• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #![unstable(feature = "raw_vec_internals", reason = "unstable const warnings", issue = "none")]
2 
3 use core::alloc::LayoutError;
4 use core::cmp;
5 use core::intrinsics;
6 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
7 use core::ptr::{self, NonNull, Unique};
8 use core::slice;
9 
10 #[cfg(not(no_global_oom_handling))]
11 use crate::alloc::handle_alloc_error;
12 use crate::alloc::{Allocator, Global, Layout};
13 use crate::boxed::Box;
14 use crate::collections::TryReserveError;
15 use crate::collections::TryReserveErrorKind::*;
16 
17 #[cfg(test)]
18 mod tests;
19 
20 #[cfg(not(no_global_oom_handling))]
21 enum AllocInit {
22     /// The contents of the new memory are uninitialized.
23     Uninitialized,
24     /// The new memory is guaranteed to be zeroed.
25     Zeroed,
26 }
27 
28 /// A low-level utility for more ergonomically allocating, reallocating, and deallocating
29 /// a buffer of memory on the heap without having to worry about all the corner cases
30 /// involved. This type is excellent for building your own data structures like Vec and VecDeque.
31 /// In particular:
32 ///
33 /// * Produces `Unique::dangling()` on zero-sized types.
34 /// * Produces `Unique::dangling()` on zero-length allocations.
35 /// * Avoids freeing `Unique::dangling()`.
36 /// * Catches all overflows in capacity computations (promotes them to "capacity overflow" panics).
37 /// * Guards against 32-bit systems allocating more than isize::MAX bytes.
38 /// * Guards against overflowing your length.
39 /// * Calls `handle_alloc_error` for fallible allocations.
40 /// * Contains a `ptr::Unique` and thus endows the user with all related benefits.
41 /// * Uses the excess returned from the allocator to use the largest available capacity.
42 ///
43 /// This type does not in anyway inspect the memory that it manages. When dropped it *will*
44 /// free its memory, but it *won't* try to drop its contents. It is up to the user of `RawVec`
45 /// to handle the actual things *stored* inside of a `RawVec`.
46 ///
47 /// Note that the excess of a zero-sized types is always infinite, so `capacity()` always returns
48 /// `usize::MAX`. This means that you need to be careful when round-tripping this type with a
49 /// `Box<[T]>`, since `capacity()` won't yield the length.
50 #[allow(missing_debug_implementations)]
51 pub(crate) struct RawVec<T, A: Allocator = Global> {
52     ptr: Unique<T>,
53     cap: usize,
54     alloc: A,
55 }
56 
57 impl<T> RawVec<T, Global> {
58     /// HACK(Centril): This exists because stable `const fn` can only call stable `const fn`, so
59     /// they cannot call `Self::new()`.
60     ///
61     /// If you change `RawVec<T>::new` or dependencies, please take care to not introduce anything
62     /// that would truly const-call something unstable.
63     pub const NEW: Self = Self::new();
64 
65     /// Creates the biggest possible `RawVec` (on the system heap)
66     /// without allocating. If `T` has positive size, then this makes a
67     /// `RawVec` with capacity `0`. If `T` is zero-sized, then it makes a
68     /// `RawVec` with capacity `usize::MAX`. Useful for implementing
69     /// delayed allocation.
70     #[must_use]
new() -> Self71     pub const fn new() -> Self {
72         Self::new_in(Global)
73     }
74 
75     /// Creates a `RawVec` (on the system heap) with exactly the
76     /// capacity and alignment requirements for a `[T; capacity]`. This is
77     /// equivalent to calling `RawVec::new` when `capacity` is `0` or `T` is
78     /// zero-sized. Note that if `T` is zero-sized this means you will
79     /// *not* get a `RawVec` with the requested capacity.
80     ///
81     /// # Panics
82     ///
83     /// Panics if the requested capacity exceeds `isize::MAX` bytes.
84     ///
85     /// # Aborts
86     ///
87     /// Aborts on OOM.
88     #[cfg(not(any(no_global_oom_handling, test)))]
89     #[must_use]
90     #[inline]
with_capacity(capacity: usize) -> Self91     pub fn with_capacity(capacity: usize) -> Self {
92         Self::with_capacity_in(capacity, Global)
93     }
94 
95     /// Like `with_capacity`, but guarantees the buffer is zeroed.
96     #[cfg(not(any(no_global_oom_handling, test)))]
97     #[must_use]
98     #[inline]
with_capacity_zeroed(capacity: usize) -> Self99     pub fn with_capacity_zeroed(capacity: usize) -> Self {
100         Self::with_capacity_zeroed_in(capacity, Global)
101     }
102 }
103 
104 impl<T, A: Allocator> RawVec<T, A> {
105     // Tiny Vecs are dumb. Skip to:
106     // - 8 if the element size is 1, because any heap allocators is likely
107     //   to round up a request of less than 8 bytes to at least 8 bytes.
108     // - 4 if elements are moderate-sized (<= 1 KiB).
109     // - 1 otherwise, to avoid wasting too much space for very short Vecs.
110     pub(crate) const MIN_NON_ZERO_CAP: usize = if mem::size_of::<T>() == 1 {
111         8
112     } else if mem::size_of::<T>() <= 1024 {
113         4
114     } else {
115         1
116     };
117 
118     /// Like `new`, but parameterized over the choice of allocator for
119     /// the returned `RawVec`.
new_in(alloc: A) -> Self120     pub const fn new_in(alloc: A) -> Self {
121         // `cap: 0` means "unallocated". zero-sized types are ignored.
122         Self { ptr: Unique::dangling(), cap: 0, alloc }
123     }
124 
125     /// Like `with_capacity`, but parameterized over the choice of
126     /// allocator for the returned `RawVec`.
127     #[cfg(not(no_global_oom_handling))]
128     #[inline]
with_capacity_in(capacity: usize, alloc: A) -> Self129     pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
130         Self::allocate_in(capacity, AllocInit::Uninitialized, alloc)
131     }
132 
133     /// Like `with_capacity_zeroed`, but parameterized over the choice
134     /// of allocator for the returned `RawVec`.
135     #[cfg(not(no_global_oom_handling))]
136     #[inline]
with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self137     pub fn with_capacity_zeroed_in(capacity: usize, alloc: A) -> Self {
138         Self::allocate_in(capacity, AllocInit::Zeroed, alloc)
139     }
140 
141     /// Converts the entire buffer into `Box<[MaybeUninit<T>]>` with the specified `len`.
142     ///
143     /// Note that this will correctly reconstitute any `cap` changes
144     /// that may have been performed. (See description of type for details.)
145     ///
146     /// # Safety
147     ///
148     /// * `len` must be greater than or equal to the most recently requested capacity, and
149     /// * `len` must be less than or equal to `self.capacity()`.
150     ///
151     /// Note, that the requested capacity and `self.capacity()` could differ, as
152     /// an allocator could overallocate and return a greater memory block than requested.
into_box(self, len: usize) -> Box<[MaybeUninit<T>], A>153     pub unsafe fn into_box(self, len: usize) -> Box<[MaybeUninit<T>], A> {
154         // Sanity-check one half of the safety requirement (we cannot check the other half).
155         debug_assert!(
156             len <= self.capacity(),
157             "`len` must be smaller than or equal to `self.capacity()`"
158         );
159 
160         let me = ManuallyDrop::new(self);
161         unsafe {
162             let slice = slice::from_raw_parts_mut(me.ptr() as *mut MaybeUninit<T>, len);
163             Box::from_raw_in(slice, ptr::read(&me.alloc))
164         }
165     }
166 
167     #[cfg(not(no_global_oom_handling))]
allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self168     fn allocate_in(capacity: usize, init: AllocInit, alloc: A) -> Self {
169         // Don't allocate here because `Drop` will not deallocate when `capacity` is 0.
170         if T::IS_ZST || capacity == 0 {
171             Self::new_in(alloc)
172         } else {
173             // We avoid `unwrap_or_else` here because it bloats the amount of
174             // LLVM IR generated.
175             let layout = match Layout::array::<T>(capacity) {
176                 Ok(layout) => layout,
177                 Err(_) => capacity_overflow(),
178             };
179             match alloc_guard(layout.size()) {
180                 Ok(_) => {}
181                 Err(_) => capacity_overflow(),
182             }
183             let result = match init {
184                 AllocInit::Uninitialized => alloc.allocate(layout),
185                 AllocInit::Zeroed => alloc.allocate_zeroed(layout),
186             };
187             let ptr = match result {
188                 Ok(ptr) => ptr,
189                 Err(_) => handle_alloc_error(layout),
190             };
191 
192             // Allocators currently return a `NonNull<[u8]>` whose length
193             // matches the size requested. If that ever changes, the capacity
194             // here should change to `ptr.len() / mem::size_of::<T>()`.
195             Self {
196                 ptr: unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) },
197                 cap: capacity,
198                 alloc,
199             }
200         }
201     }
202 
203     /// Reconstitutes a `RawVec` from a pointer, capacity, and allocator.
204     ///
205     /// # Safety
206     ///
207     /// The `ptr` must be allocated (via the given allocator `alloc`), and with the given
208     /// `capacity`.
209     /// The `capacity` cannot exceed `isize::MAX` for sized types. (only a concern on 32-bit
210     /// systems). ZST vectors may have a capacity up to `usize::MAX`.
211     /// If the `ptr` and `capacity` come from a `RawVec` created via `alloc`, then this is
212     /// guaranteed.
213     #[inline]
from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self214     pub unsafe fn from_raw_parts_in(ptr: *mut T, capacity: usize, alloc: A) -> Self {
215         Self { ptr: unsafe { Unique::new_unchecked(ptr) }, cap: capacity, alloc }
216     }
217 
218     /// Gets a raw pointer to the start of the allocation. Note that this is
219     /// `Unique::dangling()` if `capacity == 0` or `T` is zero-sized. In the former case, you must
220     /// be careful.
221     #[inline]
ptr(&self) -> *mut T222     pub fn ptr(&self) -> *mut T {
223         self.ptr.as_ptr()
224     }
225 
226     /// Gets the capacity of the allocation.
227     ///
228     /// This will always be `usize::MAX` if `T` is zero-sized.
229     #[inline(always)]
capacity(&self) -> usize230     pub fn capacity(&self) -> usize {
231         if T::IS_ZST { usize::MAX } else { self.cap }
232     }
233 
234     /// Returns a shared reference to the allocator backing this `RawVec`.
allocator(&self) -> &A235     pub fn allocator(&self) -> &A {
236         &self.alloc
237     }
238 
current_memory(&self) -> Option<(NonNull<u8>, Layout)>239     fn current_memory(&self) -> Option<(NonNull<u8>, Layout)> {
240         if T::IS_ZST || self.cap == 0 {
241             None
242         } else {
243             // We could use Layout::array here which ensures the absence of isize and usize overflows
244             // and could hypothetically handle differences between stride and size, but this memory
245             // has already been allocated so we know it can't overflow and currently rust does not
246             // support such types. So we can do better by skipping some checks and avoid an unwrap.
247             let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
248             unsafe {
249                 let align = mem::align_of::<T>();
250                 let size = mem::size_of::<T>().unchecked_mul(self.cap);
251                 let layout = Layout::from_size_align_unchecked(size, align);
252                 Some((self.ptr.cast().into(), layout))
253             }
254         }
255     }
256 
257     /// Ensures that the buffer contains at least enough space to hold `len +
258     /// additional` elements. If it doesn't already have enough capacity, will
259     /// reallocate enough space plus comfortable slack space to get amortized
260     /// *O*(1) behavior. Will limit this behavior if it would needlessly cause
261     /// itself to panic.
262     ///
263     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
264     /// the requested space. This is not really unsafe, but the unsafe
265     /// code *you* write that relies on the behavior of this function may break.
266     ///
267     /// This is ideal for implementing a bulk-push operation like `extend`.
268     ///
269     /// # Panics
270     ///
271     /// Panics if the new capacity exceeds `isize::MAX` bytes.
272     ///
273     /// # Aborts
274     ///
275     /// Aborts on OOM.
276     #[cfg(not(no_global_oom_handling))]
277     #[inline]
reserve(&mut self, len: usize, additional: usize)278     pub fn reserve(&mut self, len: usize, additional: usize) {
279         // Callers expect this function to be very cheap when there is already sufficient capacity.
280         // Therefore, we move all the resizing and error-handling logic from grow_amortized and
281         // handle_reserve behind a call, while making sure that this function is likely to be
282         // inlined as just a comparison and a call if the comparison fails.
283         #[cold]
284         fn do_reserve_and_handle<T, A: Allocator>(
285             slf: &mut RawVec<T, A>,
286             len: usize,
287             additional: usize,
288         ) {
289             handle_reserve(slf.grow_amortized(len, additional));
290         }
291 
292         if self.needs_to_grow(len, additional) {
293             do_reserve_and_handle(self, len, additional);
294         }
295     }
296 
297     /// A specialized version of `reserve()` used only by the hot and
298     /// oft-instantiated `Vec::push()`, which does its own capacity check.
299     #[cfg(not(no_global_oom_handling))]
300     #[inline(never)]
reserve_for_push(&mut self, len: usize)301     pub fn reserve_for_push(&mut self, len: usize) {
302         handle_reserve(self.grow_amortized(len, 1));
303     }
304 
305     /// The same as `reserve`, but returns on errors instead of panicking or aborting.
try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>306     pub fn try_reserve(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
307         if self.needs_to_grow(len, additional) {
308             self.grow_amortized(len, additional)
309         } else {
310             Ok(())
311         }
312     }
313 
314     /// Ensures that the buffer contains at least enough space to hold `len +
315     /// additional` elements. If it doesn't already, will reallocate the
316     /// minimum possible amount of memory necessary. Generally this will be
317     /// exactly the amount of memory necessary, but in principle the allocator
318     /// is free to give back more than we asked for.
319     ///
320     /// If `len` exceeds `self.capacity()`, this may fail to actually allocate
321     /// the requested space. This is not really unsafe, but the unsafe code
322     /// *you* write that relies on the behavior of this function may break.
323     ///
324     /// # Panics
325     ///
326     /// Panics if the new capacity exceeds `isize::MAX` bytes.
327     ///
328     /// # Aborts
329     ///
330     /// Aborts on OOM.
331     #[cfg(not(no_global_oom_handling))]
reserve_exact(&mut self, len: usize, additional: usize)332     pub fn reserve_exact(&mut self, len: usize, additional: usize) {
333         handle_reserve(self.try_reserve_exact(len, additional));
334     }
335 
336     /// The same as `reserve_exact`, but returns on errors instead of panicking or aborting.
try_reserve_exact( &mut self, len: usize, additional: usize, ) -> Result<(), TryReserveError>337     pub fn try_reserve_exact(
338         &mut self,
339         len: usize,
340         additional: usize,
341     ) -> Result<(), TryReserveError> {
342         if self.needs_to_grow(len, additional) { self.grow_exact(len, additional) } else { Ok(()) }
343     }
344 
345     /// Shrinks the buffer down to the specified capacity. If the given amount
346     /// is 0, actually completely deallocates.
347     ///
348     /// # Panics
349     ///
350     /// Panics if the given amount is *larger* than the current capacity.
351     ///
352     /// # Aborts
353     ///
354     /// Aborts on OOM.
355     #[cfg(not(no_global_oom_handling))]
shrink_to_fit(&mut self, cap: usize)356     pub fn shrink_to_fit(&mut self, cap: usize) {
357         handle_reserve(self.shrink(cap));
358     }
359 }
360 
361 impl<T, A: Allocator> RawVec<T, A> {
362     /// Returns if the buffer needs to grow to fulfill the needed extra capacity.
363     /// Mainly used to make inlining reserve-calls possible without inlining `grow`.
needs_to_grow(&self, len: usize, additional: usize) -> bool364     fn needs_to_grow(&self, len: usize, additional: usize) -> bool {
365         additional > self.capacity().wrapping_sub(len)
366     }
367 
set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize)368     fn set_ptr_and_cap(&mut self, ptr: NonNull<[u8]>, cap: usize) {
369         // Allocators currently return a `NonNull<[u8]>` whose length matches
370         // the size requested. If that ever changes, the capacity here should
371         // change to `ptr.len() / mem::size_of::<T>()`.
372         self.ptr = unsafe { Unique::new_unchecked(ptr.cast().as_ptr()) };
373         self.cap = cap;
374     }
375 
376     // This method is usually instantiated many times. So we want it to be as
377     // small as possible, to improve compile times. But we also want as much of
378     // its contents to be statically computable as possible, to make the
379     // generated code run faster. Therefore, this method is carefully written
380     // so that all of the code that depends on `T` is within it, while as much
381     // of the code that doesn't depend on `T` as possible is in functions that
382     // are non-generic over `T`.
grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>383     fn grow_amortized(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
384         // This is ensured by the calling contexts.
385         debug_assert!(additional > 0);
386 
387         if T::IS_ZST {
388             // Since we return a capacity of `usize::MAX` when `elem_size` is
389             // 0, getting to here necessarily means the `RawVec` is overfull.
390             return Err(CapacityOverflow.into());
391         }
392 
393         // Nothing we can really do about these checks, sadly.
394         let required_cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
395 
396         // This guarantees exponential growth. The doubling cannot overflow
397         // because `cap <= isize::MAX` and the type of `cap` is `usize`.
398         let cap = cmp::max(self.cap * 2, required_cap);
399         let cap = cmp::max(Self::MIN_NON_ZERO_CAP, cap);
400 
401         let new_layout = Layout::array::<T>(cap);
402 
403         // `finish_grow` is non-generic over `T`.
404         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
405         self.set_ptr_and_cap(ptr, cap);
406         Ok(())
407     }
408 
409     // The constraints on this method are much the same as those on
410     // `grow_amortized`, but this method is usually instantiated less often so
411     // it's less critical.
grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError>412     fn grow_exact(&mut self, len: usize, additional: usize) -> Result<(), TryReserveError> {
413         if T::IS_ZST {
414             // Since we return a capacity of `usize::MAX` when the type size is
415             // 0, getting to here necessarily means the `RawVec` is overfull.
416             return Err(CapacityOverflow.into());
417         }
418 
419         let cap = len.checked_add(additional).ok_or(CapacityOverflow)?;
420         let new_layout = Layout::array::<T>(cap);
421 
422         // `finish_grow` is non-generic over `T`.
423         let ptr = finish_grow(new_layout, self.current_memory(), &mut self.alloc)?;
424         self.set_ptr_and_cap(ptr, cap);
425         Ok(())
426     }
427 
428     #[cfg(not(no_global_oom_handling))]
shrink(&mut self, cap: usize) -> Result<(), TryReserveError>429     fn shrink(&mut self, cap: usize) -> Result<(), TryReserveError> {
430         assert!(cap <= self.capacity(), "Tried to shrink to a larger capacity");
431 
432         let (ptr, layout) = if let Some(mem) = self.current_memory() { mem } else { return Ok(()) };
433         // See current_memory() why this assert is here
434         let _: () = const { assert!(mem::size_of::<T>() % mem::align_of::<T>() == 0) };
435         let ptr = unsafe {
436             // `Layout::array` cannot overflow here because it would have
437             // overflowed earlier when capacity was larger.
438             let new_size = mem::size_of::<T>().unchecked_mul(cap);
439             let new_layout = Layout::from_size_align_unchecked(new_size, layout.align());
440             self.alloc
441                 .shrink(ptr, layout, new_layout)
442                 .map_err(|_| AllocError { layout: new_layout, non_exhaustive: () })?
443         };
444         self.set_ptr_and_cap(ptr, cap);
445         Ok(())
446     }
447 }
448 
449 // This function is outside `RawVec` to minimize compile times. See the comment
450 // above `RawVec::grow_amortized` for details. (The `A` parameter isn't
451 // significant, because the number of different `A` types seen in practice is
452 // much smaller than the number of `T` types.)
453 #[inline(never)]
finish_grow<A>( new_layout: Result<Layout, LayoutError>, current_memory: Option<(NonNull<u8>, Layout)>, alloc: &mut A, ) -> Result<NonNull<[u8]>, TryReserveError> where A: Allocator,454 fn finish_grow<A>(
455     new_layout: Result<Layout, LayoutError>,
456     current_memory: Option<(NonNull<u8>, Layout)>,
457     alloc: &mut A,
458 ) -> Result<NonNull<[u8]>, TryReserveError>
459 where
460     A: Allocator,
461 {
462     // Check for the error here to minimize the size of `RawVec::grow_*`.
463     let new_layout = new_layout.map_err(|_| CapacityOverflow)?;
464 
465     alloc_guard(new_layout.size())?;
466 
467     let memory = if let Some((ptr, old_layout)) = current_memory {
468         debug_assert_eq!(old_layout.align(), new_layout.align());
469         unsafe {
470             // The allocator checks for alignment equality
471             intrinsics::assume(old_layout.align() == new_layout.align());
472             alloc.grow(ptr, old_layout, new_layout)
473         }
474     } else {
475         alloc.allocate(new_layout)
476     };
477 
478     memory.map_err(|_| AllocError { layout: new_layout, non_exhaustive: () }.into())
479 }
480 
481 unsafe impl<#[may_dangle] T, A: Allocator> Drop for RawVec<T, A> {
482     /// Frees the memory owned by the `RawVec` *without* trying to drop its contents.
drop(&mut self)483     fn drop(&mut self) {
484         if let Some((ptr, layout)) = self.current_memory() {
485             unsafe { self.alloc.deallocate(ptr, layout) }
486         }
487     }
488 }
489 
490 // Central function for reserve error handling.
491 #[cfg(not(no_global_oom_handling))]
492 #[inline]
handle_reserve(result: Result<(), TryReserveError>)493 fn handle_reserve(result: Result<(), TryReserveError>) {
494     match result.map_err(|e| e.kind()) {
495         Err(CapacityOverflow) => capacity_overflow(),
496         Err(AllocError { layout, .. }) => handle_alloc_error(layout),
497         Ok(()) => { /* yay */ }
498     }
499 }
500 
501 // We need to guarantee the following:
502 // * We don't ever allocate `> isize::MAX` byte-size objects.
503 // * We don't overflow `usize::MAX` and actually allocate too little.
504 //
505 // On 64-bit we just need to check for overflow since trying to allocate
506 // `> isize::MAX` bytes will surely fail. On 32-bit and 16-bit we need to add
507 // an extra guard for this in case we're running on a platform which can use
508 // all 4GB in user-space, e.g., PAE or x32.
509 
510 #[inline]
alloc_guard(alloc_size: usize) -> Result<(), TryReserveError>511 fn alloc_guard(alloc_size: usize) -> Result<(), TryReserveError> {
512     if usize::BITS < 64 && alloc_size > isize::MAX as usize {
513         Err(CapacityOverflow.into())
514     } else {
515         Ok(())
516     }
517 }
518 
519 // One central function responsible for reporting capacity overflows. This'll
520 // ensure that the code generation related to these panics is minimal as there's
521 // only one location which panics rather than a bunch throughout the module.
522 #[cfg(not(no_global_oom_handling))]
capacity_overflow() -> !523 fn capacity_overflow() -> ! {
524     panic!("capacity overflow");
525 }
526