input_size_ = static_cast<size_t>(input_shape[input_shape.size() - 1]);
38     if (pad_nums != static_cast<int64_t>(batch_size_)) {
39       MS_LOG(EXCEPTION) << "For '" << kernel_name_
40                         << "', the elements num of input 'pad' must be equal to input 'x' batch size, "
41                            "but got the elements num of input 'pad': "
42                         << pad_shape << " and input 'x' batch size: " << batch_size_;
43     }
44   }
45   (void)workspace_size_list_.emplace_back(input_size_ * sizeof(int64_t));
46   (void)workspace_size_list_.emplace_back(input_size_ * sizeof(int64_t));
47   (void)workspace_size_list_.emplace_back(input_size_ * sizeof(int64_t));
48   return KRET_OK;
49 }
50 
Launch(const std::vector<kernel::KernelTensor * > & inputs,const std::vector<kernel::KernelTensor * > & workspace,const std::vector<kernel::KernelTensor * > & outputs)51 bool UniqueWithPadCpuKernelMod::Launch(const std::vector<kernel::KernelTensor *> &inputs,
52                                        const std::vector<kernel::KernelTensor *> &workspace,
53                                        const std::vector<kernel::KernelTensor *> &outputs) {
54   CHECK_KERNEL_INPUTS_NUM(inputs.size(), kUniqueWithPadInputsNum, kernel_name_);
55   CHECK_KERNEL_OUTPUTS_NUM(outputs.size(), kUniqueWithPadOutputsNum, kernel_name_);
56   if (dtype_ == kNumberTypeInt32) {
57     UniqueCpuKernelMod::LaunchKernel<int, int>(inputs, workspace, outputs);
58     PadOutput<int>(inputs, outputs, output_sizes_);
59   } else if (dtype_ == kNumberTypeInt64) {
60     UniqueCpuKernelMod::LaunchKernel<int64_t, int64_t>(inputs, workspace, outputs);
61     PadOutput<int64_t>(inputs, outputs, output_sizes_);
62   } else if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat16) {
63     UniqueCpuKernelMod::LaunchKernel<float, int>(inputs, workspace, outputs);
64     PadOutput<float>(inputs, outputs, output_sizes_);
65   } else {
66     MS_LOG(EXCEPTION) << "For '" << kernel_name_
67                       << "', the dtype of input must be float16, float32, int32, or int64, but got "
68                       << TypeIdToType(dtype_)->ToString();
69   }
70   return true;
71 }
72 
73 template <typename T>
PadOutput(const std::vector<KernelTensor * > & inputs,const std::vector<KernelTensor * > & outputs,const std::vector<size_t> & start)74 void UniqueWithPadCpuKernelMod::PadOutput(const std::vector<KernelTensor *> &inputs,
75                                           const std::vector<KernelTensor *> &outputs,
76                                           const std::vector<size_t> &start) {
77   if (inputs.size() < kUniqueWithPadInputsNum || outputs.size() < kUniqueWithPadOutputsNum) {
78     return;
79   }
80   auto pad_num_p = static_cast<T *>(inputs[1]->device_ptr());
81   auto *out = static_cast<T *>(outputs[0]->device_ptr());
82   for (size_t batch_i = 0; batch_i < batch_size_; batch_i++) {
83     T pad_num = *pad_num_p;
84     for (size_t i = start[batch_i]; i < input_size_; ++i) {
85       out[i] = pad_num;
86     }
87     pad_num_p++;
88     out += input_size_;
89   }
90 }
91 
92 MS_KERNEL_FACTORY_REG(NativeCpuKernelMod, UniqueWithPad, UniqueWithPadCpuKernelMod);
93 }  // namespace kernel
94 }  // namespace mindspore
95