1 use std::collections::VecDeque;
2 use std::rc::Rc;
3
4 use rustc_data_structures::binary_search_util;
5 use rustc_data_structures::frozen::Frozen;
6 use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
7 use rustc_data_structures::graph::scc::Sccs;
8 use rustc_errors::Diagnostic;
9 use rustc_hir::def_id::CRATE_DEF_ID;
10 use rustc_index::{IndexSlice, IndexVec};
11 use rustc_infer::infer::outlives::test_type_match;
12 use rustc_infer::infer::region_constraints::{GenericKind, VarInfos, VerifyBound, VerifyIfEq};
13 use rustc_infer::infer::{InferCtxt, NllRegionVariableOrigin, RegionVariableOrigin};
14 use rustc_middle::mir::{
15 BasicBlock, Body, ClosureOutlivesRequirement, ClosureOutlivesSubject, ClosureOutlivesSubjectTy,
16 ClosureRegionRequirements, ConstraintCategory, Local, Location, ReturnConstraint,
17 TerminatorKind,
18 };
19 use rustc_middle::traits::ObligationCause;
20 use rustc_middle::traits::ObligationCauseCode;
21 use rustc_middle::ty::{self, RegionVid, Ty, TyCtxt, TypeFoldable, TypeVisitableExt};
22 use rustc_span::Span;
23
24 use crate::{
25 constraints::{
26 graph::NormalConstraintGraph, ConstraintSccIndex, OutlivesConstraint, OutlivesConstraintSet,
27 },
28 diagnostics::{RegionErrorKind, RegionErrors, UniverseInfo},
29 member_constraints::{MemberConstraintSet, NllMemberConstraintIndex},
30 nll::PoloniusOutput,
31 region_infer::reverse_sccs::ReverseSccGraph,
32 region_infer::values::{
33 LivenessValues, PlaceholderIndices, RegionElement, RegionValueElements, RegionValues,
34 ToElementIndex,
35 },
36 type_check::{free_region_relations::UniversalRegionRelations, Locations},
37 universal_regions::UniversalRegions,
38 BorrowckInferCtxt,
39 };
40
41 mod dump_mir;
42 mod graphviz;
43 mod opaque_types;
44 mod reverse_sccs;
45
46 pub mod values;
47
48 pub struct RegionInferenceContext<'tcx> {
49 pub var_infos: VarInfos,
50
51 /// Contains the definition for every region variable. Region
52 /// variables are identified by their index (`RegionVid`). The
53 /// definition contains information about where the region came
54 /// from as well as its final inferred value.
55 definitions: IndexVec<RegionVid, RegionDefinition<'tcx>>,
56
57 /// The liveness constraints added to each region. For most
58 /// regions, these start out empty and steadily grow, though for
59 /// each universally quantified region R they start out containing
60 /// the entire CFG and `end(R)`.
61 liveness_constraints: LivenessValues<RegionVid>,
62
63 /// The outlives constraints computed by the type-check.
64 constraints: Frozen<OutlivesConstraintSet<'tcx>>,
65
66 /// The constraint-set, but in graph form, making it easy to traverse
67 /// the constraints adjacent to a particular region. Used to construct
68 /// the SCC (see `constraint_sccs`) and for error reporting.
69 constraint_graph: Frozen<NormalConstraintGraph>,
70
71 /// The SCC computed from `constraints` and the constraint
72 /// graph. We have an edge from SCC A to SCC B if `A: B`. Used to
73 /// compute the values of each region.
74 constraint_sccs: Rc<Sccs<RegionVid, ConstraintSccIndex>>,
75
76 /// Reverse of the SCC constraint graph -- i.e., an edge `A -> B` exists if
77 /// `B: A`. This is used to compute the universal regions that are required
78 /// to outlive a given SCC. Computed lazily.
79 rev_scc_graph: Option<ReverseSccGraph>,
80
81 /// The "R0 member of [R1..Rn]" constraints, indexed by SCC.
82 member_constraints: Rc<MemberConstraintSet<'tcx, ConstraintSccIndex>>,
83
84 /// Records the member constraints that we applied to each scc.
85 /// This is useful for error reporting. Once constraint
86 /// propagation is done, this vector is sorted according to
87 /// `member_region_scc`.
88 member_constraints_applied: Vec<AppliedMemberConstraint>,
89
90 /// Map universe indexes to information on why we created it.
91 universe_causes: FxIndexMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
92
93 /// Contains the minimum universe of any variable within the same
94 /// SCC. We will ensure that no SCC contains values that are not
95 /// visible from this index.
96 scc_universes: IndexVec<ConstraintSccIndex, ty::UniverseIndex>,
97
98 /// Contains a "representative" from each SCC. This will be the
99 /// minimal RegionVid belonging to that universe. It is used as a
100 /// kind of hacky way to manage checking outlives relationships,
101 /// since we can 'canonicalize' each region to the representative
102 /// of its SCC and be sure that -- if they have the same repr --
103 /// they *must* be equal (though not having the same repr does not
104 /// mean they are unequal).
105 scc_representatives: IndexVec<ConstraintSccIndex, ty::RegionVid>,
106
107 /// The final inferred values of the region variables; we compute
108 /// one value per SCC. To get the value for any given *region*,
109 /// you first find which scc it is a part of.
110 scc_values: RegionValues<ConstraintSccIndex>,
111
112 /// Type constraints that we check after solving.
113 type_tests: Vec<TypeTest<'tcx>>,
114
115 /// Information about the universally quantified regions in scope
116 /// on this function.
117 universal_regions: Rc<UniversalRegions<'tcx>>,
118
119 /// Information about how the universally quantified regions in
120 /// scope on this function relate to one another.
121 universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
122 }
123
124 /// Each time that `apply_member_constraint` is successful, it appends
125 /// one of these structs to the `member_constraints_applied` field.
126 /// This is used in error reporting to trace out what happened.
127 ///
128 /// The way that `apply_member_constraint` works is that it effectively
129 /// adds a new lower bound to the SCC it is analyzing: so you wind up
130 /// with `'R: 'O` where `'R` is the pick-region and `'O` is the
131 /// minimal viable option.
132 #[derive(Debug)]
133 pub(crate) struct AppliedMemberConstraint {
134 /// The SCC that was affected. (The "member region".)
135 ///
136 /// The vector if `AppliedMemberConstraint` elements is kept sorted
137 /// by this field.
138 pub(crate) member_region_scc: ConstraintSccIndex,
139
140 /// The "best option" that `apply_member_constraint` found -- this was
141 /// added as an "ad-hoc" lower-bound to `member_region_scc`.
142 pub(crate) min_choice: ty::RegionVid,
143
144 /// The "member constraint index" -- we can find out details about
145 /// the constraint from
146 /// `set.member_constraints[member_constraint_index]`.
147 pub(crate) member_constraint_index: NllMemberConstraintIndex,
148 }
149
150 pub(crate) struct RegionDefinition<'tcx> {
151 /// What kind of variable is this -- a free region? existential
152 /// variable? etc. (See the `NllRegionVariableOrigin` for more
153 /// info.)
154 pub(crate) origin: NllRegionVariableOrigin,
155
156 /// Which universe is this region variable defined in? This is
157 /// most often `ty::UniverseIndex::ROOT`, but when we encounter
158 /// forall-quantifiers like `for<'a> { 'a = 'b }`, we would create
159 /// the variable for `'a` in a fresh universe that extends ROOT.
160 pub(crate) universe: ty::UniverseIndex,
161
162 /// If this is 'static or an early-bound region, then this is
163 /// `Some(X)` where `X` is the name of the region.
164 pub(crate) external_name: Option<ty::Region<'tcx>>,
165 }
166
167 /// N.B., the variants in `Cause` are intentionally ordered. Lower
168 /// values are preferred when it comes to error messages. Do not
169 /// reorder willy nilly.
170 #[derive(Copy, Clone, Debug, PartialOrd, Ord, PartialEq, Eq)]
171 pub(crate) enum Cause {
172 /// point inserted because Local was live at the given Location
173 LiveVar(Local, Location),
174
175 /// point inserted because Local was dropped at the given Location
176 DropVar(Local, Location),
177 }
178
179 /// A "type test" corresponds to an outlives constraint between a type
180 /// and a lifetime, like `T: 'x` or `<T as Foo>::Bar: 'x`. They are
181 /// translated from the `Verify` region constraints in the ordinary
182 /// inference context.
183 ///
184 /// These sorts of constraints are handled differently than ordinary
185 /// constraints, at least at present. During type checking, the
186 /// `InferCtxt::process_registered_region_obligations` method will
187 /// attempt to convert a type test like `T: 'x` into an ordinary
188 /// outlives constraint when possible (for example, `&'a T: 'b` will
189 /// be converted into `'a: 'b` and registered as a `Constraint`).
190 ///
191 /// In some cases, however, there are outlives relationships that are
192 /// not converted into a region constraint, but rather into one of
193 /// these "type tests". The distinction is that a type test does not
194 /// influence the inference result, but instead just examines the
195 /// values that we ultimately inferred for each region variable and
196 /// checks that they meet certain extra criteria. If not, an error
197 /// can be issued.
198 ///
199 /// One reason for this is that these type tests typically boil down
200 /// to a check like `'a: 'x` where `'a` is a universally quantified
201 /// region -- and therefore not one whose value is really meant to be
202 /// *inferred*, precisely (this is not always the case: one can have a
203 /// type test like `<Foo as Trait<'?0>>::Bar: 'x`, where `'?0` is an
204 /// inference variable). Another reason is that these type tests can
205 /// involve *disjunction* -- that is, they can be satisfied in more
206 /// than one way.
207 ///
208 /// For more information about this translation, see
209 /// `InferCtxt::process_registered_region_obligations` and
210 /// `InferCtxt::type_must_outlive` in `rustc_infer::infer::InferCtxt`.
211 #[derive(Clone, Debug)]
212 pub struct TypeTest<'tcx> {
213 /// The type `T` that must outlive the region.
214 pub generic_kind: GenericKind<'tcx>,
215
216 /// The region `'x` that the type must outlive.
217 pub lower_bound: RegionVid,
218
219 /// The span to blame.
220 pub span: Span,
221
222 /// A test which, if met by the region `'x`, proves that this type
223 /// constraint is satisfied.
224 pub verify_bound: VerifyBound<'tcx>,
225 }
226
227 /// When we have an unmet lifetime constraint, we try to propagate it outward (e.g. to a closure
228 /// environment). If we can't, it is an error.
229 #[derive(Clone, Copy, Debug, Eq, PartialEq)]
230 enum RegionRelationCheckResult {
231 Ok,
232 Propagated,
233 Error,
234 }
235
236 #[derive(Clone, PartialEq, Eq, Debug)]
237 enum Trace<'tcx> {
238 StartRegion,
239 FromOutlivesConstraint(OutlivesConstraint<'tcx>),
240 NotVisited,
241 }
242
243 #[derive(Clone, PartialEq, Eq, Debug)]
244 pub enum ExtraConstraintInfo {
245 PlaceholderFromPredicate(Span),
246 }
247
248 #[instrument(skip(infcx, sccs), level = "debug")]
sccs_info<'cx, 'tcx>( infcx: &'cx BorrowckInferCtxt<'cx, 'tcx>, sccs: Rc<Sccs<RegionVid, ConstraintSccIndex>>, )249 fn sccs_info<'cx, 'tcx>(
250 infcx: &'cx BorrowckInferCtxt<'cx, 'tcx>,
251 sccs: Rc<Sccs<RegionVid, ConstraintSccIndex>>,
252 ) {
253 use crate::renumber::RegionCtxt;
254
255 let var_to_origin = infcx.reg_var_to_origin.borrow();
256
257 let mut var_to_origin_sorted = var_to_origin.clone().into_iter().collect::<Vec<_>>();
258 var_to_origin_sorted.sort_by_key(|vto| vto.0);
259
260 let mut reg_vars_to_origins_str = "region variables to origins:\n".to_string();
261 for (reg_var, origin) in var_to_origin_sorted.into_iter() {
262 reg_vars_to_origins_str.push_str(&format!("{:?}: {:?}\n", reg_var, origin));
263 }
264 debug!("{}", reg_vars_to_origins_str);
265
266 let num_components = sccs.scc_data().ranges().len();
267 let mut components = vec![FxIndexSet::default(); num_components];
268
269 for (reg_var_idx, scc_idx) in sccs.scc_indices().iter().enumerate() {
270 let reg_var = ty::RegionVid::from_usize(reg_var_idx);
271 let origin = var_to_origin.get(®_var).unwrap_or_else(|| &RegionCtxt::Unknown);
272 components[scc_idx.as_usize()].insert((reg_var, *origin));
273 }
274
275 let mut components_str = "strongly connected components:".to_string();
276 for (scc_idx, reg_vars_origins) in components.iter().enumerate() {
277 let regions_info = reg_vars_origins.clone().into_iter().collect::<Vec<_>>();
278 components_str.push_str(&format!(
279 "{:?}: {:?},\n)",
280 ConstraintSccIndex::from_usize(scc_idx),
281 regions_info,
282 ))
283 }
284 debug!("{}", components_str);
285
286 // calculate the best representative for each component
287 let components_representatives = components
288 .into_iter()
289 .enumerate()
290 .map(|(scc_idx, region_ctxts)| {
291 let repr = region_ctxts
292 .into_iter()
293 .map(|reg_var_origin| reg_var_origin.1)
294 .max_by(|x, y| x.preference_value().cmp(&y.preference_value()))
295 .unwrap();
296
297 (ConstraintSccIndex::from_usize(scc_idx), repr)
298 })
299 .collect::<FxIndexMap<_, _>>();
300
301 let mut scc_node_to_edges = FxIndexMap::default();
302 for (scc_idx, repr) in components_representatives.iter() {
303 let edges_range = sccs.scc_data().ranges()[*scc_idx].clone();
304 let edges = &sccs.scc_data().all_successors()[edges_range];
305 let edge_representatives =
306 edges.iter().map(|scc_idx| components_representatives[scc_idx]).collect::<Vec<_>>();
307 scc_node_to_edges.insert((scc_idx, repr), edge_representatives);
308 }
309
310 debug!("SCC edges {:#?}", scc_node_to_edges);
311 }
312
313 impl<'tcx> RegionInferenceContext<'tcx> {
314 /// Creates a new region inference context with a total of
315 /// `num_region_variables` valid inference variables; the first N
316 /// of those will be constant regions representing the free
317 /// regions defined in `universal_regions`.
318 ///
319 /// The `outlives_constraints` and `type_tests` are an initial set
320 /// of constraints produced by the MIR type check.
new<'cx>( _infcx: &BorrowckInferCtxt<'cx, 'tcx>, var_infos: VarInfos, universal_regions: Rc<UniversalRegions<'tcx>>, placeholder_indices: Rc<PlaceholderIndices>, universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>, outlives_constraints: OutlivesConstraintSet<'tcx>, member_constraints_in: MemberConstraintSet<'tcx, RegionVid>, universe_causes: FxIndexMap<ty::UniverseIndex, UniverseInfo<'tcx>>, type_tests: Vec<TypeTest<'tcx>>, liveness_constraints: LivenessValues<RegionVid>, elements: &Rc<RegionValueElements>, ) -> Self321 pub(crate) fn new<'cx>(
322 _infcx: &BorrowckInferCtxt<'cx, 'tcx>,
323 var_infos: VarInfos,
324 universal_regions: Rc<UniversalRegions<'tcx>>,
325 placeholder_indices: Rc<PlaceholderIndices>,
326 universal_region_relations: Frozen<UniversalRegionRelations<'tcx>>,
327 outlives_constraints: OutlivesConstraintSet<'tcx>,
328 member_constraints_in: MemberConstraintSet<'tcx, RegionVid>,
329 universe_causes: FxIndexMap<ty::UniverseIndex, UniverseInfo<'tcx>>,
330 type_tests: Vec<TypeTest<'tcx>>,
331 liveness_constraints: LivenessValues<RegionVid>,
332 elements: &Rc<RegionValueElements>,
333 ) -> Self {
334 debug!("universal_regions: {:#?}", universal_regions);
335 debug!("outlives constraints: {:#?}", outlives_constraints);
336 debug!("placeholder_indices: {:#?}", placeholder_indices);
337 debug!("type tests: {:#?}", type_tests);
338
339 // Create a RegionDefinition for each inference variable.
340 let definitions: IndexVec<_, _> = var_infos
341 .iter()
342 .map(|info| RegionDefinition::new(info.universe, info.origin))
343 .collect();
344
345 let constraints = Frozen::freeze(outlives_constraints);
346 let constraint_graph = Frozen::freeze(constraints.graph(definitions.len()));
347 let fr_static = universal_regions.fr_static;
348 let constraint_sccs = Rc::new(constraints.compute_sccs(&constraint_graph, fr_static));
349
350 if cfg!(debug_assertions) {
351 sccs_info(_infcx, constraint_sccs.clone());
352 }
353
354 let mut scc_values =
355 RegionValues::new(elements, universal_regions.len(), &placeholder_indices);
356
357 for region in liveness_constraints.rows() {
358 let scc = constraint_sccs.scc(region);
359 scc_values.merge_liveness(scc, region, &liveness_constraints);
360 }
361
362 let scc_universes = Self::compute_scc_universes(&constraint_sccs, &definitions);
363
364 let scc_representatives = Self::compute_scc_representatives(&constraint_sccs, &definitions);
365
366 let member_constraints =
367 Rc::new(member_constraints_in.into_mapped(|r| constraint_sccs.scc(r)));
368
369 let mut result = Self {
370 var_infos,
371 definitions,
372 liveness_constraints,
373 constraints,
374 constraint_graph,
375 constraint_sccs,
376 rev_scc_graph: None,
377 member_constraints,
378 member_constraints_applied: Vec::new(),
379 universe_causes,
380 scc_universes,
381 scc_representatives,
382 scc_values,
383 type_tests,
384 universal_regions,
385 universal_region_relations,
386 };
387
388 result.init_free_and_bound_regions();
389
390 result
391 }
392
393 /// Each SCC is the combination of many region variables which
394 /// have been equated. Therefore, we can associate a universe with
395 /// each SCC which is minimum of all the universes of its
396 /// constituent regions -- this is because whatever value the SCC
397 /// takes on must be a value that each of the regions within the
398 /// SCC could have as well. This implies that the SCC must have
399 /// the minimum, or narrowest, universe.
compute_scc_universes( constraint_sccs: &Sccs<RegionVid, ConstraintSccIndex>, definitions: &IndexSlice<RegionVid, RegionDefinition<'tcx>>, ) -> IndexVec<ConstraintSccIndex, ty::UniverseIndex>400 fn compute_scc_universes(
401 constraint_sccs: &Sccs<RegionVid, ConstraintSccIndex>,
402 definitions: &IndexSlice<RegionVid, RegionDefinition<'tcx>>,
403 ) -> IndexVec<ConstraintSccIndex, ty::UniverseIndex> {
404 let num_sccs = constraint_sccs.num_sccs();
405 let mut scc_universes = IndexVec::from_elem_n(ty::UniverseIndex::MAX, num_sccs);
406
407 debug!("compute_scc_universes()");
408
409 // For each region R in universe U, ensure that the universe for the SCC
410 // that contains R is "no bigger" than U. This effectively sets the universe
411 // for each SCC to be the minimum of the regions within.
412 for (region_vid, region_definition) in definitions.iter_enumerated() {
413 let scc = constraint_sccs.scc(region_vid);
414 let scc_universe = &mut scc_universes[scc];
415 let scc_min = std::cmp::min(region_definition.universe, *scc_universe);
416 if scc_min != *scc_universe {
417 *scc_universe = scc_min;
418 debug!(
419 "compute_scc_universes: lowered universe of {scc:?} to {scc_min:?} \
420 because it contains {region_vid:?} in {region_universe:?}",
421 scc = scc,
422 scc_min = scc_min,
423 region_vid = region_vid,
424 region_universe = region_definition.universe,
425 );
426 }
427 }
428
429 // Walk each SCC `A` and `B` such that `A: B`
430 // and ensure that universe(A) can see universe(B).
431 //
432 // This serves to enforce the 'empty/placeholder' hierarchy
433 // (described in more detail on `RegionKind`):
434 //
435 // ```
436 // static -----+
437 // | |
438 // empty(U0) placeholder(U1)
439 // | /
440 // empty(U1)
441 // ```
442 //
443 // In particular, imagine we have variables R0 in U0 and R1
444 // created in U1, and constraints like this;
445 //
446 // ```
447 // R1: !1 // R1 outlives the placeholder in U1
448 // R1: R0 // R1 outlives R0
449 // ```
450 //
451 // Here, we wish for R1 to be `'static`, because it
452 // cannot outlive `placeholder(U1)` and `empty(U0)` any other way.
453 //
454 // Thanks to this loop, what happens is that the `R1: R0`
455 // constraint lowers the universe of `R1` to `U0`, which in turn
456 // means that the `R1: !1` constraint will (later) cause
457 // `R1` to become `'static`.
458 for scc_a in constraint_sccs.all_sccs() {
459 for &scc_b in constraint_sccs.successors(scc_a) {
460 let scc_universe_a = scc_universes[scc_a];
461 let scc_universe_b = scc_universes[scc_b];
462 let scc_universe_min = std::cmp::min(scc_universe_a, scc_universe_b);
463 if scc_universe_a != scc_universe_min {
464 scc_universes[scc_a] = scc_universe_min;
465
466 debug!(
467 "compute_scc_universes: lowered universe of {scc_a:?} to {scc_universe_min:?} \
468 because {scc_a:?}: {scc_b:?} and {scc_b:?} is in universe {scc_universe_b:?}",
469 scc_a = scc_a,
470 scc_b = scc_b,
471 scc_universe_min = scc_universe_min,
472 scc_universe_b = scc_universe_b
473 );
474 }
475 }
476 }
477
478 debug!("compute_scc_universes: scc_universe = {:#?}", scc_universes);
479
480 scc_universes
481 }
482
483 /// For each SCC, we compute a unique `RegionVid` (in fact, the
484 /// minimal one that belongs to the SCC). See
485 /// `scc_representatives` field of `RegionInferenceContext` for
486 /// more details.
compute_scc_representatives( constraints_scc: &Sccs<RegionVid, ConstraintSccIndex>, definitions: &IndexSlice<RegionVid, RegionDefinition<'tcx>>, ) -> IndexVec<ConstraintSccIndex, ty::RegionVid>487 fn compute_scc_representatives(
488 constraints_scc: &Sccs<RegionVid, ConstraintSccIndex>,
489 definitions: &IndexSlice<RegionVid, RegionDefinition<'tcx>>,
490 ) -> IndexVec<ConstraintSccIndex, ty::RegionVid> {
491 let num_sccs = constraints_scc.num_sccs();
492 let next_region_vid = definitions.next_index();
493 let mut scc_representatives = IndexVec::from_elem_n(next_region_vid, num_sccs);
494
495 for region_vid in definitions.indices() {
496 let scc = constraints_scc.scc(region_vid);
497 let prev_min = scc_representatives[scc];
498 scc_representatives[scc] = region_vid.min(prev_min);
499 }
500
501 scc_representatives
502 }
503
504 /// Initializes the region variables for each universally
505 /// quantified region (lifetime parameter). The first N variables
506 /// always correspond to the regions appearing in the function
507 /// signature (both named and anonymous) and where-clauses. This
508 /// function iterates over those regions and initializes them with
509 /// minimum values.
510 ///
511 /// For example:
512 /// ```
513 /// fn foo<'a, 'b>( /* ... */ ) where 'a: 'b { /* ... */ }
514 /// ```
515 /// would initialize two variables like so:
516 /// ```ignore (illustrative)
517 /// R0 = { CFG, R0 } // 'a
518 /// R1 = { CFG, R0, R1 } // 'b
519 /// ```
520 /// Here, R0 represents `'a`, and it contains (a) the entire CFG
521 /// and (b) any universally quantified regions that it outlives,
522 /// which in this case is just itself. R1 (`'b`) in contrast also
523 /// outlives `'a` and hence contains R0 and R1.
init_free_and_bound_regions(&mut self)524 fn init_free_and_bound_regions(&mut self) {
525 // Update the names (if any)
526 // This iterator has unstable order but we collect it all into an IndexVec
527 for (external_name, variable) in self.universal_regions.named_universal_regions() {
528 debug!(
529 "init_universal_regions: region {:?} has external name {:?}",
530 variable, external_name
531 );
532 self.definitions[variable].external_name = Some(external_name);
533 }
534
535 for variable in self.definitions.indices() {
536 let scc = self.constraint_sccs.scc(variable);
537
538 match self.definitions[variable].origin {
539 NllRegionVariableOrigin::FreeRegion => {
540 // For each free, universally quantified region X:
541
542 // Add all nodes in the CFG to liveness constraints
543 self.liveness_constraints.add_all_points(variable);
544 self.scc_values.add_all_points(scc);
545
546 // Add `end(X)` into the set for X.
547 self.scc_values.add_element(scc, variable);
548 }
549
550 NllRegionVariableOrigin::Placeholder(placeholder) => {
551 // Each placeholder region is only visible from
552 // its universe `ui` and its extensions. So we
553 // can't just add it into `scc` unless the
554 // universe of the scc can name this region.
555 let scc_universe = self.scc_universes[scc];
556 if scc_universe.can_name(placeholder.universe) {
557 self.scc_values.add_element(scc, placeholder);
558 } else {
559 debug!(
560 "init_free_and_bound_regions: placeholder {:?} is \
561 not compatible with universe {:?} of its SCC {:?}",
562 placeholder, scc_universe, scc,
563 );
564 self.add_incompatible_universe(scc);
565 }
566 }
567
568 NllRegionVariableOrigin::Existential { .. } => {
569 // For existential, regions, nothing to do.
570 }
571 }
572 }
573 }
574
575 /// Returns an iterator over all the region indices.
regions(&self) -> impl Iterator<Item = RegionVid> + 'tcx576 pub fn regions(&self) -> impl Iterator<Item = RegionVid> + 'tcx {
577 self.definitions.indices()
578 }
579
580 /// Given a universal region in scope on the MIR, returns the
581 /// corresponding index.
582 ///
583 /// (Panics if `r` is not a registered universal region.)
to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid584 pub fn to_region_vid(&self, r: ty::Region<'tcx>) -> RegionVid {
585 self.universal_regions.to_region_vid(r)
586 }
587
588 /// Returns an iterator over all the outlives constraints.
outlives_constraints(&self) -> impl Iterator<Item = OutlivesConstraint<'tcx>> + '_589 pub fn outlives_constraints(&self) -> impl Iterator<Item = OutlivesConstraint<'tcx>> + '_ {
590 self.constraints.outlives().iter().copied()
591 }
592
593 /// Adds annotations for `#[rustc_regions]`; see `UniversalRegions::annotate`.
annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diagnostic)594 pub(crate) fn annotate(&self, tcx: TyCtxt<'tcx>, err: &mut Diagnostic) {
595 self.universal_regions.annotate(tcx, err)
596 }
597
598 /// Returns `true` if the region `r` contains the point `p`.
599 ///
600 /// Panics if called before `solve()` executes,
region_contains(&self, r: RegionVid, p: impl ToElementIndex) -> bool601 pub(crate) fn region_contains(&self, r: RegionVid, p: impl ToElementIndex) -> bool {
602 let scc = self.constraint_sccs.scc(r);
603 self.scc_values.contains(scc, p)
604 }
605
606 /// Returns the lowest statement index in `start..=end` which is not contained by `r`.
607 ///
608 /// Panics if called before `solve()` executes.
first_non_contained_inclusive( &self, r: RegionVid, block: BasicBlock, start: usize, end: usize, ) -> Option<usize>609 pub(crate) fn first_non_contained_inclusive(
610 &self,
611 r: RegionVid,
612 block: BasicBlock,
613 start: usize,
614 end: usize,
615 ) -> Option<usize> {
616 let scc = self.constraint_sccs.scc(r);
617 self.scc_values.first_non_contained_inclusive(scc, block, start, end)
618 }
619
620 /// Returns access to the value of `r` for debugging purposes.
region_value_str(&self, r: RegionVid) -> String621 pub(crate) fn region_value_str(&self, r: RegionVid) -> String {
622 let scc = self.constraint_sccs.scc(r);
623 self.scc_values.region_value_str(scc)
624 }
625
placeholders_contained_in<'a>( &'a self, r: RegionVid, ) -> impl Iterator<Item = ty::PlaceholderRegion> + 'a626 pub(crate) fn placeholders_contained_in<'a>(
627 &'a self,
628 r: RegionVid,
629 ) -> impl Iterator<Item = ty::PlaceholderRegion> + 'a {
630 let scc = self.constraint_sccs.scc(r);
631 self.scc_values.placeholders_contained_in(scc)
632 }
633
634 /// Returns access to the value of `r` for debugging purposes.
region_universe(&self, r: RegionVid) -> ty::UniverseIndex635 pub(crate) fn region_universe(&self, r: RegionVid) -> ty::UniverseIndex {
636 let scc = self.constraint_sccs.scc(r);
637 self.scc_universes[scc]
638 }
639
640 /// Once region solving has completed, this function will return
641 /// the member constraints that were applied to the value of a given
642 /// region `r`. See `AppliedMemberConstraint`.
applied_member_constraints(&self, r: RegionVid) -> &[AppliedMemberConstraint]643 pub(crate) fn applied_member_constraints(&self, r: RegionVid) -> &[AppliedMemberConstraint] {
644 let scc = self.constraint_sccs.scc(r);
645 binary_search_util::binary_search_slice(
646 &self.member_constraints_applied,
647 |applied| applied.member_region_scc,
648 &scc,
649 )
650 }
651
652 /// Performs region inference and report errors if we see any
653 /// unsatisfiable constraints. If this is a closure, returns the
654 /// region requirements to propagate to our creator, if any.
655 #[instrument(skip(self, infcx, body, polonius_output), level = "debug")]
solve( &mut self, infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, body: &Body<'tcx>, polonius_output: Option<Rc<PoloniusOutput>>, ) -> (Option<ClosureRegionRequirements<'tcx>>, RegionErrors<'tcx>)656 pub(super) fn solve(
657 &mut self,
658 infcx: &InferCtxt<'tcx>,
659 param_env: ty::ParamEnv<'tcx>,
660 body: &Body<'tcx>,
661 polonius_output: Option<Rc<PoloniusOutput>>,
662 ) -> (Option<ClosureRegionRequirements<'tcx>>, RegionErrors<'tcx>) {
663 let mir_def_id = body.source.def_id();
664 self.propagate_constraints(body);
665
666 let mut errors_buffer = RegionErrors::new(infcx.tcx);
667
668 // If this is a closure, we can propagate unsatisfied
669 // `outlives_requirements` to our creator, so create a vector
670 // to store those. Otherwise, we'll pass in `None` to the
671 // functions below, which will trigger them to report errors
672 // eagerly.
673 let mut outlives_requirements = infcx.tcx.is_typeck_child(mir_def_id).then(Vec::new);
674
675 self.check_type_tests(
676 infcx,
677 param_env,
678 body,
679 outlives_requirements.as_mut(),
680 &mut errors_buffer,
681 );
682
683 // In Polonius mode, the errors about missing universal region relations are in the output
684 // and need to be emitted or propagated. Otherwise, we need to check whether the
685 // constraints were too strong, and if so, emit or propagate those errors.
686 if infcx.tcx.sess.opts.unstable_opts.polonius {
687 self.check_polonius_subset_errors(
688 outlives_requirements.as_mut(),
689 &mut errors_buffer,
690 polonius_output.expect("Polonius output is unavailable despite `-Z polonius`"),
691 );
692 } else {
693 self.check_universal_regions(outlives_requirements.as_mut(), &mut errors_buffer);
694 }
695
696 if errors_buffer.is_empty() {
697 self.check_member_constraints(infcx, &mut errors_buffer);
698 }
699
700 let outlives_requirements = outlives_requirements.unwrap_or_default();
701
702 if outlives_requirements.is_empty() {
703 (None, errors_buffer)
704 } else {
705 let num_external_vids = self.universal_regions.num_global_and_external_regions();
706 (
707 Some(ClosureRegionRequirements { num_external_vids, outlives_requirements }),
708 errors_buffer,
709 )
710 }
711 }
712
713 /// Propagate the region constraints: this will grow the values
714 /// for each region variable until all the constraints are
715 /// satisfied. Note that some values may grow **too** large to be
716 /// feasible, but we check this later.
717 #[instrument(skip(self, _body), level = "debug")]
propagate_constraints(&mut self, _body: &Body<'tcx>)718 fn propagate_constraints(&mut self, _body: &Body<'tcx>) {
719 debug!("constraints={:#?}", {
720 let mut constraints: Vec<_> = self.outlives_constraints().collect();
721 constraints.sort_by_key(|c| (c.sup, c.sub));
722 constraints
723 .into_iter()
724 .map(|c| (c, self.constraint_sccs.scc(c.sup), self.constraint_sccs.scc(c.sub)))
725 .collect::<Vec<_>>()
726 });
727
728 // To propagate constraints, we walk the DAG induced by the
729 // SCC. For each SCC, we visit its successors and compute
730 // their values, then we union all those values to get our
731 // own.
732 let constraint_sccs = self.constraint_sccs.clone();
733 for scc in constraint_sccs.all_sccs() {
734 self.compute_value_for_scc(scc);
735 }
736
737 // Sort the applied member constraints so we can binary search
738 // through them later.
739 self.member_constraints_applied.sort_by_key(|applied| applied.member_region_scc);
740 }
741
742 /// Computes the value of the SCC `scc_a`, which has not yet been
743 /// computed, by unioning the values of its successors.
744 /// Assumes that all successors have been computed already
745 /// (which is assured by iterating over SCCs in dependency order).
746 #[instrument(skip(self), level = "debug")]
compute_value_for_scc(&mut self, scc_a: ConstraintSccIndex)747 fn compute_value_for_scc(&mut self, scc_a: ConstraintSccIndex) {
748 let constraint_sccs = self.constraint_sccs.clone();
749
750 // Walk each SCC `B` such that `A: B`...
751 for &scc_b in constraint_sccs.successors(scc_a) {
752 debug!(?scc_b);
753
754 // ...and add elements from `B` into `A`. One complication
755 // arises because of universes: If `B` contains something
756 // that `A` cannot name, then `A` can only contain `B` if
757 // it outlives static.
758 if self.universe_compatible(scc_b, scc_a) {
759 // `A` can name everything that is in `B`, so just
760 // merge the bits.
761 self.scc_values.add_region(scc_a, scc_b);
762 } else {
763 self.add_incompatible_universe(scc_a);
764 }
765 }
766
767 // Now take member constraints into account.
768 let member_constraints = self.member_constraints.clone();
769 for m_c_i in member_constraints.indices(scc_a) {
770 self.apply_member_constraint(scc_a, m_c_i, member_constraints.choice_regions(m_c_i));
771 }
772
773 debug!(value = ?self.scc_values.region_value_str(scc_a));
774 }
775
776 /// Invoked for each `R0 member of [R1..Rn]` constraint.
777 ///
778 /// `scc` is the SCC containing R0, and `choice_regions` are the
779 /// `R1..Rn` regions -- they are always known to be universal
780 /// regions (and if that's not true, we just don't attempt to
781 /// enforce the constraint).
782 ///
783 /// The current value of `scc` at the time the method is invoked
784 /// is considered a *lower bound*. If possible, we will modify
785 /// the constraint to set it equal to one of the option regions.
786 /// If we make any changes, returns true, else false.
787 #[instrument(skip(self, member_constraint_index), level = "debug")]
apply_member_constraint( &mut self, scc: ConstraintSccIndex, member_constraint_index: NllMemberConstraintIndex, choice_regions: &[ty::RegionVid], ) -> bool788 fn apply_member_constraint(
789 &mut self,
790 scc: ConstraintSccIndex,
791 member_constraint_index: NllMemberConstraintIndex,
792 choice_regions: &[ty::RegionVid],
793 ) -> bool {
794 // Create a mutable vector of the options. We'll try to winnow
795 // them down.
796 let mut choice_regions: Vec<ty::RegionVid> = choice_regions.to_vec();
797
798 // Convert to the SCC representative: sometimes we have inference
799 // variables in the member constraint that wind up equated with
800 // universal regions. The scc representative is the minimal numbered
801 // one from the corresponding scc so it will be the universal region
802 // if one exists.
803 for c_r in &mut choice_regions {
804 let scc = self.constraint_sccs.scc(*c_r);
805 *c_r = self.scc_representatives[scc];
806 }
807
808 // The 'member region' in a member constraint is part of the
809 // hidden type, which must be in the root universe. Therefore,
810 // it cannot have any placeholders in its value.
811 assert!(self.scc_universes[scc] == ty::UniverseIndex::ROOT);
812 debug_assert!(
813 self.scc_values.placeholders_contained_in(scc).next().is_none(),
814 "scc {:?} in a member constraint has placeholder value: {:?}",
815 scc,
816 self.scc_values.region_value_str(scc),
817 );
818
819 // The existing value for `scc` is a lower-bound. This will
820 // consist of some set `{P} + {LB}` of points `{P}` and
821 // lower-bound free regions `{LB}`. As each choice region `O`
822 // is a free region, it will outlive the points. But we can
823 // only consider the option `O` if `O: LB`.
824 choice_regions.retain(|&o_r| {
825 self.scc_values
826 .universal_regions_outlived_by(scc)
827 .all(|lb| self.universal_region_relations.outlives(o_r, lb))
828 });
829 debug!(?choice_regions, "after lb");
830
831 // Now find all the *upper bounds* -- that is, each UB is a
832 // free region that must outlive the member region `R0` (`UB:
833 // R0`). Therefore, we need only keep an option `O` if `UB: O`
834 // for all UB.
835 self.compute_reverse_scc_graph();
836 let universal_region_relations = &self.universal_region_relations;
837 for ub in self.rev_scc_graph.as_ref().unwrap().upper_bounds(scc) {
838 debug!(?ub);
839 choice_regions.retain(|&o_r| universal_region_relations.outlives(ub, o_r));
840 }
841 debug!(?choice_regions, "after ub");
842
843 // At this point we can pick any member of `choice_regions`, but to avoid potential
844 // non-determinism we will pick the *unique minimum* choice.
845 //
846 // Because universal regions are only partially ordered (i.e, not every two regions are
847 // comparable), we will ignore any region that doesn't compare to all others when picking
848 // the minimum choice.
849 // For example, consider `choice_regions = ['static, 'a, 'b, 'c, 'd, 'e]`, where
850 // `'static: 'a, 'static: 'b, 'a: 'c, 'b: 'c, 'c: 'd, 'c: 'e`.
851 // `['d, 'e]` are ignored because they do not compare - the same goes for `['a, 'b]`.
852 let totally_ordered_subset = choice_regions.iter().copied().filter(|&r1| {
853 choice_regions.iter().all(|&r2| {
854 self.universal_region_relations.outlives(r1, r2)
855 || self.universal_region_relations.outlives(r2, r1)
856 })
857 });
858 // Now we're left with `['static, 'c]`. Pick `'c` as the minimum!
859 let Some(min_choice) = totally_ordered_subset.reduce(|r1, r2| {
860 let r1_outlives_r2 = self.universal_region_relations.outlives(r1, r2);
861 let r2_outlives_r1 = self.universal_region_relations.outlives(r2, r1);
862 match (r1_outlives_r2, r2_outlives_r1) {
863 (true, true) => r1.min(r2),
864 (true, false) => r2,
865 (false, true) => r1,
866 (false, false) => bug!("incomparable regions in total order"),
867 }
868 }) else {
869 debug!("no unique minimum choice");
870 return false;
871 };
872
873 let min_choice_scc = self.constraint_sccs.scc(min_choice);
874 debug!(?min_choice, ?min_choice_scc);
875 if self.scc_values.add_region(scc, min_choice_scc) {
876 self.member_constraints_applied.push(AppliedMemberConstraint {
877 member_region_scc: scc,
878 min_choice,
879 member_constraint_index,
880 });
881
882 true
883 } else {
884 false
885 }
886 }
887
888 /// Returns `true` if all the elements in the value of `scc_b` are nameable
889 /// in `scc_a`. Used during constraint propagation, and only once
890 /// the value of `scc_b` has been computed.
universe_compatible(&self, scc_b: ConstraintSccIndex, scc_a: ConstraintSccIndex) -> bool891 fn universe_compatible(&self, scc_b: ConstraintSccIndex, scc_a: ConstraintSccIndex) -> bool {
892 let universe_a = self.scc_universes[scc_a];
893
894 // Quick check: if scc_b's declared universe is a subset of
895 // scc_a's declared universe (typically, both are ROOT), then
896 // it cannot contain any problematic universe elements.
897 if universe_a.can_name(self.scc_universes[scc_b]) {
898 return true;
899 }
900
901 // Otherwise, we have to iterate over the universe elements in
902 // B's value, and check whether all of them are nameable
903 // from universe_a
904 self.scc_values.placeholders_contained_in(scc_b).all(|p| universe_a.can_name(p.universe))
905 }
906
907 /// Extend `scc` so that it can outlive some placeholder region
908 /// from a universe it can't name; at present, the only way for
909 /// this to be true is if `scc` outlives `'static`. This is
910 /// actually stricter than necessary: ideally, we'd support bounds
911 /// like `for<'a: 'b>` that might then allow us to approximate
912 /// `'a` with `'b` and not `'static`. But it will have to do for
913 /// now.
add_incompatible_universe(&mut self, scc: ConstraintSccIndex)914 fn add_incompatible_universe(&mut self, scc: ConstraintSccIndex) {
915 debug!("add_incompatible_universe(scc={:?})", scc);
916
917 let fr_static = self.universal_regions.fr_static;
918 self.scc_values.add_all_points(scc);
919 self.scc_values.add_element(scc, fr_static);
920 }
921
922 /// Once regions have been propagated, this method is used to see
923 /// whether the "type tests" produced by typeck were satisfied;
924 /// type tests encode type-outlives relationships like `T:
925 /// 'a`. See `TypeTest` for more details.
check_type_tests( &self, infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, body: &Body<'tcx>, mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>, errors_buffer: &mut RegionErrors<'tcx>, )926 fn check_type_tests(
927 &self,
928 infcx: &InferCtxt<'tcx>,
929 param_env: ty::ParamEnv<'tcx>,
930 body: &Body<'tcx>,
931 mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
932 errors_buffer: &mut RegionErrors<'tcx>,
933 ) {
934 let tcx = infcx.tcx;
935
936 // Sometimes we register equivalent type-tests that would
937 // result in basically the exact same error being reported to
938 // the user. Avoid that.
939 let mut deduplicate_errors = FxIndexSet::default();
940
941 for type_test in &self.type_tests {
942 debug!("check_type_test: {:?}", type_test);
943
944 let generic_ty = type_test.generic_kind.to_ty(tcx);
945 if self.eval_verify_bound(
946 infcx,
947 param_env,
948 generic_ty,
949 type_test.lower_bound,
950 &type_test.verify_bound,
951 ) {
952 continue;
953 }
954
955 if let Some(propagated_outlives_requirements) = &mut propagated_outlives_requirements {
956 if self.try_promote_type_test(
957 infcx,
958 param_env,
959 body,
960 type_test,
961 propagated_outlives_requirements,
962 ) {
963 continue;
964 }
965 }
966
967 // Type-test failed. Report the error.
968 let erased_generic_kind = infcx.tcx.erase_regions(type_test.generic_kind);
969
970 // Skip duplicate-ish errors.
971 if deduplicate_errors.insert((
972 erased_generic_kind,
973 type_test.lower_bound,
974 type_test.span,
975 )) {
976 debug!(
977 "check_type_test: reporting error for erased_generic_kind={:?}, \
978 lower_bound_region={:?}, \
979 type_test.span={:?}",
980 erased_generic_kind, type_test.lower_bound, type_test.span,
981 );
982
983 errors_buffer.push(RegionErrorKind::TypeTestError { type_test: type_test.clone() });
984 }
985 }
986 }
987
988 /// Invoked when we have some type-test (e.g., `T: 'X`) that we cannot
989 /// prove to be satisfied. If this is a closure, we will attempt to
990 /// "promote" this type-test into our `ClosureRegionRequirements` and
991 /// hence pass it up the creator. To do this, we have to phrase the
992 /// type-test in terms of external free regions, as local free
993 /// regions are not nameable by the closure's creator.
994 ///
995 /// Promotion works as follows: we first check that the type `T`
996 /// contains only regions that the creator knows about. If this is
997 /// true, then -- as a consequence -- we know that all regions in
998 /// the type `T` are free regions that outlive the closure body. If
999 /// false, then promotion fails.
1000 ///
1001 /// Once we've promoted T, we have to "promote" `'X` to some region
1002 /// that is "external" to the closure. Generally speaking, a region
1003 /// may be the union of some points in the closure body as well as
1004 /// various free lifetimes. We can ignore the points in the closure
1005 /// body: if the type T can be expressed in terms of external regions,
1006 /// we know it outlives the points in the closure body. That
1007 /// just leaves the free regions.
1008 ///
1009 /// The idea then is to lower the `T: 'X` constraint into multiple
1010 /// bounds -- e.g., if `'X` is the union of two free lifetimes,
1011 /// `'1` and `'2`, then we would create `T: '1` and `T: '2`.
1012 #[instrument(level = "debug", skip(self, infcx, propagated_outlives_requirements))]
try_promote_type_test( &self, infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, body: &Body<'tcx>, type_test: &TypeTest<'tcx>, propagated_outlives_requirements: &mut Vec<ClosureOutlivesRequirement<'tcx>>, ) -> bool1013 fn try_promote_type_test(
1014 &self,
1015 infcx: &InferCtxt<'tcx>,
1016 param_env: ty::ParamEnv<'tcx>,
1017 body: &Body<'tcx>,
1018 type_test: &TypeTest<'tcx>,
1019 propagated_outlives_requirements: &mut Vec<ClosureOutlivesRequirement<'tcx>>,
1020 ) -> bool {
1021 let tcx = infcx.tcx;
1022
1023 let TypeTest { generic_kind, lower_bound, span: _, verify_bound: _ } = type_test;
1024
1025 let generic_ty = generic_kind.to_ty(tcx);
1026 let Some(subject) = self.try_promote_type_test_subject(infcx, generic_ty) else {
1027 return false;
1028 };
1029
1030 debug!("subject = {:?}", subject);
1031
1032 let r_scc = self.constraint_sccs.scc(*lower_bound);
1033
1034 debug!(
1035 "lower_bound = {:?} r_scc={:?} universe={:?}",
1036 lower_bound, r_scc, self.scc_universes[r_scc]
1037 );
1038
1039 // If the type test requires that `T: 'a` where `'a` is a
1040 // placeholder from another universe, that effectively requires
1041 // `T: 'static`, so we have to propagate that requirement.
1042 //
1043 // It doesn't matter *what* universe because the promoted `T` will
1044 // always be in the root universe.
1045 if let Some(p) = self.scc_values.placeholders_contained_in(r_scc).next() {
1046 debug!("encountered placeholder in higher universe: {:?}, requiring 'static", p);
1047 let static_r = self.universal_regions.fr_static;
1048 propagated_outlives_requirements.push(ClosureOutlivesRequirement {
1049 subject,
1050 outlived_free_region: static_r,
1051 blame_span: type_test.span,
1052 category: ConstraintCategory::Boring,
1053 });
1054
1055 // we can return here -- the code below might push add'l constraints
1056 // but they would all be weaker than this one.
1057 return true;
1058 }
1059
1060 // For each region outlived by lower_bound find a non-local,
1061 // universal region (it may be the same region) and add it to
1062 // `ClosureOutlivesRequirement`.
1063 for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
1064 debug!("universal_region_outlived_by ur={:?}", ur);
1065 // Check whether we can already prove that the "subject" outlives `ur`.
1066 // If so, we don't have to propagate this requirement to our caller.
1067 //
1068 // To continue the example from the function, if we are trying to promote
1069 // a requirement that `T: 'X`, and we know that `'X = '1 + '2` (i.e., the union
1070 // `'1` and `'2`), then in this loop `ur` will be `'1` (and `'2`). So here
1071 // we check whether `T: '1` is something we *can* prove. If so, no need
1072 // to propagate that requirement.
1073 //
1074 // This is needed because -- particularly in the case
1075 // where `ur` is a local bound -- we are sometimes in a
1076 // position to prove things that our caller cannot. See
1077 // #53570 for an example.
1078 if self.eval_verify_bound(infcx, param_env, generic_ty, ur, &type_test.verify_bound) {
1079 continue;
1080 }
1081
1082 let non_local_ub = self.universal_region_relations.non_local_upper_bounds(ur);
1083 debug!("try_promote_type_test: non_local_ub={:?}", non_local_ub);
1084
1085 // This is slightly too conservative. To show T: '1, given `'2: '1`
1086 // and `'3: '1` we only need to prove that T: '2 *or* T: '3, but to
1087 // avoid potential non-determinism we approximate this by requiring
1088 // T: '1 and T: '2.
1089 for upper_bound in non_local_ub {
1090 debug_assert!(self.universal_regions.is_universal_region(upper_bound));
1091 debug_assert!(!self.universal_regions.is_local_free_region(upper_bound));
1092
1093 let requirement = ClosureOutlivesRequirement {
1094 subject,
1095 outlived_free_region: upper_bound,
1096 blame_span: type_test.span,
1097 category: ConstraintCategory::Boring,
1098 };
1099 debug!("try_promote_type_test: pushing {:#?}", requirement);
1100 propagated_outlives_requirements.push(requirement);
1101 }
1102 }
1103 true
1104 }
1105
1106 /// When we promote a type test `T: 'r`, we have to replace all region
1107 /// variables in the type `T` with an equal universal region from the
1108 /// closure signature.
1109 /// This is not always possible, so this is a fallible process.
1110 #[instrument(level = "debug", skip(self, infcx))]
try_promote_type_test_subject( &self, infcx: &InferCtxt<'tcx>, ty: Ty<'tcx>, ) -> Option<ClosureOutlivesSubject<'tcx>>1111 fn try_promote_type_test_subject(
1112 &self,
1113 infcx: &InferCtxt<'tcx>,
1114 ty: Ty<'tcx>,
1115 ) -> Option<ClosureOutlivesSubject<'tcx>> {
1116 let tcx = infcx.tcx;
1117
1118 // Opaque types' substs may include useless lifetimes.
1119 // We will replace them with ReStatic.
1120 struct OpaqueFolder<'tcx> {
1121 tcx: TyCtxt<'tcx>,
1122 }
1123 impl<'tcx> ty::TypeFolder<TyCtxt<'tcx>> for OpaqueFolder<'tcx> {
1124 fn interner(&self) -> TyCtxt<'tcx> {
1125 self.tcx
1126 }
1127 fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> {
1128 use ty::TypeSuperFoldable as _;
1129 let tcx = self.tcx;
1130 let &ty::Alias(ty::Opaque, ty::AliasTy { substs, def_id, .. }) = t.kind() else {
1131 return t.super_fold_with(self);
1132 };
1133 let substs =
1134 std::iter::zip(substs, tcx.variances_of(def_id)).map(|(arg, v)| {
1135 match (arg.unpack(), v) {
1136 (ty::GenericArgKind::Lifetime(_), ty::Bivariant) => {
1137 tcx.lifetimes.re_static.into()
1138 }
1139 _ => arg.fold_with(self),
1140 }
1141 });
1142 Ty::new_opaque(tcx, def_id, tcx.mk_substs_from_iter(substs))
1143 }
1144 }
1145
1146 let ty = ty.fold_with(&mut OpaqueFolder { tcx });
1147
1148 let ty = tcx.fold_regions(ty, |r, _depth| {
1149 let r_vid = self.to_region_vid(r);
1150 let r_scc = self.constraint_sccs.scc(r_vid);
1151
1152 // The challenge is this. We have some region variable `r`
1153 // whose value is a set of CFG points and universal
1154 // regions. We want to find if that set is *equivalent* to
1155 // any of the named regions found in the closure.
1156 // To do so, we simply check every candidate `u_r` for equality.
1157 self.scc_values
1158 .universal_regions_outlived_by(r_scc)
1159 .filter(|&u_r| !self.universal_regions.is_local_free_region(u_r))
1160 .find(|&u_r| self.eval_equal(u_r, r_vid))
1161 .map(|u_r| ty::Region::new_var(tcx, u_r))
1162 // In the case of a failure, use `ReErased`. We will eventually
1163 // return `None` in this case.
1164 .unwrap_or(tcx.lifetimes.re_erased)
1165 });
1166
1167 debug!("try_promote_type_test_subject: folded ty = {:?}", ty);
1168
1169 // This will be true if we failed to promote some region.
1170 if ty.has_erased_regions() {
1171 return None;
1172 }
1173
1174 Some(ClosureOutlivesSubject::Ty(ClosureOutlivesSubjectTy::bind(tcx, ty)))
1175 }
1176
1177 /// Returns a universally quantified region that outlives the
1178 /// value of `r` (`r` may be existentially or universally
1179 /// quantified).
1180 ///
1181 /// Since `r` is (potentially) an existential region, it has some
1182 /// value which may include (a) any number of points in the CFG
1183 /// and (b) any number of `end('x)` elements of universally
1184 /// quantified regions. To convert this into a single universal
1185 /// region we do as follows:
1186 ///
1187 /// - Ignore the CFG points in `'r`. All universally quantified regions
1188 /// include the CFG anyhow.
1189 /// - For each `end('x)` element in `'r`, compute the mutual LUB, yielding
1190 /// a result `'y`.
1191 #[instrument(skip(self), level = "debug", ret)]
universal_upper_bound(&self, r: RegionVid) -> RegionVid1192 pub(crate) fn universal_upper_bound(&self, r: RegionVid) -> RegionVid {
1193 debug!(r = %self.region_value_str(r));
1194
1195 // Find the smallest universal region that contains all other
1196 // universal regions within `region`.
1197 let mut lub = self.universal_regions.fr_fn_body;
1198 let r_scc = self.constraint_sccs.scc(r);
1199 for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
1200 lub = self.universal_region_relations.postdom_upper_bound(lub, ur);
1201 }
1202
1203 lub
1204 }
1205
1206 /// Like `universal_upper_bound`, but returns an approximation more suitable
1207 /// for diagnostics. If `r` contains multiple disjoint universal regions
1208 /// (e.g. 'a and 'b in `fn foo<'a, 'b> { ... }`, we pick the lower-numbered region.
1209 /// This corresponds to picking named regions over unnamed regions
1210 /// (e.g. picking early-bound regions over a closure late-bound region).
1211 ///
1212 /// This means that the returned value may not be a true upper bound, since
1213 /// only 'static is known to outlive disjoint universal regions.
1214 /// Therefore, this method should only be used in diagnostic code,
1215 /// where displaying *some* named universal region is better than
1216 /// falling back to 'static.
1217 #[instrument(level = "debug", skip(self))]
approx_universal_upper_bound(&self, r: RegionVid) -> RegionVid1218 pub(crate) fn approx_universal_upper_bound(&self, r: RegionVid) -> RegionVid {
1219 debug!("{}", self.region_value_str(r));
1220
1221 // Find the smallest universal region that contains all other
1222 // universal regions within `region`.
1223 let mut lub = self.universal_regions.fr_fn_body;
1224 let r_scc = self.constraint_sccs.scc(r);
1225 let static_r = self.universal_regions.fr_static;
1226 for ur in self.scc_values.universal_regions_outlived_by(r_scc) {
1227 let new_lub = self.universal_region_relations.postdom_upper_bound(lub, ur);
1228 debug!(?ur, ?lub, ?new_lub);
1229 // The upper bound of two non-static regions is static: this
1230 // means we know nothing about the relationship between these
1231 // two regions. Pick a 'better' one to use when constructing
1232 // a diagnostic
1233 if ur != static_r && lub != static_r && new_lub == static_r {
1234 // Prefer the region with an `external_name` - this
1235 // indicates that the region is early-bound, so working with
1236 // it can produce a nicer error.
1237 if self.region_definition(ur).external_name.is_some() {
1238 lub = ur;
1239 } else if self.region_definition(lub).external_name.is_some() {
1240 // Leave lub unchanged
1241 } else {
1242 // If we get here, we don't have any reason to prefer
1243 // one region over the other. Just pick the
1244 // one with the lower index for now.
1245 lub = std::cmp::min(ur, lub);
1246 }
1247 } else {
1248 lub = new_lub;
1249 }
1250 }
1251
1252 debug!(?r, ?lub);
1253
1254 lub
1255 }
1256
1257 /// Tests if `test` is true when applied to `lower_bound` at
1258 /// `point`.
eval_verify_bound( &self, infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, generic_ty: Ty<'tcx>, lower_bound: RegionVid, verify_bound: &VerifyBound<'tcx>, ) -> bool1259 fn eval_verify_bound(
1260 &self,
1261 infcx: &InferCtxt<'tcx>,
1262 param_env: ty::ParamEnv<'tcx>,
1263 generic_ty: Ty<'tcx>,
1264 lower_bound: RegionVid,
1265 verify_bound: &VerifyBound<'tcx>,
1266 ) -> bool {
1267 debug!("eval_verify_bound(lower_bound={:?}, verify_bound={:?})", lower_bound, verify_bound);
1268
1269 match verify_bound {
1270 VerifyBound::IfEq(verify_if_eq_b) => {
1271 self.eval_if_eq(infcx, param_env, generic_ty, lower_bound, *verify_if_eq_b)
1272 }
1273
1274 VerifyBound::IsEmpty => {
1275 let lower_bound_scc = self.constraint_sccs.scc(lower_bound);
1276 self.scc_values.elements_contained_in(lower_bound_scc).next().is_none()
1277 }
1278
1279 VerifyBound::OutlivedBy(r) => {
1280 let r_vid = self.to_region_vid(*r);
1281 self.eval_outlives(r_vid, lower_bound)
1282 }
1283
1284 VerifyBound::AnyBound(verify_bounds) => verify_bounds.iter().any(|verify_bound| {
1285 self.eval_verify_bound(infcx, param_env, generic_ty, lower_bound, verify_bound)
1286 }),
1287
1288 VerifyBound::AllBounds(verify_bounds) => verify_bounds.iter().all(|verify_bound| {
1289 self.eval_verify_bound(infcx, param_env, generic_ty, lower_bound, verify_bound)
1290 }),
1291 }
1292 }
1293
eval_if_eq( &self, infcx: &InferCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, generic_ty: Ty<'tcx>, lower_bound: RegionVid, verify_if_eq_b: ty::Binder<'tcx, VerifyIfEq<'tcx>>, ) -> bool1294 fn eval_if_eq(
1295 &self,
1296 infcx: &InferCtxt<'tcx>,
1297 param_env: ty::ParamEnv<'tcx>,
1298 generic_ty: Ty<'tcx>,
1299 lower_bound: RegionVid,
1300 verify_if_eq_b: ty::Binder<'tcx, VerifyIfEq<'tcx>>,
1301 ) -> bool {
1302 let generic_ty = self.normalize_to_scc_representatives(infcx.tcx, generic_ty);
1303 let verify_if_eq_b = self.normalize_to_scc_representatives(infcx.tcx, verify_if_eq_b);
1304 match test_type_match::extract_verify_if_eq(
1305 infcx.tcx,
1306 param_env,
1307 &verify_if_eq_b,
1308 generic_ty,
1309 ) {
1310 Some(r) => {
1311 let r_vid = self.to_region_vid(r);
1312 self.eval_outlives(r_vid, lower_bound)
1313 }
1314 None => false,
1315 }
1316 }
1317
1318 /// This is a conservative normalization procedure. It takes every
1319 /// free region in `value` and replaces it with the
1320 /// "representative" of its SCC (see `scc_representatives` field).
1321 /// We are guaranteed that if two values normalize to the same
1322 /// thing, then they are equal; this is a conservative check in
1323 /// that they could still be equal even if they normalize to
1324 /// different results. (For example, there might be two regions
1325 /// with the same value that are not in the same SCC).
1326 ///
1327 /// N.B., this is not an ideal approach and I would like to revisit
1328 /// it. However, it works pretty well in practice. In particular,
1329 /// this is needed to deal with projection outlives bounds like
1330 ///
1331 /// ```text
1332 /// <T as Foo<'0>>::Item: '1
1333 /// ```
1334 ///
1335 /// In particular, this routine winds up being important when
1336 /// there are bounds like `where <T as Foo<'a>>::Item: 'b` in the
1337 /// environment. In this case, if we can show that `'0 == 'a`,
1338 /// and that `'b: '1`, then we know that the clause is
1339 /// satisfied. In such cases, particularly due to limitations of
1340 /// the trait solver =), we usually wind up with a where-clause like
1341 /// `T: Foo<'a>` in scope, which thus forces `'0 == 'a` to be added as
1342 /// a constraint, and thus ensures that they are in the same SCC.
1343 ///
1344 /// So why can't we do a more correct routine? Well, we could
1345 /// *almost* use the `relate_tys` code, but the way it is
1346 /// currently setup it creates inference variables to deal with
1347 /// higher-ranked things and so forth, and right now the inference
1348 /// context is not permitted to make more inference variables. So
1349 /// we use this kind of hacky solution.
normalize_to_scc_representatives<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T where T: TypeFoldable<TyCtxt<'tcx>>,1350 fn normalize_to_scc_representatives<T>(&self, tcx: TyCtxt<'tcx>, value: T) -> T
1351 where
1352 T: TypeFoldable<TyCtxt<'tcx>>,
1353 {
1354 tcx.fold_regions(value, |r, _db| {
1355 let vid = self.to_region_vid(r);
1356 let scc = self.constraint_sccs.scc(vid);
1357 let repr = self.scc_representatives[scc];
1358 ty::Region::new_var(tcx, repr)
1359 })
1360 }
1361
1362 // Evaluate whether `sup_region == sub_region`.
eval_equal(&self, r1: RegionVid, r2: RegionVid) -> bool1363 fn eval_equal(&self, r1: RegionVid, r2: RegionVid) -> bool {
1364 self.eval_outlives(r1, r2) && self.eval_outlives(r2, r1)
1365 }
1366
1367 // Evaluate whether `sup_region: sub_region`.
1368 #[instrument(skip(self), level = "debug", ret)]
eval_outlives(&self, sup_region: RegionVid, sub_region: RegionVid) -> bool1369 fn eval_outlives(&self, sup_region: RegionVid, sub_region: RegionVid) -> bool {
1370 debug!(
1371 "sup_region's value = {:?} universal={:?}",
1372 self.region_value_str(sup_region),
1373 self.universal_regions.is_universal_region(sup_region),
1374 );
1375 debug!(
1376 "sub_region's value = {:?} universal={:?}",
1377 self.region_value_str(sub_region),
1378 self.universal_regions.is_universal_region(sub_region),
1379 );
1380
1381 let sub_region_scc = self.constraint_sccs.scc(sub_region);
1382 let sup_region_scc = self.constraint_sccs.scc(sup_region);
1383
1384 // If we are checking that `'sup: 'sub`, and `'sub` contains
1385 // some placeholder that `'sup` cannot name, then this is only
1386 // true if `'sup` outlives static.
1387 if !self.universe_compatible(sub_region_scc, sup_region_scc) {
1388 debug!(
1389 "sub universe `{sub_region_scc:?}` is not nameable \
1390 by super `{sup_region_scc:?}`, promoting to static",
1391 );
1392
1393 return self.eval_outlives(sup_region, self.universal_regions.fr_static);
1394 }
1395
1396 // Both the `sub_region` and `sup_region` consist of the union
1397 // of some number of universal regions (along with the union
1398 // of various points in the CFG; ignore those points for
1399 // now). Therefore, the sup-region outlives the sub-region if,
1400 // for each universal region R1 in the sub-region, there
1401 // exists some region R2 in the sup-region that outlives R1.
1402 let universal_outlives =
1403 self.scc_values.universal_regions_outlived_by(sub_region_scc).all(|r1| {
1404 self.scc_values
1405 .universal_regions_outlived_by(sup_region_scc)
1406 .any(|r2| self.universal_region_relations.outlives(r2, r1))
1407 });
1408
1409 if !universal_outlives {
1410 debug!("sub region contains a universal region not present in super");
1411 return false;
1412 }
1413
1414 // Now we have to compare all the points in the sub region and make
1415 // sure they exist in the sup region.
1416
1417 if self.universal_regions.is_universal_region(sup_region) {
1418 // Micro-opt: universal regions contain all points.
1419 debug!("super is universal and hence contains all points");
1420 return true;
1421 }
1422
1423 debug!("comparison between points in sup/sub");
1424
1425 self.scc_values.contains_points(sup_region_scc, sub_region_scc)
1426 }
1427
1428 /// Once regions have been propagated, this method is used to see
1429 /// whether any of the constraints were too strong. In particular,
1430 /// we want to check for a case where a universally quantified
1431 /// region exceeded its bounds. Consider:
1432 /// ```compile_fail
1433 /// fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
1434 /// ```
1435 /// In this case, returning `x` requires `&'a u32 <: &'b u32`
1436 /// and hence we establish (transitively) a constraint that
1437 /// `'a: 'b`. The `propagate_constraints` code above will
1438 /// therefore add `end('a)` into the region for `'b` -- but we
1439 /// have no evidence that `'b` outlives `'a`, so we want to report
1440 /// an error.
1441 ///
1442 /// If `propagated_outlives_requirements` is `Some`, then we will
1443 /// push unsatisfied obligations into there. Otherwise, we'll
1444 /// report them as errors.
check_universal_regions( &self, mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>, errors_buffer: &mut RegionErrors<'tcx>, )1445 fn check_universal_regions(
1446 &self,
1447 mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1448 errors_buffer: &mut RegionErrors<'tcx>,
1449 ) {
1450 for (fr, fr_definition) in self.definitions.iter_enumerated() {
1451 match fr_definition.origin {
1452 NllRegionVariableOrigin::FreeRegion => {
1453 // Go through each of the universal regions `fr` and check that
1454 // they did not grow too large, accumulating any requirements
1455 // for our caller into the `outlives_requirements` vector.
1456 self.check_universal_region(
1457 fr,
1458 &mut propagated_outlives_requirements,
1459 errors_buffer,
1460 );
1461 }
1462
1463 NllRegionVariableOrigin::Placeholder(placeholder) => {
1464 self.check_bound_universal_region(fr, placeholder, errors_buffer);
1465 }
1466
1467 NllRegionVariableOrigin::Existential { .. } => {
1468 // nothing to check here
1469 }
1470 }
1471 }
1472 }
1473
1474 /// Checks if Polonius has found any unexpected free region relations.
1475 ///
1476 /// In Polonius terms, a "subset error" (or "illegal subset relation error") is the equivalent
1477 /// of NLL's "checking if any region constraints were too strong": a placeholder origin `'a`
1478 /// was unexpectedly found to be a subset of another placeholder origin `'b`, and means in NLL
1479 /// terms that the "longer free region" `'a` outlived the "shorter free region" `'b`.
1480 ///
1481 /// More details can be found in this blog post by Niko:
1482 /// <https://smallcultfollowing.com/babysteps/blog/2019/01/17/polonius-and-region-errors/>
1483 ///
1484 /// In the canonical example
1485 /// ```compile_fail
1486 /// fn foo<'a, 'b>(x: &'a u32) -> &'b u32 { x }
1487 /// ```
1488 /// returning `x` requires `&'a u32 <: &'b u32` and hence we establish (transitively) a
1489 /// constraint that `'a: 'b`. It is an error that we have no evidence that this
1490 /// constraint holds.
1491 ///
1492 /// If `propagated_outlives_requirements` is `Some`, then we will
1493 /// push unsatisfied obligations into there. Otherwise, we'll
1494 /// report them as errors.
check_polonius_subset_errors( &self, mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>, errors_buffer: &mut RegionErrors<'tcx>, polonius_output: Rc<PoloniusOutput>, )1495 fn check_polonius_subset_errors(
1496 &self,
1497 mut propagated_outlives_requirements: Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1498 errors_buffer: &mut RegionErrors<'tcx>,
1499 polonius_output: Rc<PoloniusOutput>,
1500 ) {
1501 debug!(
1502 "check_polonius_subset_errors: {} subset_errors",
1503 polonius_output.subset_errors.len()
1504 );
1505
1506 // Similarly to `check_universal_regions`: a free region relation, which was not explicitly
1507 // declared ("known") was found by Polonius, so emit an error, or propagate the
1508 // requirements for our caller into the `propagated_outlives_requirements` vector.
1509 //
1510 // Polonius doesn't model regions ("origins") as CFG-subsets or durations, but the
1511 // `longer_fr` and `shorter_fr` terminology will still be used here, for consistency with
1512 // the rest of the NLL infrastructure. The "subset origin" is the "longer free region",
1513 // and the "superset origin" is the outlived "shorter free region".
1514 //
1515 // Note: Polonius will produce a subset error at every point where the unexpected
1516 // `longer_fr`'s "placeholder loan" is contained in the `shorter_fr`. This can be helpful
1517 // for diagnostics in the future, e.g. to point more precisely at the key locations
1518 // requiring this constraint to hold. However, the error and diagnostics code downstream
1519 // expects that these errors are not duplicated (and that they are in a certain order).
1520 // Otherwise, diagnostics messages such as the ones giving names like `'1` to elided or
1521 // anonymous lifetimes for example, could give these names differently, while others like
1522 // the outlives suggestions or the debug output from `#[rustc_regions]` would be
1523 // duplicated. The polonius subset errors are deduplicated here, while keeping the
1524 // CFG-location ordering.
1525 // We can iterate the HashMap here because the result is sorted afterwards.
1526 #[allow(rustc::potential_query_instability)]
1527 let mut subset_errors: Vec<_> = polonius_output
1528 .subset_errors
1529 .iter()
1530 .flat_map(|(_location, subset_errors)| subset_errors.iter())
1531 .collect();
1532 subset_errors.sort();
1533 subset_errors.dedup();
1534
1535 for (longer_fr, shorter_fr) in subset_errors.into_iter() {
1536 debug!(
1537 "check_polonius_subset_errors: subset_error longer_fr={:?},\
1538 shorter_fr={:?}",
1539 longer_fr, shorter_fr
1540 );
1541
1542 let propagated = self.try_propagate_universal_region_error(
1543 *longer_fr,
1544 *shorter_fr,
1545 &mut propagated_outlives_requirements,
1546 );
1547 if propagated == RegionRelationCheckResult::Error {
1548 errors_buffer.push(RegionErrorKind::RegionError {
1549 longer_fr: *longer_fr,
1550 shorter_fr: *shorter_fr,
1551 fr_origin: NllRegionVariableOrigin::FreeRegion,
1552 is_reported: true,
1553 });
1554 }
1555 }
1556
1557 // Handle the placeholder errors as usual, until the chalk-rustc-polonius triumvirate has
1558 // a more complete picture on how to separate this responsibility.
1559 for (fr, fr_definition) in self.definitions.iter_enumerated() {
1560 match fr_definition.origin {
1561 NllRegionVariableOrigin::FreeRegion => {
1562 // handled by polonius above
1563 }
1564
1565 NllRegionVariableOrigin::Placeholder(placeholder) => {
1566 self.check_bound_universal_region(fr, placeholder, errors_buffer);
1567 }
1568
1569 NllRegionVariableOrigin::Existential { .. } => {
1570 // nothing to check here
1571 }
1572 }
1573 }
1574 }
1575
1576 /// Checks the final value for the free region `fr` to see if it
1577 /// grew too large. In particular, examine what `end(X)` points
1578 /// wound up in `fr`'s final value; for each `end(X)` where `X !=
1579 /// fr`, we want to check that `fr: X`. If not, that's either an
1580 /// error, or something we have to propagate to our creator.
1581 ///
1582 /// Things that are to be propagated are accumulated into the
1583 /// `outlives_requirements` vector.
1584 #[instrument(skip(self, propagated_outlives_requirements, errors_buffer), level = "debug")]
check_universal_region( &self, longer_fr: RegionVid, propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>, errors_buffer: &mut RegionErrors<'tcx>, )1585 fn check_universal_region(
1586 &self,
1587 longer_fr: RegionVid,
1588 propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1589 errors_buffer: &mut RegionErrors<'tcx>,
1590 ) {
1591 let longer_fr_scc = self.constraint_sccs.scc(longer_fr);
1592
1593 // Because this free region must be in the ROOT universe, we
1594 // know it cannot contain any bound universes.
1595 assert!(self.scc_universes[longer_fr_scc] == ty::UniverseIndex::ROOT);
1596 debug_assert!(self.scc_values.placeholders_contained_in(longer_fr_scc).next().is_none());
1597
1598 // Only check all of the relations for the main representative of each
1599 // SCC, otherwise just check that we outlive said representative. This
1600 // reduces the number of redundant relations propagated out of
1601 // closures.
1602 // Note that the representative will be a universal region if there is
1603 // one in this SCC, so we will always check the representative here.
1604 let representative = self.scc_representatives[longer_fr_scc];
1605 if representative != longer_fr {
1606 if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
1607 longer_fr,
1608 representative,
1609 propagated_outlives_requirements,
1610 ) {
1611 errors_buffer.push(RegionErrorKind::RegionError {
1612 longer_fr,
1613 shorter_fr: representative,
1614 fr_origin: NllRegionVariableOrigin::FreeRegion,
1615 is_reported: true,
1616 });
1617 }
1618 return;
1619 }
1620
1621 // Find every region `o` such that `fr: o`
1622 // (because `fr` includes `end(o)`).
1623 let mut error_reported = false;
1624 for shorter_fr in self.scc_values.universal_regions_outlived_by(longer_fr_scc) {
1625 if let RegionRelationCheckResult::Error = self.check_universal_region_relation(
1626 longer_fr,
1627 shorter_fr,
1628 propagated_outlives_requirements,
1629 ) {
1630 // We only report the first region error. Subsequent errors are hidden so as
1631 // not to overwhelm the user, but we do record them so as to potentially print
1632 // better diagnostics elsewhere...
1633 errors_buffer.push(RegionErrorKind::RegionError {
1634 longer_fr,
1635 shorter_fr,
1636 fr_origin: NllRegionVariableOrigin::FreeRegion,
1637 is_reported: !error_reported,
1638 });
1639
1640 error_reported = true;
1641 }
1642 }
1643 }
1644
1645 /// Checks that we can prove that `longer_fr: shorter_fr`. If we can't we attempt to propagate
1646 /// the constraint outward (e.g. to a closure environment), but if that fails, there is an
1647 /// error.
check_universal_region_relation( &self, longer_fr: RegionVid, shorter_fr: RegionVid, propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>, ) -> RegionRelationCheckResult1648 fn check_universal_region_relation(
1649 &self,
1650 longer_fr: RegionVid,
1651 shorter_fr: RegionVid,
1652 propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1653 ) -> RegionRelationCheckResult {
1654 // If it is known that `fr: o`, carry on.
1655 if self.universal_region_relations.outlives(longer_fr, shorter_fr) {
1656 RegionRelationCheckResult::Ok
1657 } else {
1658 // If we are not in a context where we can't propagate errors, or we
1659 // could not shrink `fr` to something smaller, then just report an
1660 // error.
1661 //
1662 // Note: in this case, we use the unapproximated regions to report the
1663 // error. This gives better error messages in some cases.
1664 self.try_propagate_universal_region_error(
1665 longer_fr,
1666 shorter_fr,
1667 propagated_outlives_requirements,
1668 )
1669 }
1670 }
1671
1672 /// Attempt to propagate a region error (e.g. `'a: 'b`) that is not met to a closure's
1673 /// creator. If we cannot, then the caller should report an error to the user.
try_propagate_universal_region_error( &self, longer_fr: RegionVid, shorter_fr: RegionVid, propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>, ) -> RegionRelationCheckResult1674 fn try_propagate_universal_region_error(
1675 &self,
1676 longer_fr: RegionVid,
1677 shorter_fr: RegionVid,
1678 propagated_outlives_requirements: &mut Option<&mut Vec<ClosureOutlivesRequirement<'tcx>>>,
1679 ) -> RegionRelationCheckResult {
1680 if let Some(propagated_outlives_requirements) = propagated_outlives_requirements {
1681 // Shrink `longer_fr` until we find a non-local region (if we do).
1682 // We'll call it `fr-` -- it's ever so slightly smaller than
1683 // `longer_fr`.
1684 if let Some(fr_minus) = self.universal_region_relations.non_local_lower_bound(longer_fr)
1685 {
1686 debug!("try_propagate_universal_region_error: fr_minus={:?}", fr_minus);
1687
1688 let blame_span_category = self.find_outlives_blame_span(
1689 longer_fr,
1690 NllRegionVariableOrigin::FreeRegion,
1691 shorter_fr,
1692 );
1693
1694 // Grow `shorter_fr` until we find some non-local regions. (We
1695 // always will.) We'll call them `shorter_fr+` -- they're ever
1696 // so slightly larger than `shorter_fr`.
1697 let shorter_fr_plus =
1698 self.universal_region_relations.non_local_upper_bounds(shorter_fr);
1699 debug!(
1700 "try_propagate_universal_region_error: shorter_fr_plus={:?}",
1701 shorter_fr_plus
1702 );
1703 for fr in shorter_fr_plus {
1704 // Push the constraint `fr-: shorter_fr+`
1705 propagated_outlives_requirements.push(ClosureOutlivesRequirement {
1706 subject: ClosureOutlivesSubject::Region(fr_minus),
1707 outlived_free_region: fr,
1708 blame_span: blame_span_category.1.span,
1709 category: blame_span_category.0,
1710 });
1711 }
1712 return RegionRelationCheckResult::Propagated;
1713 }
1714 }
1715
1716 RegionRelationCheckResult::Error
1717 }
1718
check_bound_universal_region( &self, longer_fr: RegionVid, placeholder: ty::PlaceholderRegion, errors_buffer: &mut RegionErrors<'tcx>, )1719 fn check_bound_universal_region(
1720 &self,
1721 longer_fr: RegionVid,
1722 placeholder: ty::PlaceholderRegion,
1723 errors_buffer: &mut RegionErrors<'tcx>,
1724 ) {
1725 debug!("check_bound_universal_region(fr={:?}, placeholder={:?})", longer_fr, placeholder,);
1726
1727 let longer_fr_scc = self.constraint_sccs.scc(longer_fr);
1728 debug!("check_bound_universal_region: longer_fr_scc={:?}", longer_fr_scc,);
1729
1730 for error_element in self.scc_values.elements_contained_in(longer_fr_scc) {
1731 match error_element {
1732 RegionElement::Location(_) | RegionElement::RootUniversalRegion(_) => {}
1733 // If we have some bound universal region `'a`, then the only
1734 // elements it can contain is itself -- we don't know anything
1735 // else about it!
1736 RegionElement::PlaceholderRegion(placeholder1) => {
1737 if placeholder == placeholder1 {
1738 continue;
1739 }
1740 }
1741 }
1742
1743 errors_buffer.push(RegionErrorKind::BoundUniversalRegionError {
1744 longer_fr,
1745 error_element,
1746 placeholder,
1747 });
1748
1749 // Stop after the first error, it gets too noisy otherwise, and does not provide more information.
1750 break;
1751 }
1752 debug!("check_bound_universal_region: all bounds satisfied");
1753 }
1754
1755 #[instrument(level = "debug", skip(self, infcx, errors_buffer))]
check_member_constraints( &self, infcx: &InferCtxt<'tcx>, errors_buffer: &mut RegionErrors<'tcx>, )1756 fn check_member_constraints(
1757 &self,
1758 infcx: &InferCtxt<'tcx>,
1759 errors_buffer: &mut RegionErrors<'tcx>,
1760 ) {
1761 let member_constraints = self.member_constraints.clone();
1762 for m_c_i in member_constraints.all_indices() {
1763 debug!(?m_c_i);
1764 let m_c = &member_constraints[m_c_i];
1765 let member_region_vid = m_c.member_region_vid;
1766 debug!(
1767 ?member_region_vid,
1768 value = ?self.region_value_str(member_region_vid),
1769 );
1770 let choice_regions = member_constraints.choice_regions(m_c_i);
1771 debug!(?choice_regions);
1772
1773 // Did the member region wind up equal to any of the option regions?
1774 if let Some(o) =
1775 choice_regions.iter().find(|&&o_r| self.eval_equal(o_r, m_c.member_region_vid))
1776 {
1777 debug!("evaluated as equal to {:?}", o);
1778 continue;
1779 }
1780
1781 // If not, report an error.
1782 let member_region = ty::Region::new_var(infcx.tcx, member_region_vid);
1783 errors_buffer.push(RegionErrorKind::UnexpectedHiddenRegion {
1784 span: m_c.definition_span,
1785 hidden_ty: m_c.hidden_ty,
1786 key: m_c.key,
1787 member_region,
1788 });
1789 }
1790 }
1791
1792 /// We have a constraint `fr1: fr2` that is not satisfied, where
1793 /// `fr2` represents some universal region. Here, `r` is some
1794 /// region where we know that `fr1: r` and this function has the
1795 /// job of determining whether `r` is "to blame" for the fact that
1796 /// `fr1: fr2` is required.
1797 ///
1798 /// This is true under two conditions:
1799 ///
1800 /// - `r == fr2`
1801 /// - `fr2` is `'static` and `r` is some placeholder in a universe
1802 /// that cannot be named by `fr1`; in that case, we will require
1803 /// that `fr1: 'static` because it is the only way to `fr1: r` to
1804 /// be satisfied. (See `add_incompatible_universe`.)
provides_universal_region( &self, r: RegionVid, fr1: RegionVid, fr2: RegionVid, ) -> bool1805 pub(crate) fn provides_universal_region(
1806 &self,
1807 r: RegionVid,
1808 fr1: RegionVid,
1809 fr2: RegionVid,
1810 ) -> bool {
1811 debug!("provides_universal_region(r={:?}, fr1={:?}, fr2={:?})", r, fr1, fr2);
1812 let result = {
1813 r == fr2 || {
1814 fr2 == self.universal_regions.fr_static && self.cannot_name_placeholder(fr1, r)
1815 }
1816 };
1817 debug!("provides_universal_region: result = {:?}", result);
1818 result
1819 }
1820
1821 /// If `r2` represents a placeholder region, then this returns
1822 /// `true` if `r1` cannot name that placeholder in its
1823 /// value; otherwise, returns `false`.
cannot_name_placeholder(&self, r1: RegionVid, r2: RegionVid) -> bool1824 pub(crate) fn cannot_name_placeholder(&self, r1: RegionVid, r2: RegionVid) -> bool {
1825 debug!("cannot_name_value_of(r1={:?}, r2={:?})", r1, r2);
1826
1827 match self.definitions[r2].origin {
1828 NllRegionVariableOrigin::Placeholder(placeholder) => {
1829 let universe1 = self.definitions[r1].universe;
1830 debug!(
1831 "cannot_name_value_of: universe1={:?} placeholder={:?}",
1832 universe1, placeholder
1833 );
1834 universe1.cannot_name(placeholder.universe)
1835 }
1836
1837 NllRegionVariableOrigin::FreeRegion | NllRegionVariableOrigin::Existential { .. } => {
1838 false
1839 }
1840 }
1841 }
1842
1843 /// Finds a good `ObligationCause` to blame for the fact that `fr1` outlives `fr2`.
find_outlives_blame_span( &self, fr1: RegionVid, fr1_origin: NllRegionVariableOrigin, fr2: RegionVid, ) -> (ConstraintCategory<'tcx>, ObligationCause<'tcx>)1844 pub(crate) fn find_outlives_blame_span(
1845 &self,
1846 fr1: RegionVid,
1847 fr1_origin: NllRegionVariableOrigin,
1848 fr2: RegionVid,
1849 ) -> (ConstraintCategory<'tcx>, ObligationCause<'tcx>) {
1850 let BlameConstraint { category, cause, .. } = self
1851 .best_blame_constraint(fr1, fr1_origin, |r| self.provides_universal_region(r, fr1, fr2))
1852 .0;
1853 (category, cause)
1854 }
1855
1856 /// Walks the graph of constraints (where `'a: 'b` is considered
1857 /// an edge `'a -> 'b`) to find all paths from `from_region` to
1858 /// `to_region`. The paths are accumulated into the vector
1859 /// `results`. The paths are stored as a series of
1860 /// `ConstraintIndex` values -- in other words, a list of *edges*.
1861 ///
1862 /// Returns: a series of constraints as well as the region `R`
1863 /// that passed the target test.
find_constraint_paths_between_regions( &self, from_region: RegionVid, target_test: impl Fn(RegionVid) -> bool, ) -> Option<(Vec<OutlivesConstraint<'tcx>>, RegionVid)>1864 pub(crate) fn find_constraint_paths_between_regions(
1865 &self,
1866 from_region: RegionVid,
1867 target_test: impl Fn(RegionVid) -> bool,
1868 ) -> Option<(Vec<OutlivesConstraint<'tcx>>, RegionVid)> {
1869 let mut context = IndexVec::from_elem(Trace::NotVisited, &self.definitions);
1870 context[from_region] = Trace::StartRegion;
1871
1872 // Use a deque so that we do a breadth-first search. We will
1873 // stop at the first match, which ought to be the shortest
1874 // path (fewest constraints).
1875 let mut deque = VecDeque::new();
1876 deque.push_back(from_region);
1877
1878 while let Some(r) = deque.pop_front() {
1879 debug!(
1880 "find_constraint_paths_between_regions: from_region={:?} r={:?} value={}",
1881 from_region,
1882 r,
1883 self.region_value_str(r),
1884 );
1885
1886 // Check if we reached the region we were looking for. If so,
1887 // we can reconstruct the path that led to it and return it.
1888 if target_test(r) {
1889 let mut result = vec![];
1890 let mut p = r;
1891 loop {
1892 match context[p].clone() {
1893 Trace::NotVisited => {
1894 bug!("found unvisited region {:?} on path to {:?}", p, r)
1895 }
1896
1897 Trace::FromOutlivesConstraint(c) => {
1898 p = c.sup;
1899 result.push(c);
1900 }
1901
1902 Trace::StartRegion => {
1903 result.reverse();
1904 return Some((result, r));
1905 }
1906 }
1907 }
1908 }
1909
1910 // Otherwise, walk over the outgoing constraints and
1911 // enqueue any regions we find, keeping track of how we
1912 // reached them.
1913
1914 // A constraint like `'r: 'x` can come from our constraint
1915 // graph.
1916 let fr_static = self.universal_regions.fr_static;
1917 let outgoing_edges_from_graph =
1918 self.constraint_graph.outgoing_edges(r, &self.constraints, fr_static);
1919
1920 // Always inline this closure because it can be hot.
1921 let mut handle_constraint = #[inline(always)]
1922 |constraint: OutlivesConstraint<'tcx>| {
1923 debug_assert_eq!(constraint.sup, r);
1924 let sub_region = constraint.sub;
1925 if let Trace::NotVisited = context[sub_region] {
1926 context[sub_region] = Trace::FromOutlivesConstraint(constraint);
1927 deque.push_back(sub_region);
1928 }
1929 };
1930
1931 // This loop can be hot.
1932 for constraint in outgoing_edges_from_graph {
1933 handle_constraint(constraint);
1934 }
1935
1936 // Member constraints can also give rise to `'r: 'x` edges that
1937 // were not part of the graph initially, so watch out for those.
1938 // (But they are extremely rare; this loop is very cold.)
1939 for constraint in self.applied_member_constraints(r) {
1940 let p_c = &self.member_constraints[constraint.member_constraint_index];
1941 let constraint = OutlivesConstraint {
1942 sup: r,
1943 sub: constraint.min_choice,
1944 locations: Locations::All(p_c.definition_span),
1945 span: p_c.definition_span,
1946 category: ConstraintCategory::OpaqueType,
1947 variance_info: ty::VarianceDiagInfo::default(),
1948 from_closure: false,
1949 };
1950 handle_constraint(constraint);
1951 }
1952 }
1953
1954 None
1955 }
1956
1957 /// Finds some region R such that `fr1: R` and `R` is live at `elem`.
1958 #[instrument(skip(self), level = "trace", ret)]
find_sub_region_live_at(&self, fr1: RegionVid, elem: Location) -> RegionVid1959 pub(crate) fn find_sub_region_live_at(&self, fr1: RegionVid, elem: Location) -> RegionVid {
1960 trace!(scc = ?self.constraint_sccs.scc(fr1));
1961 trace!(universe = ?self.scc_universes[self.constraint_sccs.scc(fr1)]);
1962 self.find_constraint_paths_between_regions(fr1, |r| {
1963 // First look for some `r` such that `fr1: r` and `r` is live at `elem`
1964 trace!(?r, liveness_constraints=?self.liveness_constraints.region_value_str(r));
1965 self.liveness_constraints.contains(r, elem)
1966 })
1967 .or_else(|| {
1968 // If we fail to find that, we may find some `r` such that
1969 // `fr1: r` and `r` is a placeholder from some universe
1970 // `fr1` cannot name. This would force `fr1` to be
1971 // `'static`.
1972 self.find_constraint_paths_between_regions(fr1, |r| {
1973 self.cannot_name_placeholder(fr1, r)
1974 })
1975 })
1976 .or_else(|| {
1977 // If we fail to find THAT, it may be that `fr1` is a
1978 // placeholder that cannot "fit" into its SCC. In that
1979 // case, there should be some `r` where `fr1: r` and `fr1` is a
1980 // placeholder that `r` cannot name. We can blame that
1981 // edge.
1982 //
1983 // Remember that if `R1: R2`, then the universe of R1
1984 // must be able to name the universe of R2, because R2 will
1985 // be at least `'empty(Universe(R2))`, and `R1` must be at
1986 // larger than that.
1987 self.find_constraint_paths_between_regions(fr1, |r| {
1988 self.cannot_name_placeholder(r, fr1)
1989 })
1990 })
1991 .map(|(_path, r)| r)
1992 .unwrap()
1993 }
1994
1995 /// Get the region outlived by `longer_fr` and live at `element`.
region_from_element( &self, longer_fr: RegionVid, element: &RegionElement, ) -> RegionVid1996 pub(crate) fn region_from_element(
1997 &self,
1998 longer_fr: RegionVid,
1999 element: &RegionElement,
2000 ) -> RegionVid {
2001 match *element {
2002 RegionElement::Location(l) => self.find_sub_region_live_at(longer_fr, l),
2003 RegionElement::RootUniversalRegion(r) => r,
2004 RegionElement::PlaceholderRegion(error_placeholder) => self
2005 .definitions
2006 .iter_enumerated()
2007 .find_map(|(r, definition)| match definition.origin {
2008 NllRegionVariableOrigin::Placeholder(p) if p == error_placeholder => Some(r),
2009 _ => None,
2010 })
2011 .unwrap(),
2012 }
2013 }
2014
2015 /// Get the region definition of `r`.
region_definition(&self, r: RegionVid) -> &RegionDefinition<'tcx>2016 pub(crate) fn region_definition(&self, r: RegionVid) -> &RegionDefinition<'tcx> {
2017 &self.definitions[r]
2018 }
2019
2020 /// Check if the SCC of `r` contains `upper`.
upper_bound_in_region_scc(&self, r: RegionVid, upper: RegionVid) -> bool2021 pub(crate) fn upper_bound_in_region_scc(&self, r: RegionVid, upper: RegionVid) -> bool {
2022 let r_scc = self.constraint_sccs.scc(r);
2023 self.scc_values.contains(r_scc, upper)
2024 }
2025
universal_regions(&self) -> &UniversalRegions<'tcx>2026 pub(crate) fn universal_regions(&self) -> &UniversalRegions<'tcx> {
2027 self.universal_regions.as_ref()
2028 }
2029
2030 /// Tries to find the best constraint to blame for the fact that
2031 /// `R: from_region`, where `R` is some region that meets
2032 /// `target_test`. This works by following the constraint graph,
2033 /// creating a constraint path that forces `R` to outlive
2034 /// `from_region`, and then finding the best choices within that
2035 /// path to blame.
2036 #[instrument(level = "debug", skip(self, target_test))]
best_blame_constraint( &self, from_region: RegionVid, from_region_origin: NllRegionVariableOrigin, target_test: impl Fn(RegionVid) -> bool, ) -> (BlameConstraint<'tcx>, Vec<ExtraConstraintInfo>)2037 pub(crate) fn best_blame_constraint(
2038 &self,
2039 from_region: RegionVid,
2040 from_region_origin: NllRegionVariableOrigin,
2041 target_test: impl Fn(RegionVid) -> bool,
2042 ) -> (BlameConstraint<'tcx>, Vec<ExtraConstraintInfo>) {
2043 // Find all paths
2044 let (path, target_region) =
2045 self.find_constraint_paths_between_regions(from_region, target_test).unwrap();
2046 debug!(
2047 "path={:#?}",
2048 path.iter()
2049 .map(|c| format!(
2050 "{:?} ({:?}: {:?})",
2051 c,
2052 self.constraint_sccs.scc(c.sup),
2053 self.constraint_sccs.scc(c.sub),
2054 ))
2055 .collect::<Vec<_>>()
2056 );
2057
2058 let mut extra_info = vec![];
2059 for constraint in path.iter() {
2060 let outlived = constraint.sub;
2061 let Some(origin) = self.var_infos.get(outlived) else { continue; };
2062 let RegionVariableOrigin::Nll(NllRegionVariableOrigin::Placeholder(p)) = origin.origin else { continue; };
2063 debug!(?constraint, ?p);
2064 let ConstraintCategory::Predicate(span) = constraint.category else { continue; };
2065 extra_info.push(ExtraConstraintInfo::PlaceholderFromPredicate(span));
2066 // We only want to point to one
2067 break;
2068 }
2069
2070 // We try to avoid reporting a `ConstraintCategory::Predicate` as our best constraint.
2071 // Instead, we use it to produce an improved `ObligationCauseCode`.
2072 // FIXME - determine what we should do if we encounter multiple `ConstraintCategory::Predicate`
2073 // constraints. Currently, we just pick the first one.
2074 let cause_code = path
2075 .iter()
2076 .find_map(|constraint| {
2077 if let ConstraintCategory::Predicate(predicate_span) = constraint.category {
2078 // We currently do not store the `DefId` in the `ConstraintCategory`
2079 // for performances reasons. The error reporting code used by NLL only
2080 // uses the span, so this doesn't cause any problems at the moment.
2081 Some(ObligationCauseCode::BindingObligation(
2082 CRATE_DEF_ID.to_def_id(),
2083 predicate_span,
2084 ))
2085 } else {
2086 None
2087 }
2088 })
2089 .unwrap_or_else(|| ObligationCauseCode::MiscObligation);
2090
2091 // Classify each of the constraints along the path.
2092 let mut categorized_path: Vec<BlameConstraint<'tcx>> = path
2093 .iter()
2094 .map(|constraint| BlameConstraint {
2095 category: constraint.category,
2096 from_closure: constraint.from_closure,
2097 cause: ObligationCause::new(constraint.span, CRATE_DEF_ID, cause_code.clone()),
2098 variance_info: constraint.variance_info,
2099 outlives_constraint: *constraint,
2100 })
2101 .collect();
2102 debug!("categorized_path={:#?}", categorized_path);
2103
2104 // To find the best span to cite, we first try to look for the
2105 // final constraint that is interesting and where the `sup` is
2106 // not unified with the ultimate target region. The reason
2107 // for this is that we have a chain of constraints that lead
2108 // from the source to the target region, something like:
2109 //
2110 // '0: '1 ('0 is the source)
2111 // '1: '2
2112 // '2: '3
2113 // '3: '4
2114 // '4: '5
2115 // '5: '6 ('6 is the target)
2116 //
2117 // Some of those regions are unified with `'6` (in the same
2118 // SCC). We want to screen those out. After that point, the
2119 // "closest" constraint we have to the end is going to be the
2120 // most likely to be the point where the value escapes -- but
2121 // we still want to screen for an "interesting" point to
2122 // highlight (e.g., a call site or something).
2123 let target_scc = self.constraint_sccs.scc(target_region);
2124 let mut range = 0..path.len();
2125
2126 // As noted above, when reporting an error, there is typically a chain of constraints
2127 // leading from some "source" region which must outlive some "target" region.
2128 // In most cases, we prefer to "blame" the constraints closer to the target --
2129 // but there is one exception. When constraints arise from higher-ranked subtyping,
2130 // we generally prefer to blame the source value,
2131 // as the "target" in this case tends to be some type annotation that the user gave.
2132 // Therefore, if we find that the region origin is some instantiation
2133 // of a higher-ranked region, we start our search from the "source" point
2134 // rather than the "target", and we also tweak a few other things.
2135 //
2136 // An example might be this bit of Rust code:
2137 //
2138 // ```rust
2139 // let x: fn(&'static ()) = |_| {};
2140 // let y: for<'a> fn(&'a ()) = x;
2141 // ```
2142 //
2143 // In MIR, this will be converted into a combination of assignments and type ascriptions.
2144 // In particular, the 'static is imposed through a type ascription:
2145 //
2146 // ```rust
2147 // x = ...;
2148 // AscribeUserType(x, fn(&'static ())
2149 // y = x;
2150 // ```
2151 //
2152 // We wind up ultimately with constraints like
2153 //
2154 // ```rust
2155 // !a: 'temp1 // from the `y = x` statement
2156 // 'temp1: 'temp2
2157 // 'temp2: 'static // from the AscribeUserType
2158 // ```
2159 //
2160 // and here we prefer to blame the source (the y = x statement).
2161 let blame_source = match from_region_origin {
2162 NllRegionVariableOrigin::FreeRegion
2163 | NllRegionVariableOrigin::Existential { from_forall: false } => true,
2164 NllRegionVariableOrigin::Placeholder(_)
2165 | NllRegionVariableOrigin::Existential { from_forall: true } => false,
2166 };
2167
2168 let find_region = |i: &usize| {
2169 let constraint = &path[*i];
2170
2171 let constraint_sup_scc = self.constraint_sccs.scc(constraint.sup);
2172
2173 if blame_source {
2174 match categorized_path[*i].category {
2175 ConstraintCategory::OpaqueType
2176 | ConstraintCategory::Boring
2177 | ConstraintCategory::BoringNoLocation
2178 | ConstraintCategory::Internal
2179 | ConstraintCategory::Predicate(_) => false,
2180 ConstraintCategory::TypeAnnotation
2181 | ConstraintCategory::Return(_)
2182 | ConstraintCategory::Yield => true,
2183 _ => constraint_sup_scc != target_scc,
2184 }
2185 } else {
2186 !matches!(
2187 categorized_path[*i].category,
2188 ConstraintCategory::OpaqueType
2189 | ConstraintCategory::Boring
2190 | ConstraintCategory::BoringNoLocation
2191 | ConstraintCategory::Internal
2192 | ConstraintCategory::Predicate(_)
2193 )
2194 }
2195 };
2196
2197 let best_choice =
2198 if blame_source { range.rev().find(find_region) } else { range.find(find_region) };
2199
2200 debug!(?best_choice, ?blame_source, ?extra_info);
2201
2202 if let Some(i) = best_choice {
2203 if let Some(next) = categorized_path.get(i + 1) {
2204 if matches!(categorized_path[i].category, ConstraintCategory::Return(_))
2205 && next.category == ConstraintCategory::OpaqueType
2206 {
2207 // The return expression is being influenced by the return type being
2208 // impl Trait, point at the return type and not the return expr.
2209 return (next.clone(), extra_info);
2210 }
2211 }
2212
2213 if categorized_path[i].category == ConstraintCategory::Return(ReturnConstraint::Normal)
2214 {
2215 let field = categorized_path.iter().find_map(|p| {
2216 if let ConstraintCategory::ClosureUpvar(f) = p.category {
2217 Some(f)
2218 } else {
2219 None
2220 }
2221 });
2222
2223 if let Some(field) = field {
2224 categorized_path[i].category =
2225 ConstraintCategory::Return(ReturnConstraint::ClosureUpvar(field));
2226 }
2227 }
2228
2229 return (categorized_path[i].clone(), extra_info);
2230 }
2231
2232 // If that search fails, that is.. unusual. Maybe everything
2233 // is in the same SCC or something. In that case, find what
2234 // appears to be the most interesting point to report to the
2235 // user via an even more ad-hoc guess.
2236 categorized_path.sort_by_key(|p| p.category);
2237 debug!("sorted_path={:#?}", categorized_path);
2238
2239 (categorized_path.remove(0), extra_info)
2240 }
2241
universe_info(&self, universe: ty::UniverseIndex) -> UniverseInfo<'tcx>2242 pub(crate) fn universe_info(&self, universe: ty::UniverseIndex) -> UniverseInfo<'tcx> {
2243 self.universe_causes[&universe].clone()
2244 }
2245
2246 /// Tries to find the terminator of the loop in which the region 'r' resides.
2247 /// Returns the location of the terminator if found.
find_loop_terminator_location( &self, r: RegionVid, body: &Body<'_>, ) -> Option<Location>2248 pub(crate) fn find_loop_terminator_location(
2249 &self,
2250 r: RegionVid,
2251 body: &Body<'_>,
2252 ) -> Option<Location> {
2253 let scc = self.constraint_sccs.scc(r);
2254 let locations = self.scc_values.locations_outlived_by(scc);
2255 for location in locations {
2256 let bb = &body[location.block];
2257 if let Some(terminator) = &bb.terminator {
2258 // terminator of a loop should be TerminatorKind::FalseUnwind
2259 if let TerminatorKind::FalseUnwind { .. } = terminator.kind {
2260 return Some(location);
2261 }
2262 }
2263 }
2264 None
2265 }
2266 }
2267
2268 impl<'tcx> RegionDefinition<'tcx> {
new(universe: ty::UniverseIndex, rv_origin: RegionVariableOrigin) -> Self2269 fn new(universe: ty::UniverseIndex, rv_origin: RegionVariableOrigin) -> Self {
2270 // Create a new region definition. Note that, for free
2271 // regions, the `external_name` field gets updated later in
2272 // `init_universal_regions`.
2273
2274 let origin = match rv_origin {
2275 RegionVariableOrigin::Nll(origin) => origin,
2276 _ => NllRegionVariableOrigin::Existential { from_forall: false },
2277 };
2278
2279 Self { origin, universe, external_name: None }
2280 }
2281 }
2282
2283 #[derive(Clone, Debug)]
2284 pub struct BlameConstraint<'tcx> {
2285 pub category: ConstraintCategory<'tcx>,
2286 pub from_closure: bool,
2287 pub cause: ObligationCause<'tcx>,
2288 pub variance_info: ty::VarianceDiagInfo<'tcx>,
2289 pub outlives_constraint: OutlivesConstraint<'tcx>,
2290 }
2291